Functional Organization of Human Visual Cortical Areas

  • Balázs Gulyás
Part of the Cerebral Cortex book series (CECO, volume 12)


The visual cortex in lower mammals and primates occupies a relatively large part of the neocortex, and this is one indication of the uniquely important role of the processing and analysis of visual information in the brain. This may, however, be too broad an observation, as the notion “visual cortex” is after all loosely defined. The classical anatomical definition (Cajal, 1899a, b) was that the visual cortex in several species, including human, monkey, and dog, has a special anatomical character; namely an intermediary white “line,” stria, or layer visible to the naked eye (stria Gennari, described independently by Francesco Gennari, 1782, and Félix Vicq-d’Azyr, 1786). This has proved to be far too narrow a definition, as the part of the cortex characterized by this landmark includes only the primary visual area within the visual cortex. Clinical and anatomical studies around the turn of the century brought into the picture “the visual association cortex” (for review see Zeki, 1993; Kuljis, 1994; Rizzo, 1994; and the chapter by Gross, in this volume), the second visual area next to the striate cortex “constituted for the elaboration and interpretation of [visual] sensations” (Campbell, 1905). In the broadest sense, the neurobiological literature also includes cortical areas or cortical regions as part of the visual cortex if their main functions are related to the processing and analysis of visual information, whether they be located in the occipital lobe and its neighboring parietal and temporal cortices or at sites far away from it (e.g., frontal eye field; see, e.g., Drury el al., 1996; and the chapters by Siegal and Read and by Schall, in this volume). No perfect consensus exists as to precisely what the extent of the visual cortex is and how to define it in the best way. One reason is that certain cortical areas may participate in various sensory or sensory—motor operations, for instance, in visuotactile or visuomotor “transformations.” These areas may be a part of both the visual and sensory or visual and motor systems. Other “multimodal” areas may also show different functional features, depending upon task requirements.


Positron Emission Tomography Visual Cortex Visual Area Lateral Geniculate Nucleus Striate Cortex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, T., Ginter, H., McCarthy, G., Nobre, A. C., Puce, A., Luby, M., and Spencer, D. 1)., 1994, Face recognition in human estrastriate cortex, J. Neurophysiol. 71: 821–825.PubMedGoogle Scholar
  2. Bak, M., Girvin, J. P., Hambrecht, F. T., Kufta, C. V., Loeb, G. E., and Schmidt, E. M., 1990, Visual sensations produced by intracortical microstimulation of the human occipital cortex, Med. Biol. Eng. Comp. 28: 257–259.Google Scholar
  3. Belliveau, J. W., Kennedy, I). N., McKinstry, R. C., Buchbinder, B. R., Weisskoff, R. M., Cohen, M. S., Vevea, J. M., Brady, T. J., and Rosen, B. R., 1991, Functional mapping of the human visual cortex by magnetic resonance imaging, Science 254: 716–719.Google Scholar
  4. Benevento, I.. A., and Yoshida, K., 1981, The afferent and efferent organisation of the lateral geniculo-prestriate pathways in the macaque monkey, J. Comp. Neurol. 203: 455–474.PubMedGoogle Scholar
  5. Benson, D. F., and Greenberg, J. P., 1969, Visual form agnosia, Arch. Neurol. 20: 82–89.PubMedGoogle Scholar
  6. Blake, R., and Cormack, R., 1979, Psychophysical evidence for monocular visual cortex in stereoblind humans, Science 203: 274–275.PubMedGoogle Scholar
  7. Boussaoud, D., Ungerleider, I.. G., and Desimone, R., 1990, Pathways for motion analysis, cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque, J. Comp. Neurol. 296: 462–495.PubMedGoogle Scholar
  8. Brindley, G. S., and Lewin, W., 1968, The sensations produced by electric stimulation of the visual cortex, J. Physiol. (Lund.) 196: 479–493.Google Scholar
