Architecture, Connectivity, and Transmitter Receptors of Human Extrastriate Visual Cortex

Comparison with Nonhuman Primates
  • Karl Zilles
  • Stephanie Clarke
Part of the Cerebral Cortex book series (CECO, volume 12)

Abstract

The cytoarchitectonic and myelogenetic maps of the mammalian visual cortex (Brodmann, 1903, 1905, 1906, 1908a, 1908b, 1909; Flechsig, 1920; Economo and Koskinas, 1925) represented for decades widely accepted organizational concepts. Lately, they have been losing some of their importance, mainly for two reasons. First, the schematic figures published by these authors are often used for purposes of cortical localization, often by surface landmarks, without recourse to histological identification of areas and without taking into account ambiguities of definitions and interindividual variations. Second, purely architectonic maps tend to be replaced by more functionally relevant parcellations (for review see Felleman and van Essen, 1991; Kaas and Krubitzer, 1991; Kaas, 1993; Zeki, 1993). We aim at reestablishing the importance of the architectonic approach to the human cortex by reviewing critically classic and modern architectonic studies and by relating them to hodological and activation studies.

Keywords

Serotonin NMDA Acetylcholine Pyramid Lamination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albright, T. D., 1984, Direction and orientation selectivity of neurons in visual area MT of the macaque, J. Neurophysiol. 52: 1106–1130.PubMedGoogle Scholar
  2. Allison, T., Begleiter, A., McCarthy, G., Roessler, E., Nobre, A. C., and Spencer, 1). D., 1993, Electrophysiological studies of color processing in human visual cortex, Electroenceph. Clin. Neurophysiol. 88: 343–355.PubMedGoogle Scholar
  3. Allison, T., Ginter, H., McCarthy, G., Nobre, A. C., Puce, A., Luby, M., and Spencer, D. D., 1994, Face recognition in human extrastriate cortex, J. Neurophysiol. 71: 821–825.PubMedGoogle Scholar
  4. Allman, J. M., and Kaas, J. H., 1971, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus), Brain Res. 31: 85–105.PubMedGoogle Scholar
  5. Allman, J. M., and Kaas, J. H., 1975, The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgalus), Brain Res. 100: 473–487.PubMedGoogle Scholar
  6. Allman, J. M., Kaas, J. H., and Lane, R. H., 1973, The middle temporal visual area (MT) in the bushbaby (Galago senegalensis), Brain Res. 57: 197–202.PubMedGoogle Scholar
  7. Bailey, P., and von Bonin, G., 1951, The Isocortex of Man, University of Illinois Press, Urbana, IL. Balzer, J. S., Ungerleider, I. G., and Desimone, R., 1991, Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques, J. Neurosci. 11: 168–190.Google Scholar
  8. Baker, J. F., Petersen, S. E., Newsome, W. T., and Allman, J. M., 1981, Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): A quantitative comparison of medial, dorsomedial, dorsolateral and middle temporal areas, J. Neurophysiol. 45: 397–416.PubMedGoogle Scholar
  9. Baleydier, C., and Morel, A., 1992, Segregated thalamocortical pathways to inferior parietal and inferotemporal cortex in macaque monkey, Visual Neurosci. 8 (5): 391–405.Google Scholar
  10. Barbur, J., Watson, J., Frackowiak, R., and Zeki, S., 1993, Conscious visual perception without V I, Brain 116: 1293–1302.PubMedGoogle Scholar
  11. Barton, J. J. S., Sharpe, J. A., and Raymond, J. E., 1995, Retinotopic and directional defects in motion discrimination in humans with cerebral lesions, Ann. Neurol. 37: 665–675.PubMedGoogle Scholar
  12. Beckers, G., and Zeki, S., 1995, The consequences of inactivating areas VI and V5 on visual motion perception, Brain 118: 49–60.PubMedGoogle Scholar
  13. Benevento, L. A., and Davis, B., 1977, Topographical projections of the prestriate cortex to the pulvinar nuclei in the macaque monkey: An autoradiographic study, Exp. Brain Res. 30 (23): 405–424.PubMedGoogle Scholar
  14. Benevento, I. A., and Fallon, J. H., 1975, The ascending projections of the superior colliculus in the rhesus monkey (Macaca rrtulatta), J. Comp. Neurol. 160: 339–362.PubMedGoogle Scholar
  15. Benevento, L. A., and Yoshida, K., 1981, The afferent and efferent organization of the lateral geniculo-prestriate pathways in the macaque monkey,/ Comp. Neurol. 203 (3): 455–474.Google Scholar
  16. Betz, W., 1874, Anatomischer Nachweis zweier Gehirncentra, Zenlralbl. Med. Wiss. 19:193–195, 210–213, 231–234.Google Scholar
  17. Binder, J. R., and Mohr, J. P., 1992, The topography of callosal reading pathways. A case—control analysis, Brain 115: 1807–1826.PubMedGoogle Scholar
  18. Blümcke, I., and Celio, M. R., 1992, Parvalbumin and calbindin D-28k immunoreactivities coexist within cytochrome oxidase-rich compartments of squirrel monkey area 18, Exp. Brain Res. 92: 39–45.PubMedGoogle Scholar
  19. Bolton, J. S., 1900, The exact histological localisation of the visual area of the human cerebral cortex, Phil. Trans. R. Soc. Lond. 193: 165–222.Google Scholar
  20. Bonin, G. von, and Bailey, P., 1951, The Isocortex of Man, University of Illinois Press, Urbana, IL. Born, R. T., and Motel!, R. B. H., 1992, Segregation (I’ global and local motion processing in primate middle temporal visual area, Nature 357: 497–499.Google Scholar
  21. Boussaoud, 1)., Ungerleider, L. G., and Desimone, R., 1990, Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque, J. Comp. Neurol. 296: 462–495.Google Scholar
  22. Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1992, Subcortical connections of visual areas MST and FST in macaques, Visual Neurosci. 9 (3–4): 291–302.Google Scholar