  9. Buchner, H., Weyen, U., Frackowiak, R. S., Romaya, J., and Zeki, S., 1994, The timing of visual evoked potential activity in human area V4, Proc. R. Soc. Lund. B 257: 99–104.Google Scholar
  10. Burkhalter, A., 1993, Development of forward and feedback connections between areas VI and V2 of human visual cortex, Cerebral Cortex 3: 487–476.Google Scholar
  11. Burkhalter, A., and Bernardo, K. L., 1989, Organization of corticocortical connections in human visual cortex, Proc. Natl. Acad. Sci. USA 86: 1071–1075.PubMedGoogle Scholar
  12. Cajal, S. R., I899a, Notes on a structural study of the visual cortex of the human cerebrum, Rev. lbero-Am. Ciencias Medicos 1:1–14. Google Scholar
  13. Cajal, S. R., 1899b, Studies on the human cerebral cortex (I): Visual cortex, Rev. 1’izroestral Micrograf ica 4: 1–63.Google Scholar
  14. Campbell, A. W., 1905, Histological Studies on the Localisation of Cerebral Function, Cambridge University Press, Cambridge.Google Scholar
  15. Carney, T., Shadlen, M., and Switkes, E., 1987, Parallel processing of motion and colour information, Nature 328: 647–649.PubMedGoogle Scholar
  16. Casagrande, V. A., and Kaas, J. H., 1994, The afferent, intrinsic, and efferent connections of primary visual cortex in primates, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. Rockland, eds.), Plenum Press, New York, pp. 201–259.Google Scholar
  17. Clarke, S., 1993, Callosal connections and the functional subdivisions of the human occipital cortex, in: Functional Organization of the Human Visual Cortex, (B. Gulyís, D. Ottoson, and P. E. Roland, eels.), Pergamon Press, Oxford, pp. 137–149.Google Scholar
  18. Clarke, S., and Miklossy, J., 1990, Occipital cortex in man, organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas,/ Comp. Neurol. 298: 188–214.Google Scholar
  19. Connoly, M., and Van Essen, I). C., 1984, The representation of the visual field in parvicellular and magnocellular layer of the lateral geniculate nucleus in the macaque monkey, J. Comp. Neural. 226: 544–564.Google Scholar
  20. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. I.., and Petersen, S. E., 1991, Selective and divided attention during visual discrimination of shape, color, and speed, Functional anatomy by positron emission tomography,, Neurosci. 11: 2383–2402.Google Scholar
  21. Loren, S., Porac, C., and Ward, I.. W., 1978, Sensation and Perception, Academic Press, New York. Cowey, A., and Rolls, E. T., 1974, Human cortical magnification factor and its relation to visual acuity, Exp. Brain Res., 21, 447–454.Google Scholar
  22. De Jong, B. M., Shipp, S., Skidmore, B., Frackowiak, R. S., and Zeki, S. 1994, The cerebral activity related to the visual perception of forward motion in depth, Brain 117: 1039–1054.PubMedGoogle Scholar
  23. De Yoe, E. A., and Van Essen, 1). C., 1988, Concurrent processing streams in monkey visual cortex, Trends Neurosci. 11: 219–226.Google Scholar
  24. Dobelle, W. H., Turkel, J., Henderson, D. C., and Evans, J. R., 1979, Mapping the representation of the visual field by electrical stimulation of human visual cortex, Am. J. OphiItalmol. 88, 727–735.Google Scholar
  25. Drasdo, N., 1977, The neural representation of the visual space, Nature 266: 554–556.PubMedGoogle Scholar
  26. Drury, H. A., Van Essen, D. C., Anderson, C. H., Lee, C. W., Coogan, F. A., and Lewis, J. W., 1996, Computerized mappings of the cerebral cortex: A multiresolution flattening method and a surface-based coordinate system, J. Cognitive Neurosci. 8: 1–28.Google Scholar
  27. Felleman. J., and Van Essen, C., 1987, Receptive field properties of neurons in area V3 of macaque monkey extrastriale cortex, J. Neurophysioi. 57: 889–920.Google Scholar
  28. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1: 1–47.PubMedGoogle Scholar
  29. ffytche, D. H., Guy, C. N., and Zeki, S., 1995, The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex, Brain 118: 1375–1394.PubMedGoogle Scholar
  30. Fox, P. ‘F., Mintun, M. A., Raichle, M. E., Miezin, F. M., Allman, J. M., and Van Essen, D. C., 1986, Mapping human visual cortex with positron emission tomography, Nature 323: 806–809.Google Scholar
  31. Fox, P. T., Miezin, F. M., Allman, J. M., Van Essen, I). C., and Raichle, M., 1987, Retinotopic organization of human visual cortex with positron emission tomography, /. Neurosci. 7: 913–922.Google Scholar
  32. Fried, I., Mateer, C., Ojemann, G., Wohns, R., and Fedio, P., 1982, Organization of visuospatial functions in human cortex: Evidence from electrical stimulation, Brain 105: 349–371.PubMedGoogle Scholar
  33. Fries, W., 1981, The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey, Proc. R. Soc. Land. B 213: 73–80.Google Scholar
  34. Gennari, F., 1782, De Peculiari Structura Cerebri, Parma, Italy.Google Scholar
  35. Goodale, M. A., 1993, Visual pathways supporting perception and action in the primate cerebral cortex, Curr. ()pin. Neurobiol. 3: 578–585.Google Scholar
  36. Goodale, M. A., and Milner, A. D., 1992, Separate visual pathways for perception and action, Trends Neurosci. 15: 20–25.PubMedGoogle Scholar
  37. Gulyas, B., and Roland, P. E., 1991, Cortical fields participating in form and colour discrimination in the human brain, NeuroReport 2: 585–588.PubMedGoogle Scholar
  38. Gulyas, B., and Roland, P. E., 1993, Visual cortical regions involved in stereovision, in: Functional Organization oJ . the Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. E. Roland, eds.), Pergamon Press, Oxford, pp. 341–357.Google Scholar
  39. Gulyas, B., and Roland, P. E., I 994a, Processing and analysis of visual sub-modalities of form, colour, and binocular disparity in the human brain: Functional anatomy by positron emission tomography, Eur. J. Neurosci. 6:181 I-1828.Google Scholar
  40. Gulyas, B., and Roland, P. E., I994b, Binocular disparity discrimination in human cerebral cortex: Functional anatomy by positron emission tomography, Proc. Natl. Acad. Sci. USA 91: 1239–1243.Google Scholar
  41. Gulyas, B., and Roland, P. E., 1995, Visual cortical fields participating in spatial frequency and orientation discrimination: Functional anatomy by positron emission tomography, Hum. Brain Mapping 3: 133–152.Google Scholar
  42. Gulyas, B., Heywood, C. A., Popplewell, D. B., Cowey, A., and Roland, P. E., I994a. Visual form discrimination from colour or motion cues: Functional anatomy by positron emission tomography, Proc. Natl. Acad. Sci. USA 91: 9965–9969.Google Scholar
  43. Gulyas, B., Roland, P. E., Heywood, C. A., Popplewell, 1). B., and Cowey, A., 1994b, Visual form discrimination from luminance or disparity cues: Functional anatomy by positron emission tomography, NeuroReport 5: 2367–2371.PubMedGoogle Scholar
  44. Gulyas, B., Roland, P. E., Larsson, J., Kinomura, S., Vidnyanszky, Z., Schormann, T., and Zilles, K., 1996, The macular representation in human striate cortex: A combined PET and cytoarchitectural study, Neuroimage 3 (3): S276.Google Scholar
  45. Gulyas, B., Larsson, J., Amunts, K., Zilles, K., and Roland, P. E., 1997, Cortical regions in the human hair systematically participating in the processing and analysis of color, Neuroimage 5: S2.Google Scholar
  46. Hadjikani, N., 1995, The pattern of visual callosal connections in human extrastriate cortex, Thesis, University of Lausanne, p. 48.Google Scholar
  47. Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., Herscovitch, P., Schapiro, M. B., and Rapaport, S. 1., 1991, Dissociation of object and spatial visual processing pathways in human extrastriate cortex Proc. Natl. Acad. Sci. USA 88: 1621–1625.Google Scholar
  48. Haxby, J. V., Grady, C. L., Horwitz, B., Salerno, J., Ungerleider, L. G., Mishkin, M., Shapiro, M. B., and Rapaport, S. 1., 1993, Dissociation of object and spatial vision processing pathways in human extrastriate cortex, in: Functional Organization of the Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. E. Roland, eds.), Pergamon Press, Oxford, pp. 329–340.Google Scholar