  23. Braak, H., 1977, The pigment architecture of the human occipital lobe, Anal. Embr yol. 150:229–250. Braak, H., 1980, Architectonics of the Human Telencephalic Cortex, Springer, Berlin.Google Scholar
  24. Brodmann, K., 1903, Beiträge zur histologischen Lokalisation der Grosshirnrinde. Zweite Mitteilung: Der Calcarinatypus, J. Psychol. Neurol. 2: 133–159.Google Scholar
  25. Brodmann, K., 1905, Beiträge zur histologischen Lokalisation der Grosshirnrinde. Dritte Mitteilung: Die Rindenfelder der niederen Affen, f. Psychol. Neurol. 4:177–226.•Google Scholar
  26. Brodmann, K., 1906, Beiträge zur histologischen Lokalisation der Grosshirnrinde. Fünfte Mitteilung: Über den allgemeinen Bauplan des Cortex pallii bei den Mammaliern und zwei homologe Rindenfelder im besonderen. Zugleich ein Beitrag zur Furchenlehre, J. Psychol. Neurol. 6: 275–400.Google Scholar
  27. Brodmann, K., 1908a, Beiträge zur histologischen Lokalisation der Grosshirnrinde. VI. Mitteilung. Die Cortexgliederung des Menschen, J. Psychol. Neurol. 10: 231–246.Google Scholar
  28. Brodmann, K., 1908b, Beiträge zur histologischen Lokalisation der Grosshirnrinde. VII. Mitteilung: Die cytoarchitektonische Cortexgliederung der Halbaffen Lemuriden, J. Psycho!. Neurol. 10: 287–334.Google Scholar
  29. Brodman, K., 1909, Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenhaus, Barth, Leipzig.Google Scholar
  30. Bullier, J., and Kennedy, H., 1983, Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey, Exp. Brain Res. 53: 168–172.PubMedGoogle Scholar
  31. Burkhalter, A., and Bernardo, K. L., 1989, Organization of cortico-cortical connections in human visual cortex, Proc. Natl. Acad. Sci. USA 86: 1071–1075.PubMedGoogle Scholar
  32. Burkhalter, A., Bernardo, K. L., and Charles, V., 1993, Development of local circuits in human visual cortex, J. Neurosci. 13: 1916–1931.PubMedGoogle Scholar
  33. Burnet, P. W. J., Eastwood, S. L., Lacey, K., and Harrison, P. J., 1995, The distribution of 5–11FI,s and 5-H’l’_A receptor mRNA in human brain, Brain Res. 676: 157–168.PubMedGoogle Scholar
  34. Campbell, A. W., 1905, Histological Studies on the Localisation of Cerebral Function, Cambridge University Press, Cambridge.Google Scholar
  35. Camps, M., Cortés, R., Gueye, B., Probst, A., and Palacios, J. M., 1989, Dopamine receptors in human brain: Autoradiographic distribution of D., sites Neuroscience 28: 275–290.PubMedGoogle Scholar
  36. Carroll, E. W., and Wong-Riley, M. T. T., 1984, Quantitative light and electronmicroscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey, J. Comp. Neurol. 222: 1–17.PubMedGoogle Scholar
  37. Casagrande, V., and Kaas, J. H., 1994, The afferent, intrinsic, and efferent connections of primary visual cortex in primates, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. Rockland, eds.), Plenum Press, New York, pp. 201–259.Google Scholar
  38. Cheng, K., Fujita, FI., Kanno, 1., Miura, S., and Tanaka, K., 1995, Human cortical regions activated by wide-field visual motion: An HO’B’O PET study, J. Neurophysiol. 74: 413–427.Google Scholar
  39. Clark, W. E., and Russell, W. R., 1939, Observations on the efferent connections of the centre median nucleus, J. Anal. 73: 255–262.Google Scholar
  40. Clarke, S., 1993, Callosal connections and functional subdivision of the human occipital cortex, in: Functional Organization of the Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. E. Roland, eds.), Pergamon Press, Oxford, pp. 137–150.Google Scholar
  41. Clarke, S., 1994a, Association and intrinsic connections of human extrastriate visual cortex, Proc. R. Soc. Lond. B Biol.Sci. 257: 87–92.Google Scholar
  42. Clarke, S., 19946, Modular organization of human extrastriate visual cortex: Evidence from cytochrome oxidase pattern in normal and macular degeneration cases, Fur. /. Neurosci. 6: 725–736.Google Scholar
  43. Clarke, S., and Miklossy, J., 1990, Occipital cortex in man: Organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas,/ Comp. Neurol. 298: 188–214.Google Scholar
  44. Clarke, S., Assal, G., Bogousslaysky, J., Regli, F., Townsend, I). W., Leenders, K. L., and Blecic, S., 1994, Pure amnesia after unilateral lift polar thalamic infarct: Topographic and sequential neuropsychological and metabolic (PET) correlations, I. Neural. Neurosurg. Psychiatry 57: 27–34.Google Scholar
  45. Clarke, S., Van Essen, D., Hadjikhani, N., Drury, H., and Coogan, T., I995a, Understanding human areas 18 and 37: Contribution of two-dimensional maps of visual callosal afferents, Hum. Brain Mapping Suppl. 1: 33.Google Scholar
  46. Clarke, S., Ribaupierre, F., de, Bajo, V. M., Rouiller, E. M., and Kraftsik, R., 1995b, The auditory pathway in cat corpus callosum, Exp. Brain Res. 104: 534–540.Google Scholar
  47. Colby, C. L., and Duhamel, J. R., 1991, Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey, Neuropsychologie 29: 517–537.Google Scholar
  48. Colby, C. 1.., Gattass, R., Olson, C. R., and Gross, C. G., 1988, Topographical organization of cortical afférents to extrastriate visual area PO in the macaque: A dual tracer study, J. Comp. Neural. 269: 392–413.Google Scholar
  49. Corbetta, M., Miezen, F. M., Dobmeyer, S., Shulman, G. L, and Petersen, S. E., 1990, Attentional modulation of neuronal processing of shape, color and velocity in humans, Science 248: 1556–1559.PubMedGoogle Scholar
  50. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. I.., and Petersen, S. E., 1991, Selective and divided attention during visual discrimination of shape, color and speed: Functional anatomy by positron emission tomography, J. Neurosci. 11: 2383–2402.PubMedGoogle Scholar
  51. Cortés, R., Probst, A., “Fobler, H. J., and Palacios, J. M., 1986, Muscarinic cholinergie receptor subtype in the human brain. H. Quantitative autoradiographie studies, Brain Res. 362: 239–253.Google Scholar
  52. Cortés, R., Gueye, B., Pazos, A., Probst, A., and Palacios, J. M., 1989, Dopamine receptors in human brain: Autoradiographic distribution of D, sites, Neuroscience 28: 263–273.PubMedGoogle Scholar
  53. Cragg, B. G., 1969, The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method, Virion Res. 9: 733–747.Google Scholar
  54. Creutzfeldt, O. D., 1995, Cortex Cerebri. Performance, Structural and Functional Organization of the Cortex, Oxford University Press, Oxford.Google Scholar
  55. Cusick, C. G., Seltzer, B., Cola, M., and Griggs, E., 1995, Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: Evidence for subdivisions of superior temporal polysensory cortex, J. Comp. Neurol. 360: 513–535.PubMedGoogle Scholar
  56. Damasio, A., Yamada, T., Damasio, H., Corbett, J., and McKee, J., 1980, Central achromatopsia: Behavioral, anatomical and physiological aspects, Neurology 30: 1064–1071.PubMedGoogle Scholar
  57. Dejerine, J., 1892, Contribution à l’étude anatomo-pathologique et clinique des différentes variétés de cécité verbale, C. R. Hebd. Séances Mém. Soc. Biol. 4: 61–90.Google Scholar
  58. Dejerine, J., and Dejerine-Klumpke, A., 1895, Anatomie des centres nerveux, Rueff, Paris.Google Scholar
  59. Dejerine, J., and Vialet, N., 1893, Contribution à l’étude de la localisation de la cécité verbale pure, C. R. Hebd. Séances Mém. Soc. Biol. 5: 790–793.Google Scholar
  60. De Jong, B. M., Shipp, S., Skidmore, B., Frackowiak, R. S. J., and Zeki, S., 1994, The cerebral activity related to the visual perception of forward motion in depth, Brain 117: 1039–1054.PubMedGoogle Scholar
  61. De Lacoste, M. C., Kirkpatrick, J. B., and Ross, E. D., 1985, Topography of the human corpus callosum, J. Neuropathol. Exp. Neural. 44: 578–591.Google Scholar
  62. Desimone, R., and Schein, S. J., 1987, Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form, J. Neurophysiol. 57: 835–868.PubMedGoogle Scholar
  63. Desimone, R., and Ungerleider, L. G., 1986, Multiple visual areas in the caudal superior temporal sulcus of the macaque,/ Comp. Neurol. 248: 164–189.Google Scholar
  64. Desimone, R., and Ungerleider, L. G., 1989, Neural mechanisms of visual processing in monkeys, in: Handbook of Neuropsychology, Volume 2 ( F. Boller, and J. Grafman, eds.), Elsevier, Amsterdam, pp. 267–299.Google Scholar
  65. DeYoe, E. A., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature 317: 58–61.PubMedGoogle Scholar
  66. DeYoe, E. A., and Van Essen, D. C., 1988, Concurrent processing streams in monkey visual cortex, Trends Neurosci. 5: 219–226.Google Scholar
  67. DeYoe, E. A., Hockfield, S., Garren, H., and Van Essen, D. C., 1990, Antibody labeling of functional subdivisions in visual cortex: CAT-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey, Visual Neurosci. 5: 67–81.Google Scholar
  68. DeYoe, E. A., Felleman, D. J., Van Essen, D. C., and McClendon, E., 1994, Multiple processing streams in occipitotemporal visual cortex, Nature 371: 151–154.PubMedGoogle Scholar
  69. Diet!, M. M., Probst, A., and Palacios, J. M., 1987, On the distribution of cholecystokinin receptor binding in the human brain: An autoradiographie study, Synapse 1: 169–183.Google Scholar
  70. Distler, C., Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1993, Cortical connections of inferior temporal area TEO in macaque monkey, J. Camp. Neural. 334: 125–150.Google Scholar
  71. Distler, C., Bachevalier, J., Kennedy, C., Mishkin, M., and Ungerleider, L. G., 1996, Functional development of the corticocortical pathway for motion analysis in the macaque monkey: A ‘4C-2-deoxyglucose study, Cerebral Cortex 6: 184–195.PubMedGoogle Scholar
  72. Di Virgilio, G., and Clarke, S., 1996, Human anterior commissure contains axons originating in the inferior part of the temporal lobe, Experientia 52: A76.Google Scholar
  73. Doty, R. W., 1983, Nongeniculate afferents to striate cortex in macaques,/ Comp. Neural. 218: 159173.Google Scholar
  74. Dupont, P., Orban, G. A., De Bruyn, B., Verbruggen, A., and Mortelmans, L., 1994, Many areas in the human brain respond to visual motion, J. Neurophysiol. 72: 1420–1424.PubMedGoogle Scholar
  75. Elliot Smith, G., 1907, A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci, J. Anat. 41: 237–254.Google Scholar
  76. Felleman, D. J., and Kaas, J. H., 1984, Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys,]. Neurophysiol. 52: 488–513.Google Scholar
  77. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1: 1–47.PubMedGoogle Scholar
  78. Filimonoff, I. N., 1932, Über die Variabilität der Grosshirnrindenstruktur. Mitteilung II. Regio occipitalis beim erwachsenen Menschen, J. Psychol. Neural. 44: 1–96.Google Scholar
  79. Filimonoff, I. N., 1933, Über die Variabilität der Grosshirnrindenstruktur. Mitteilung Ill. Regio occipitalis bei den höheren und niederen Affen, J. Psychol. Neural. 45: 69–137.Google Scholar
  80. Fiorani, M., Jr., Gattas, R., Rosa, M. G. P., and Sousa, A. P. B., 1989, Visual area MT in the Cebu monkey: Location, visuotopic organization and variability, J. Comp. Neural. 287: 98–118.Google Scholar
  81. Flechsig, P., 1898, Neue Untersuchungen über die Markbildung in den menschlichen Grosshirnlappen, Neuro. Centralblalt 21: 977–996.Google Scholar
  82. Flechsig, P., 1920, Anatomie des menschlichten Gehirns und Rückenmarks auf myelogenetischer Grundlage, Thieme, Leipzig.Google Scholar
  83. Fries, W., 1981, The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey, Proc. R. Soc. Land. B 213: 73–80.Google Scholar