  49. Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., and Grady, C. L., 1994, The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations, J. Neurosci. 14: 6336–6353.PubMedGoogle Scholar
  50. Haxby, J. V., Ungerleider, L. G., Horwitz, B., Maisog, J. M., Rapaport, S. 1., and Grady, C. L., 1996, Face encoding and recognition in the human brain, Proc. Natl. Acad. Sci. USA 93: 922–0927Google Scholar
  51. Hess, R. H., Baker, C. L., and Zihl, J., 1989, “fhe ”notion-blind“ patient, low-level spatial and temporal filters, J. Neurosci. 9:1628–1640.Google Scholar
  52. Heywood, C. A., and Cowey, A., 1987, On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys,/. Neurosci. 7: 2601–2617.Google Scholar
  53. Heywood, C. A., Gadotti, A., and Cowey, A., 1992, Cortical area V4 and its role in the perception of color, J. Neurosci. 12: 4056–4065.PubMedGoogle Scholar
  54. Holmes, G., 1945, The organisation of the visual cortex in man, Proc. R. Soc. Loud. B 132: 348–36I.Google Scholar
  55. Holmes, G., and Horrax, G., 1919, Disturbances of spatial orientation and visual attention, with loss of stereoscopic vision, Arch. Neurol. Psychiatry 1: 389–407.Google Scholar
  56. Horton, J. C., and Hoyt, W. F., 1991, The representation of the visual field in human striate cortex, Arch. Ophthalmol. 109: 816–824.Google Scholar
  57. Kaas, J. H., 1993, The organization Of visual cortex in primates: Problems, conclusions, and the use of comparative studies in understanding the human brain, in: Functional Organisation of the Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. E. Roland, eds.), Pergamon Press, Oxford, pp. 1–11.Google Scholar
  58. Kaas, J. H., 1995, Human visual cortex, Current Biol. 5: 1126–1128.Google Scholar
  59. Kinomura, S., Larsson, J., Gulyas, B., and Roland, P. E., 1995, Attention activates the mid-brain reticular formation and thalamic interlaminar nuclei in man, Science 271: 512–515.Google Scholar
  60. Landis, T., Regard, M., Bliestle, A., and Kleihues, P., 1988, Prosopagnosia and agnosia for noncanonical views, Brain 111: 1287–1297.PubMedGoogle Scholar
  61. Larsson, J., Gulyas, B., and Roland, P. E., 1996, Discrimination of motion at isoluminance activates MT, V3 and superior parietal lobule in man, Neuroimage 3 (3): S285.Google Scholar
  62. Lindsay, P. H., and Norman, D. A., 1977, Human Information Processing, Academic Press, New York. Livingstone, M. S., and Hubel, 1). M., 1987, Psychophysical evidence for separate channels for the perception of form, color, movement, and depth, J. Neurosci. 3: 3416–3468.Google Scholar
  63. MacKay, G., and Dunlop, J. C., 1899, The cerebral lesions in a case of complete acquired colour-blindness, Scott. Med. Surg. J. 5: 503–512.Google Scholar
  64. Malpeli, J. G., and Baker, F. H., 1975, The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta, J. Comp. Neurol. 161: 569–594.PubMedGoogle Scholar
  65. McKeefry, D. J., Watson, J. D. G., Frackowiak, R. S. J., and Zeki, S., 1996, Activity in human areas V 1 /v2, V3 and V5 during the perception of coherent and incoherent motion, Neuroimage 3 (3): S289.Google Scholar
  66. McLeod, P., Heywood, C., Driver, J., and Zihl, J., 1989, Selective deficit of visual search in moving displays after extrastriate damage, Nature 339: 466–467.PubMedGoogle Scholar
  67. Meadows, J. C., 1974a, Disturbed perception of colours associated with localized cerebral lesions, Brain 97: 615–632.PubMedGoogle Scholar
  68. Meadows, J. C., 1974b, The anatomical basis of prosopagnosia, J. Neurol. 37: 489–501.Google Scholar
  69. Merigan, W. H., and Maunsell, J. R. H., 1993, How parallel are the primate visual pathways? Anno. Rev. Neurosci. 16: 369–402.Google Scholar
  70. Meyer, B. U., and Diehl, R. R., 1992, Examination of the visual system with transcranial magnetic stimulation, Nervenarzt 63: 328–334.PubMedGoogle Scholar