  84. Friston, K. J., Ungerleider, L. G., Jezzard, P., and Turner, R., 1995, Characterizing modulatory interactions between areas VI and V2 in human cortex: A new treatment of functional MRI data, Human Brain Mapping 2: 211–224.Google Scholar
  85. Galletti, C., Battaglini, P. P., and Fattori, P., 1991, Functional properties of neurons in the anterior bank of the parieto-occipital sulcus of the macaque monkey, Eur. J. Neurosci. 3: 452–461.PubMedGoogle Scholar
  86. Galletti, C., Battaglini, P. P., and Fattori, P., 1993, Parietal neurons encoding spatial locations in craniotopic coordinates, Exp. Brain Res. 96: 221–229.PubMedGoogle Scholar
  87. Gattass, R., and Gross, C. G., 1981, Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque, J. Neurophysiol. 46: 621–638.PubMedGoogle Scholar
  88. Gattass, R., Gross, C. G., and Sandell, J. H., 1981, Visual topography of’ V2 in the macaque,/ Comp. Neurol. 201: 519–539.Google Scholar
  89. Lattas, R., Sousa, A. P., and Gross, C. G., 1988, Visuotopic organization and extent of V3 and V4 of the macaque, J. Neurosci. 8: 1831–1845.Google Scholar
  90. Gebhard, R., Zilles, K., Schleicher, A., Everitt, B. J., Robbins, ‘1’. W., and Divac, 1., 1993, Distribution of seven major neurotransmitter receptors in the striate cortex of the New World monkey Callithrix jacchus, Neuroscience 56: 877–885.Google Scholar
  91. Gibson, J. J., 1950, The Perception of the Visual World, Houghton Mifflin, Boston.Google Scholar
  92. Girard, P., Salin, P. A., and Bullier, J., 1992, Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1, J. Neurophysiol. 67: 1437–1446.PubMedGoogle Scholar
  93. Glickstein, M., and Whitteridge, D., 1976, Degeneration of layer 11 pyramidal cells in area 18 following destruction of callosal input, Brain Res. 104: 148–151.PubMedGoogle Scholar
  94. Grasser, O. J., and Landis, T., 1991, Visual agnosias and other disturbances of visual perception and cognition, in: Vision and Visual Dysfunction, Volume 12 (J. Cronly-Dillon, ed.), Macmillan Press, London.Google Scholar
  95. Gulyas, B., and Roland, P. E., 1991, Cortical fields participating in form and colour discrimination in the human brain, NeuroReport 2: 585–588.PubMedGoogle Scholar
  96. Gulyas, B., and Roland, P. E., 1994a, Binocular disparity discrimination in human cerebral cortex: Functional anatomy by positron emission tomography, Proc. Natl. Acad. Sci. USA 91: 1239–1243.PubMedGoogle Scholar
  97. Gulyas, B., and Roland, P. E., 1994b, Processing and analysis of form, colour and binocular disparity in the human brain: Functional anatomy by positron emission tomography, Eur. J. Neurosci. 6: 1811–1828.Google Scholar
  98. Halgren, E., Baudena, P., Hcit, G., Clarke, M., and Marinkovic, K., 1994, Spatiotemporal stages in face and word processing. 1. Depth-recorded potentials in the human occipital and parietal lobes, J. Physiol. 88: 1–50.Google Scholar
  99. Hammarberg, C., 1898, Studien über Klinik und Pathologie der Idiotie nebst Untersuchungen über die normale Anatomie der Hirnrinde, Nova Acta Regiae Soc. Sci. Ups. III/17: 1–126.Google Scholar
  100. Hardy, S. G., and Lynch, J. C., 1992, The spatial distribution of pulvinar neurons that project to two subregions of the inferior parietal lobule in the macaque, Cerebral Cortex 2 (3): 217–230.PubMedGoogle Scholar
  101. Hassler, R., 1959, Anatomy of the thalamus, in: Einjúhrung in the stereotactischen Operationen mit einem Atlas des menschlichen Gehirns ( G. Schaltenbrand, and P. Bailey, eds.), G. Thieme, Stuttgart.Google Scholar
  102. Helmer, L., Ebner, F. F., and Nauta, W. J. H., 1967, A note on the termination of commissural fibers in the neocortex, Brain Res. 5: 171–177.Google Scholar
  103. Heinze, G., 1954, Zytoarchitektonische Untergliederung der Area occipitalis, J. Hirnforsch. 1: 173198.Google Scholar
  104. Hendry, S. H. C., Jones, E. G., and Beinfeld, M. C., 1983, Cholecystokinin-like immunoreactive neurons in rat and monkey cerebral cortex make symmetrical synapses and have intimate associations with blood vessels, Proc. Natl. Acad. Sci. USA 80: 2400–2404.PubMedGoogle Scholar
  105. Hendry, S. H. C., Hockfield, S., Jones, E. G., and McKay, R., 1984, Monoclonal antibody that identifies subsets of neurones in the central visual system of monkey and cat, Nature 307: 267–269.PubMedGoogle Scholar
  106. Hendry, S. H. C., Jones, E. G., Hockfield, S., and McKay, R. D. G., 1988, Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus, J. Neurosci. 8: 518–542.PubMedGoogle Scholar
  107. Hendry, S. H. C., Fuchs, J. L., de Blas, A. L., and Jones, E. G., 1990, Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex, J. Neurosci. 10: 2438–2450.PubMedGoogle Scholar
  108. Hendry, S. H. C., Huntsman, M., Vinuela, A., Mähler, H., de Blas, A., and Jones, E., 1994, GABAA receptor subunit immunoreactivity in primate visual cortex: Distribution in macaques and humans and regulation by visual input in adulthood, J. Neurosci. 14: 2383–2401.PubMedGoogle Scholar
  109. Hernandez-Gonzalez, A., Cavada, C., and Reinoso-Suarez, F., 1994, The lateral geniculate nucleus projects to the inferior temporal cortex in the macaque monkey, NeuroReport 5 (18): 2693–2696.PubMedGoogle Scholar
  110. Heywood, C. A., and Cowey, A., 1987, On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys, J. Neurosci. 7: 2601–2617.PubMedGoogle Scholar
  111. Heywood, C. A., Gadotti, A., and Cowey, A., 1992, Cortical area V4 and its role in the perception of color, J. Neurosci. 12: 4056–4065.PubMedGoogle Scholar
  112. Heywood, C. A., Gaffan, D., and Cowey, A., 1995, Cerebral achromatopsia in monkeys, Fur. J. Neurosci. 7: 1064–1073.Google Scholar
  113. Hitchcock, P. F., and Hickey, T. L., 1980, Ocular dominance columns: Evidence for their presence in humans, Brain Res. 182: 176–179.PubMedGoogle Scholar
  114. Hockfield, S., Tootell, R. B. H., and Zaremba, S., 1990, Molecular differences among neurons reveal an organization of human visual cortex, Proc. Natl. Acad. Sci. USA 87: 3027–3031.PubMedGoogle Scholar
  115. Hof, P. R., and Morrison, J. H., 1995, Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis, J. Comp. Neurol. 352: 161–186.PubMedGoogle Scholar
  116. Horton, J. C., 1984, Cytochrome oxidase patches: A new cytoarchitonic feature of monkey cortex, Phil. Trans. R. Soc. Land. Biol. 304: 199–253.Google Scholar
  117. Horton, J. C., and Hedley-Whyte, E. T., 1984, Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex, Phil. Trans. R. Soc. Liind. Biol. 304: 255–272.Google Scholar
  118. Hotson, J., Braun, D., Herzberg, W., and Boman, D., 1994, Transcranial magnetic stimulation of extrastriate cortex degrades human motion direction discrimination, Vision Res. 34: 2115–2123.PubMedGoogle Scholar
  119. Hubel, D. H., and Livingstone, M. S., 1987, Segregation of form, color and stereopsis in primate area 18, J. Neurosci. 7: 3378–3415.PubMedGoogle Scholar
  120. Huntley, G. W., Rogers, S. W., Moran, T., Janssen, W., Archin, N., Vickers, J. C., Cawley, K., Heinemann, S. F., and Morrison, J. H., 1993, Selective distribution of kainate receptor subunit immunoreactivity in monkey neocortex revealed by a monoclonal antibody that recognizes glutamate receptor subunits GIuR5/6/7, j. Neurosci. 13: 2965–2981.Google Scholar
  121. Huntsman, M. M., Isackson, P. J., and Jones, E. G., 1994, Lamina-specific expression and activity-dependent regulation of seven GABAA receptor subunit mRNAs in monkey visual cortex, J. Neurosci. 14: 2236–2259.PubMedGoogle Scholar
  122. Jansen, K. L. R., Faull, R. L. M., and Dragunow, M., 1989, Excitatory amino acid receptors in the human cerebral cortex: A quantitative autoradiographic study comparing the distributions of [iH]TCP, [9–1]glycine, L-[3H]glutamate, [3H]AMPA and [3H]kainic acid binding sites, Neuroscience 32: 587–607.PubMedGoogle Scholar
  123. Jen, L. S., and Zeki, S., 1984, High cytochrome oxidase content of the V5 complex of macaque monkey visual cortex, j. Physiol. (Lund.) 348: 23 P.Google Scholar
  124. Kaas, J. H., 1986, The structural basis for information processing in the primate visual system, in: Visual Neuroscience ( J. D. Pettigrew, W. R. Levick, and K. J. Sanderson, eds.), Cambridge University Press, Cambridge, pp. 315–340.Google Scholar
  125. Kaas, J. H., 1988, Changing concepts of visual cortex organization in primates, in: Neuropsycholomry of Visual Perception, Erlbaum, Hillsdale, NJ, pp. 1–32.Google Scholar
  126. Kaas, J. H., 1989, Why does the brain have so many visual areas? j. Cognitive Neurosci. 1: 121–135.Google Scholar
  127. Kaas, J. H., 1993, The organization of visual cortex in primates: Problems, conclusions, and the use of comparative studies in understanding the human brain, in: Functional Organisation of the Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. E. Roland, eds.), Pergamon Press, New York, pp. 1–12.Google Scholar
  128. Kaas, J. H., and Garraghty, P. E., 1991, Hierarchical, parallel, and serial arrangements of sensory cortical areas: Connection patterns and functional aspects, Curr. Biol. 1: 248–251.Google Scholar
  129. Kaas, J. H., and Krubitzer, L. A., 1991, The organization of extrastriate visual cortex, in: Neuroanalom of the Visual Pathways and their Development ( B. Dreher and S. R. Robinson, eds.), Macmillan, Houndsmills, UK, pp. 302–323.Google Scholar
  130. Kaas, J. H., and Lin, C. S., 1977, Cortical projections of area 18 in owl monkeys, Vision Res. 16: 739741Google Scholar
  131. Kaas, J. H., and Morel, A., 1993, Connections of visual areas of the upper temporal lobe of owl monkeys: The MT crescent and dorsal and ventral subdivisions of EST, J. Neurosci. 13: 534–546.PubMedGoogle Scholar
  132. Kaas, J. H., and Preuss, T. M., 1993, Archontan affinities as reflected in the visual system, in: Mammal Phylogeny, Placenlals (F. S. Szalay, et al., ed.), Springer, New York, pp. 115–128.Google Scholar
  133. Keating, E. G., 1980, Residual spatial vision in the monkey after removal of striate and preoccipital cortex, Brain Res. 187: 271–290.PubMedGoogle Scholar
  134. Kennedy, H., and Bullier, J., 1985, A double-labeling investigation of the afferent connectivity to cortical areas V 1 and V2 of the Macaque monkey, J. Neurosci. 5 (10): 2815–2830.Google Scholar
  135. Kennedy, H., and Dehay, C., 1988, Functional implications of the anatomical organization of the callosal connections of visual areas VI and V2 in the macaque monkey, Behay. Brain Res. 29: 225–236.Google Scholar
  136. Kennedy, H., Dehay, C., and Bullier,., 1986, Organization of the callosal connections of visual areas VI and V2 in the macaque monkey, J. Comp. Neurol. 247: 398–415.PubMedGoogle Scholar
  137. Kennedy, H., Meissirel, C., and Dehay, C., 1991, Callosal pathways and their compliancy to general rules governing the organization of corticocortical connectivity, in: Neuroanatomy of the Visual Pathways and Their Development ( B. Dreher and S. R. Robinson, eds.), Macmillan, Houndstnills, UK, pp. 324–359.Google Scholar
  138. Kleist, K., 1934, Gehirnpathologie, Barth, Leipzig.Google Scholar
  139. Knierim, J. J., and Van Essen, D. C., 1992 Visual cortex: Cartography, connectivity and concurrent processing, Curr. Opia. Neurobiol. 2: 150–155.Google Scholar
  140. Kondo, H., Hashikawa, ‘F., Tanaka, K., and Jones, E., 1994, Neurochemical gradient along the monkey occipito-temporal cortical pathway, NeuroReport 5: 613–616.Google Scholar