  71. Milner, A. D., and Goodale, M. A., 1993, Visual pathways to perception and action, Prog. Brain Res. 95: 317–338.PubMedGoogle Scholar
  72. Morel, A., and Bullier, J., 1990, Anatomical segregation of two cortical visual pathways in the macaque monkey, Visual Neurosci. 4: 555–578.Google Scholar
  73. Orban, G. A., Dupont, P., De Bruyn, B., Vogels, R., Vandenberghe, R., and Mortelmans, L., 1995, A motion area in human visual cortex, Proc. Natl. Acad. Sci. USA 92: 993–997.PubMedGoogle Scholar
  74. Paulesu, E., Harrison, J., Baron-Cohen, S., Watson, J. D. G., Goldstein, L., Heather, J., Frackowiak, R. S. J., and Frith, C. I)., 1995, The physiology of coloured hearing. A PET activation study of colour-word synaesthesia, Brain 118: 661–676.Google Scholar
  75. Pearlman, A. L., Birch, J., and Meadows, J. C., 1979, Cerebral color blindness, An acquired defect in hue discrimination, Ann. Neurol. 5, 253–261.PubMedGoogle Scholar
  76. Penfield, W., and Rasmussen, ‘F., 1957, The Cerebral Cortex of Man, Macmillan, New York.Google Scholar
  77. Perry, V. H., Oehler, R., and Cowey, A., 1984, Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey, Neuroscience 12: 1101–1123.PubMedGoogle Scholar
  78. Poggio, G. F., and Fischer, B., 1977, Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey,/ Neurophys. 40: 1392–1405.Google Scholar
  79. Poggio, G. F., and Talbot, W. F., 1981, Mechanisms of static and dynamic stereopsis in fovea) cortex of the rhesus monkey,/ Physiol. 315: 469–492.Google Scholar
  80. Poppelreuter, W., 1917, Die Psychischen Schridigungen durch Kpfschuss im Kriege 1914/16, Verlag von Leopold Voss, Leipzig. Ptito, A., Zatorre, R., Petrides, M., Frey, S., Alivisatos, B., and Evans, A. C., 1993, Localization and lateralization of stereoscopic processing in the human brain, NeuroReport 4: 1155–1158.Google Scholar
  81. Ramachandran, V. S., and Gregory, R. L., 1978, Does colour provide an input to human motion perception? Nature 275: 55–56.PubMedGoogle Scholar
  82. Regan, D., Giaschi, D., Sharpe, J. A., and Yong, X. H., 1992, Visual processing of motion-defined form: Selective failure in patients with parietotemporal lesions,. Neurosci. 12: 2198–2210.Google Scholar
  83. Reppas, J. B., Tootell, R. B. H., and Rosen, B. R., 1995, Regional variation of color and luminance contrast sensitivity between and within human visual cortical areas, Hum. Brain Mapping Suppl. 1: 61.Google Scholar
  84. Richards, W., 1970, Stereopsis and stereoblindness, Exp. Brain Res. 10: 380–388.PubMedGoogle Scholar
  85. Rizzo, M., 1989, Astereopsis, in: Handbook of Neuropsychology, Volume 2 ( F. Boller and J. Grafman, eels.), Elsevier, Amsterdam, pp. 415–427.Google Scholar
  86. Rizzo, M., 1994, The role of striate cortex: Evidence from human lesion studies, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates, A. Peters and K. S. Rockland, eds., Plenum Press, New York, pp. 505–540.Google Scholar
  87. Rodieck, R. W., 1973, The Vertebrate Retina: Principles of Structure and Function, Freeman, San Francisco.Google Scholar
  88. Roland, P. E., 1993, Brain Activation, Wiley-Liss, New York.Google Scholar
  89. Roland, P. E., and Gulyas, B., 1994, Visual imagery and visual representation, Trends Neurosci. 17: 281–287.PubMedGoogle Scholar
  90. Roland, P. E., and Gulyas, B., 1995, Visual memory, visual imagery, and visual recognition of large field patterns by the human brain. Functional anatomy by positron emission tomography, Cerebral Cortex 5: 79–93.PubMedGoogle Scholar
  91. Roland, P. E., and Gulyas, B., 1996, Assumptions and validations of statistical tests for functional neuroimaging, Eur. J. Neurosci.,in press.Google Scholar
  92. Roland, P. E., and Zilles, K., 1994, Brain atlases—A new research tool, Trends Neurosci. 17: 458–467.PubMedGoogle Scholar