  141. Kostovic, 1., and Rakic, P., 1984, Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining, J. Neurosci. 4: 25–42.Google Scholar
  142. Kritzer, M. F., Innis, R. B., and Goldman-Rakic, P. S., 1987, Regional distribution of cholecystokinin receptors in primate cerebral cortex determined by in vitro receptor autoradiography, J. Comp. Neurol. 263: 418–435.PubMedGoogle Scholar
  143. Krubitzer, 1. A., and Kaas, J. H., 1989, Cortical integration of parallel pathways in the visual system of primates, Brain Res. 478: 161 — I65.Google Scholar
  144. Krubitzer, L. A., and Kaas, J. H., 1990a, Cortical connections of MT in four species of primates: Areal, modular and retinoptic patterns, Visual Neurosci. 5: 165–204.Google Scholar
  145. Krubitzer, L. A., and Kaas, J. H., 19906, Convergence of processing channels in extrastriate cortex of monkeys, Visual Neurosci. 5:609–6I3.Google Scholar
  146. Le Bihan, D., Turner, R., Zefliro, T. A., Cuénod, C. A., Jezzard, P., and Bonnerot, V., 1993, Activation of human primary visual cortex during visual recall: A magnetic resonance imaging study, Proc. Natl. Acad. Sci. USA 90: 11802–11805.PubMedGoogle Scholar
  147. Leuba, G., and Garey, L. J., 1989, Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man, Exp. Brain Res. 77: 31–38.PubMedGoogle Scholar
  148. Levitt, P., Rakic, P., and Goldman-Rakic, P., 1984, Region-specific distribution of catecholamine afferents in primate cerebral cortex: A fluorescence histochemical analysis, J. Comp. Neurol. 227: 23–36.PubMedGoogle Scholar
  149. Lewis, M. E., Mishkin, M., Bragin, E., Brown, R. M., Pert, C. B., and Pert, A., 1981, Opiate receptor gradients in monkey cerebral cortex: Correspondance with sensory processing hierarchies, Science 211: 1166–1169.PubMedGoogle Scholar
  150. Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., and Rakic, P., 1989, Quantitative auto-radiographic mapping of serotonin 5-HT, and 5-HT_ receptors and uptake sites in the neo-cortex of the rhesus monkey, J. Comp. Neurol. 280: 27–42.PubMedGoogle Scholar
  151. Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., and Rakic, P., 1991, Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [;H]raclopride, [’H]spiperone and [3H]SCH23390, Neuroscience 40: 657–671.PubMedGoogle Scholar
  152. Lin, C. S., Weller, R. E., and Kaas, J. H., 1982, Cortical connections of striate cortex in the owl monkey, J. Comp. Neurol. 211: 165–176.PubMedGoogle Scholar
  153. Livingstone, M. S., and Hubel, D. H., 1983, Specificity of cortico-cortical connections in monkey visual system, Nature 304: 531–534.PubMedGoogle Scholar
  154. Livingstone, M. S., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  155. Livingstone, M. S., and Hubel, I). H., 1987, Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey, J. Neurosci. 7: 3371–3377.PubMedGoogle Scholar
  156. Livingstone, M. S., and Hubel, 1). H., 1988, Segregation of form, color, movement, and depth: Anatomy, physiology and perception, Science 240: 740–749.PubMedGoogle Scholar
  157. Ludwig, E., and Klinger, J., 1938, Noyaux et faisceaux du cerveau humain, Georges “l’homas, Nancy, France.Google Scholar
  158. Lueck, C. J., Zeki, S., Friston, K. J., Dicker, M. P., Cope, P., Cunningham, V. J., Lammertsma, A. A., Kennard, C., and Frackowiak, R. S. J., 1989, The colour centre in the cerebral cortex of man, Nature 340: 386–389.PubMedGoogle Scholar
  159. Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H., and Fuchs, A. F., 1975, The origin of efferent pathways from the primary visual cortex (area 17) of the macaque monkey as shown by retrograde transport of horseradish peoxidase, J. Comp. Neurol. 164: 287–304.PubMedGoogle Scholar
  160. Lungwitz, W., 1937, Zur myeloarchitektonischen Untergliederung der menschlichen Area praeoccipitalis (Area 19 Brodmann), J. Psychol. Neurol. 47: 607–638.Google Scholar
  161. Lysakowski, A., Standage, G. P., and Benevento, L. A., 1988, An investigation of collateral projections of the dorsal lateral geniculate nucleus and other subcortical structures to the cortical areas V1 and V4 in the macaque monkey: A double label retrograde tracer study, Exp. Brain Res. 69 (3): 651–661.PubMedGoogle Scholar
  162. Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., Ledden, P. J., Brady, T. J., Rosen, B. R., and Tootell, R. B. H., 1995, Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex, Proc. Natl. Acad. Sci. USA 92: 8135–8139.PubMedGoogle Scholar
  163. Marcar, V. I.., Xiao, D.-K., Raiguel, S. E., Maes, H., and Orban, G. A., 1995, Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey, J. Neurophysiol. 74: 1258–1270.PubMedGoogle Scholar
  164. Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. I.., and Ungerleider, L. G., 1995, Discrete cortical regions associated with knowledge of color and knowledge of action, Science 270: 102–105.PubMedGoogle Scholar
  165. Maunsell, J. H. R., 1995, The brain’s visual world: Representation of visual targets in cerebral cortex, Science 270: 764–769.PubMedGoogle Scholar
  166. Maunsell, J. H. R., and Newsome, W. T., 1987, Visual processing in monkey extrastriate cortex, Annu. Rev. Neurosci. 10: 363–401.PubMedGoogle Scholar
  167. Maunsell, J. H. R., and Van Essen, D. C., 1983a, The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey, J. Neurosci. 3: 2563–2586.PubMedGoogle Scholar
  168. Maunsell, J. H. R., and Van Essen, D. C., 1983b, Functional properties of neurons in middle temporal visual area of the macaque monkey I: Selectivity for stimulus direction, speed, and orientation, J. Neurophysiol. 49: 1127–1147.PubMedGoogle Scholar
  169. Maunsell, J. H. R., and Van Essen, D. C., 1987, Topographic organization of the middle temporal visual area in the macaque monkey. 1: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries,/ Comp. Neural. 266: 535–555.Google Scholar
  170. McIntosh, A., Grady, C., Ungerleider, L., Haxby, J., Rapoport, S., and Horwitz, B., 1994, Network analysis of cortical visual pathways mapped with PET, J. Neurosci. 14: 655–666.PubMedGoogle Scholar
  171. Meadows, J. C., 1974, Disturbed perception of colours associated with localized cerebral lesions, Brain 97: 615–632.PubMedGoogle Scholar
  172. Merigan, W. H., 1993, Human V4 ? Curr. Biol. 3: 226–229.PubMedGoogle Scholar
  173. Mesulam, M. M., 1979, Tracing neural connections of human brain with selective silver impregnation. Observations on geniculocalcarine, spinothalamic and entorhinal pathways, Arch. Neural. 36: 814–818.Google Scholar
  174. Meynert, T., 1872, Vom Gehirn der Säugethiere, in: Handbuch der Lehre von den Geweben des Menschen, Volume 2 ( S. Stricker, ed.), Engelmann, I.eipzig, pp. 694–808.Google Scholar
  175. Miklossy, J., 1993, The geniculocalcarine pathway in man, and some putative visual areas involved in visuo-spatial attention, in: Functional Organization of the Human Visual Cortex ( B. Gulyäs, D., Ottoson, and P. Roland, eds.), Pergamon Press, Oxford, pp. 123–136.Google Scholar
  176. Mishkin, M., Ungerleider, L. G., and Mack°, K. A., 1983, Object vision and spatial vision: Two cortical pathways, Trends Neurosci. 6: 414–417.Google Scholar
  177. Morel, A., and Bullier, J., 1990, Anatomical segregation of two cortical visual pathways in the macaque monkey, Visual Neurosci. 4: 555–578.Google Scholar
  178. Nakamura, H., Gattass, R., Desimone, R., and Ungerleider, L.., 1993, The modular organization of projections from areas V1 and V2 to areas V4 and ‘EEO in macaques,/ Neurosci. 13: 3681–3691.Google Scholar
  179. Neuenschwander, S., Gattass, R., Sousa, A. P. B., and Pinon, M. C. G. P., 1994, Identification and organization of areas PO and POd in Celhus monkey, J. Comp. Neurol. 340: 65–86.PubMedGoogle Scholar
  180. Newsome, W. T., and Allman, J. M., 1980, Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis, J. Comp. Neural. 194: 209–233.Google Scholar
  181. Newsome, W. T., Maunsell, J. H. R., and Van Essen, 1). C., 1986, Ventral posterior visual area of the macaque: Visual topography and areal boundaries, J. Comp. Neural. 252: 139–153.Google Scholar
  182. Newsome, W. T., Britten, K. H., Salzman, C. D., and Movshon, J. A., 1991, Neuronal mechanisms of motion perception, Cold Spring Harbor Symp. Quant. Biol. 55: 697–705.Google Scholar
  183. Urban, G. A., Dupont, P., De Bruyn, B., Vogels, R., Vandenberghe, R., and Mortelmans, L., 1995, A motion area in human visual cortex, Proc. Natl. Acad. Sci. USA 92: 993–997.Google Scholar
  184. Parkinson, I)., Coscia, E. C., and Daw, N. W., 1989, Identification and localization of 5-hydroxytryptamine receptor sites in macaque visual cortex, Visual Neurosci. 2: 515–525.Google Scholar
  185. Pasik, P., and Pasik, T., 1982, Visual functions in monkeys after total removal of visual cerebral cortex, Contrib. Sensory P/tysiol. 7: 147–200.Google Scholar
  186. Payne, B., and Siwek, D. F., 1991, The visual map in the corpus callosum of the cat, Cerebral Cortex 1: 173–188.PubMedGoogle Scholar
  187. Pazos, A., Probst, A., and Palacios, J. M., 1987a, Serotonin receptors in the human brain. III. Autoradiographic mapping of serotonin-1 receptors, Neuroscience 21: 97–122.PubMedGoogle Scholar
  188. Pazos, A., Probst, A., and Palacios, J. M., I 987b, Serotonin receptors in the human brain. IV. Autoradiographic mapping of serotonin-2 receptors, Neuroscience 21: 123–139.Google Scholar
  189. Perenin, M.-T., and Vighetto, A., 1988, Optic ataxia: A specific disruption in visuonmtor mechanisms. I. Different aspects of the deficit in reaching for objects, Brain 111: 643–674.PubMedGoogle Scholar
  190. Perkel, D. J., Bullier, J., and Kennedy, H., 1986, Topography of the afferent connectivity of area 17 in the macaque monkey: A double-labelling study, J. Comp. Neural. 253: 374–402.Google Scholar
  191. Peterhans, E., and von der Heydt, R., 1989, Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps, J. Neurosi. 9: 1749–1763.Google Scholar
  192. Probst, Th., Plendl, H., Paulus, W., Wist, E., and Scherg, M., 1993, Identification of the visual motion area (area V5) in the human brain by dipole source analysis, Exp. Brain Res. 93: 345–351.PubMedGoogle Scholar
  193. Rakic, P., Goldman-Rakic, P. S., and Gallager, D., 1988, Quantitative autoradiography of major neurotransmitter receptors in the monkey striate and extrastriate cortex, J. Neurosci. 8: 3670–3690.PubMedGoogle Scholar
  194. Richards, J. G., Schoch, P., Haring, P., Takacs, B., and Mohler, H., 1987, Resolving GABAA/ benzodiazepine receptors: Cellular and subcellular localization in the CNS with monoclonal antibodies, /. Neurosci. 7: 1866–1886.Google Scholar
  195. Rizzo, M., Nawrot, M., Blake, R., and Damasio, A., 1992, A human visual disorder resembling area V4 dysfunction in the monkey, Neurology 42: 1175–1180.PubMedGoogle Scholar
  196. Rockland, K., 1992a, Laminar distribution of neurons projecting from area V l to V2 in macaque and squirrel monkeys, Cerebral Cortex 2: 38–47.PubMedGoogle Scholar
  197. Rockland, K., 1992b, Configuration, in serial reconstruction of individual axons projecting from area V2 to V4 in the macaque monkey, Cerebral Cortex 2: 353–374.PubMedGoogle Scholar
  198. Rockland, K., 1994, The organization of feedback connections from area V2 (18) to V1 (17), in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters, and K. Rockland, eds.), Plenum Press, New York, pp. 261–299.Google Scholar