  93. Roland, P. E., Levin, B., Kawashima, R., and Akerman, S., 1993, Three-dimensional analysis of clustered voxels in ’°O-butanol brain activation images, Hum. Brain Mapping 1: 3–19.Google Scholar
  94. Roland, P. E., Graufelds, C. J., Wählin, J., Ingelman, I.., Andersson, M., Ledberg, A., Pedersen, Akerman, S., Dabringhaus, A., and Zilles, K., 1994, Human Brain Atlas: For high-resolution functional and anatomical mapping, Hum. Brain Mapping 1: 173–184.Google Scholar
  95. Rovamo, J. H., 1978, Receptive field density of retinal ganglion cells and cortical magnification factor in man, Med. Biol. 56: 97–102.PubMedGoogle Scholar
  96. Rovamo, J., and Virsu, V., 1979, An estimation and application of the human cortical magnification facor, Exp. Brain Res. 37: 495–510.PubMedGoogle Scholar
  97. Rovamo, J., and Virsu, V., 1984, Isotropy of cortical magnification and topography of striate cortex, Vision Res. 24: 283–286.PubMedGoogle Scholar
  98. Sanderson, K. J., 1971, Visual field projection columns and magnification factors in the lateral geniculate nucleus of the cat, Exp. Brain Res. 13: 159–177.PubMedGoogle Scholar
  99. Sakai, K., Watanabe, E., Onodera, Y., Uchida, I., Kato H., Yamatnoto, E., Koizmni, H., and Miyashita, Y., 1995, Functional mapping of the human colour centre with echo-planar magnetic resonance imaging, Proc. R. Soc. Loral. B 261 (1360): 89–98.Google Scholar
  100. Sary, Gy., Vogels, R., and Orban, G. A., 1993, Science 260: 995–997.Google Scholar
  101. Savoy, R. L., Kwong, K. K., and Cohen, M. S., 1993, Searching for stereopsis in humans using ultrafast functional MRI: Stimuli, analysis techniques, and preliminary data, Soc. Neurosci. Abstr. 19: 1500.Google Scholar
  102. Savoy, R. I.., Tootell, R. B. 1–1., O’Craven, K. M., and Reppas, J. R., 1995, Cortical localization of IMRI response to stereo disparity, Hum. Brain Mapping Suppl. 1: 57.Google Scholar
  103. Schiller, P. H., 1993, Parallel pathways in the visual system, in: Functional Organization of the Human Visual Cortex (B. Gulyas, I). Ottoson, and P. E. Roland, eds.), Pergamon Press, Oxford, pp. 43–58Google Scholar
  104. Schiller, P. H., Logothetis, N. K., and Charles, E., 1990, The role of the color-opponent and the broad-band channels in vision, Visual Neurosci. 5: 321–346.Google Scholar
  105. Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J., Rosen, B. R., and Tootell, R. B. H., 1995, Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging, Science 268: 889–893.Google Scholar
  106. Sergent, J., Ohta, S., and MacDonald, B., 1992, Functional neuroanatomy of face and object processing. A positron emission tomography study, Brain 115: 15–36.PubMedGoogle Scholar
  107. Spalding, J. M. K., 1952a, Wounds of the visual pathway. Part I: ‘Elie visual radiation, J. Neurol. Neurosurg. Psychiatry, 15: 99–109.PubMedGoogle Scholar
  108. Spalding, J. M. K., 19526, Wounds of the visual pathway. l’art IL: The striate cortex, J. Neurol. Neurosurg. Psychiatry 15:169–183.Google Scholar
  109. Stone, J., and Johnston, E., 1981, The topography of primate retina: A study of the human, bush-baby, and New-and Old-World monkeys, J. Comp. Neural. 196: 205–223.Google Scholar
  110. Falairach, J., and iòurnoux, P., 1988, Co-Planar Stereotaxic Atlas of the Human Brain, “Fhieme,Stuttgart.Google Scholar
  111. Teuber, H.-I.., Battersby, W. S., and Bender, M. B., 1960, Visual Field Defects After Penetrating Missile Wounds of the Brain, Harvard University Press, Cambridge, MA.Google Scholar
  112. Iblhurst, D. J., and Ling, L., 1988, Magnification factors and the organization of the human striate cortex, Hum. Neurobiol. 6: 247–254.Google Scholar
  113. Tootell, R. B. H., and Taylor, J. B., 1995, Anatomical evidence for MT and additional cortical visual areas in humans, Cerebral Cortex 5: 39–55.PubMedGoogle Scholar
  114. Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T. Brady, T. J., Rosen, B. R., and Belliveau, J. W., 1995a, Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging, J. Neurosci. 15: 3215–3230.Google Scholar
  115. Totell, R. B. H., Reppas, J. B., Dale, A. M., Look, R. B., Sereno, M. I., Malach, R., Brady, “F. J. and Rosen, B. R., 1995b, Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging, Nature 375: 139–141.Google Scholar
  116. Tootell, R. B. H., Reppas, J. R., and Rosen, B. R., 1995c, Functional analysis of human visual cortical areas V3, VP and V3A using magnetic resonance imaging, Ham. Brain Mapping, Suppl. 1: 62.Google Scholar
  117. Tootell, R. B. H., Dale, A. M., Mendola, J. 1)., Reppas, J. B., and Sereno, M. I., 1996, IMRI analysis of human visual cortical area V3A, Neuroimage 3 (3): S358.Google Scholar
  118. Ungerleider, L. G., and Mishkin, M., 1982, Two cortical visual systems, in: Analysis of Visual Behaviour, ( D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield, eds.), MIT Press, Cambridge, MA, pp. 549–586.Google Scholar
  119. Vaina, L. M., 1989, Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans, Biol. Cybernet. 61: 347–359.Google Scholar
  120. Vaina, L. M., 1994, Functional segregation of color and motion processing in the human visual cortex: Clinical evidence, Cerebral Cortex 5: 555–572.Google Scholar
  121. Van Essen, 1). C., Anderson, C. H., and Fellernan, D. J., 1992, Information processing in the primate visual system: An integrated systems perspective, Science 255: 419–423.Google Scholar
  122. Verray, L., 1888, Hémiachromatopsie droite absolue, Arch. Ophthalmol. (Paris) 8: 289–301.Google Scholar
  123. Vicq-d’Azyr, F., 1786, Traité d’Anatomie,Paris.Google Scholar
  124. Virsu, V., and Rovamo, J., 1979, Visual resolution, contrast sensitivity, and the cortical magnification factor, Exp. Brain Res. 37: 475–494.PubMedGoogle Scholar
  125. Watson, J. I). G., Myers, R., Frackowiak, R. S. J., Hajnal, J. V., Woods, R. P., Mazziotta, J. C., Shipp, S., and Zeki, S., 1993, Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging, Cerebral Cortex 3: 79–94.PubMedGoogle Scholar
  126. Wong-Riley, M. T. T, 1993, Cytochrome oxidase studies on the human visual cortex, in: Functional Organization of the Human Visual Cortex, (B. Gulyas, I). Ottoson, and P. E. Roland, eds.), Pergamon Press, Oxford, 165–180.Google Scholar
  127. Yukie, M., and Iwai, E., 1981, Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys,/ Comp. Neurol. 201: 81–97.Google Scholar
  128. Zeki, S., 1974, Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey, /. Physiol. (Lund.) 236: 549–573.Google Scholar
  129. Zeki, S., 1990, A century of cerebral achromatopsia, Brain 113: 1721–1777.PubMedGoogle Scholar
  130. Zeki, S., 1991, Cerebral akinetopsia (visual motion blindness). A review, Brain 114: 811–824.PubMedGoogle Scholar
  131. Zeki, S., 1993, The visual association cortex, Curr. Opin. Neurobiol. 3 (1993): 155–159.PubMedGoogle Scholar
  132. Zeki, S., Watson, D. G., Lueck, C. J., Friston, K. J., Kennard, C., and Frackowiak, R. S. J., 1991, A direct demonstration of functional specialization in human visual cortex, J. Neurosci. 11: 641–649.PubMedGoogle Scholar
  133. Zeki, S., Watson, J. D. G., and Frackowiak, R. S. J., 1993, Going beyond the information given: The relation of illusory visual motion to brain activity, Proc. R. Soc. Fond. B 252: 215–222.Google Scholar
  134. Zihl, J., Von Cramon, D., and Mai, N., 1983, Selective disturbance of movement vision after bilateral brain damage, Brain 106: 313–340.PubMedGoogle Scholar
  135. Zilles, K., 1990, Cortex, in: The Human Nervous System ( C. Paxinos, ed.), Academic Press, San Diego, pp. 757–802.Google Scholar
  136. Zilles, K., 1991, Codistribution of receptors in the human cerebral cortex, in: Receptors in the Human Nervous System (F. A. O. Mendelsohn and G. Paxinos, eds. ), pp. 165–206.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Balázs Gulyás
    • 1
  1. 1.Division of Human Brain Research, Department of NeuroscienceKarolinska InstituteStockholmSweden

Personalised recommendations