  199. Rockland, K., 1995, Morphology of individual axons projecting from area V2 to MT in the macaque, J. Comp. Neural. 355: 15–26.Google Scholar
  200. Rockland, K. S., and Pandya, D. N., 1979, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179: 3–20.PubMedGoogle Scholar
  201. Rockland, K. S., and Pandya, D. N., 1981, Cortical connections of the occipital lobe in the rhesus monkey: Interconnections between areas 17, 18, 19 and the superior temporal sulcus, Brain Res. 212: 249–270.PubMedGoogle Scholar
  202. Rockland, K. S., and Van Hoesen, G. W., 1994, Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey, Cerebral Cortex 4: 300–313.PubMedGoogle Scholar
  203. Rockland, K., Saleem, K., and Tanaka, K., 1994, Divergent feedback connections from areas V4 and TEO in the macaque, Visual Neurosci. 11: 579–600.Google Scholar
  204. Rodman, H. R., Gross, C. G., and Albright, T. D., 1989, Afferent basis of visual response properties in area MT of the macaque. L Effects of striate cortex removal, J. Neurosci. 9: 2033–2050.PubMedGoogle Scholar
  205. Roland, P. E., and Gulyas, B., 1994, Visual imagery and visual representation, TINS 17 (7): 281–287.PubMedGoogle Scholar
  206. Roland, P. E., and Gulyas, B., 1995, Visual memory, visual imagery, and visual recognition of large field patterns by the human brain: Functional anatomy by positron emission tomography, Cerebral Cortex 5 (1): 79–93.PubMedGoogle Scholar
  207. Roland, P. E., and Zilles, K., 1994, Brain atlases—A new research tool, TINS 17: 458–467.PubMedGoogle Scholar
  208. Rosa, M. G. P., Soares, J. G. M., Fiorani, Jr., M., and Gattass, R., 1993, Cortical afferents of visual area MT in the Cebus monkey, possible homologies between New and Old World monkeys, Visual Neurosci. 10: 827–855.Google Scholar
  209. Rosier, A. M., Urban, G. A., and Vandesande, F., 1990, Regional distribution of binding sites for neuropeptide Y in cat and monkey visual cortex determined by in vitro receptor autoradiography, J. Comp. Neurol. 293: 486–498.PubMedGoogle Scholar
  210. Rosier, A. M., Vandesande, F., and Orban, G. A., 1991a, Laminar and regional distribution of galanin binding sites in cat and monkey visual cortex determined by in vitro receptor auto-radiography, J. Comp. Neurol. 305: 264–272.PubMedGoogle Scholar
  211. Rosier, A. M., Leroux, P., Vaudry, H., Orban, G. A., and Vandesande, F., 1991b, Distribution of somatostatin receptors in the cat and monkey visual cortex demonstrated by in vitro receptor autoradiography, J. Comp. Neurol. 310: 189–199.PubMedGoogle Scholar
  212. Rosier, A., Arckens, L., Orban, G., and Vandesande, F., 1993, Laminar distribution of NMDA receptors in cat and monkey visual cortex visualized by [3H]-MK-801 binding, J. Comp. Neurot. 335: 369–380.Google Scholar
  213. Sakai, K., Watanabe, E., Onodera, Y., Uchida, 1., Kato, H., Yamamoto, E, Koizumi, H., and Mivashita, Y., 1995, Functional mapping of the human color centre with echo-planar magnetic resonance imaging, Proc. R. Soc. Lund. B Biol. Sci. 261: 89–98.Google Scholar
  214. Sanides, F., and Vitzthum, H., 1965a, Zur Architektonik der menschlichen Sehrinde and den Prinzipien ihrer Entwicklung, Dtsch. Z. Nervenheilk. 187: 680–707.Google Scholar
  215. Sanides, F., and Vitzthum, H., 1965b, Die Grenzerscheinungen am Rande der menschlichen Sehrinde, Dtsch. Z. Nervenheilk. 187: 708–719.Google Scholar
  216. Sarkissov, S. A., Filimonof, I. N., Kononowa, E. P., Preobraschenskaja, I. S., and Kukuew, L. A., 1955, Atlas of the Cytoarchilectonics of the Human Cerebral Cortex, Medgiz, Moscow.Google Scholar
  217. Schein, S. J., and Desimone, R., 1990, Spectral properties of V4 neurons in the macaque,/ Neurosci. 10: 3369–3389.Google Scholar
  218. Schein, S. J., Marrocco, R. T., and de Monasterio, F. M., 1982, Is there a high concentration of color-selective cells in V4 of monkey visual cortex? J. Neurophysiol. 47: 193–213.PubMedGoogle Scholar
  219. Schiller, P. Fl., and Lee, K., 1991, The role of the primate extrastriate area V4 in vision, Science 251: 1251–1253.Google Scholar
  220. Sereno, M. 1., and Allman, J. M., 1991, Cortical visual areas in mammals, in: The Neural Basis of Visual Function ( A. G. Leventhal, ed.), Macmillan, London, pp. 160–172.Google Scholar
  221. Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, “F. J., Rosen, B. R., and ”lbotell, R. B. H., 1995, Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging, Science 268: 889–893.Google Scholar
  222. Shipp, S., and Zeki, S., 1985, Segregation of pathways leading from V2 to areas V4 and V5 of macaque monkey visual cortex, Nature 315: 322–325.PubMedGoogle Scholar
  223. Shipp, S., and Zeki, S., 1989a, The organization of connections between areas VI and V5 in the macaque monkey visual cortex, Fur. J. Neurosci. 1: 309–332.Google Scholar
  224. Shipp, S., and Zeki, S., 1989b, The organization of connections between areas V5 and V2 in macaque monkey visual cortex, Fur. J. Neurosci. 1: 333–354.Google Scholar
  225. Shipp, S., and Zeki, S., 1995, Segregation and convergence of specialised pathways in macaque visual cortex,/ Anat. 187: 547–562.Google Scholar
  226. Shipp, S., de Jong B. M., Zihl, J., Frackowiak, R. S. J., and Zeki, S., 1994, The brain activity related to residual motion vision in a patient with bilateral lesions of V5, Brain 117: 1023–1038.PubMedGoogle Scholar
  227. Shomura, K. ‘l’., Ando, T., and Kato, K., 1975, Structural organization of “callosal” OBy in human corpus callosum agenesis, Brain Res. 93: 241–252.Google Scholar
  228. Simma, K., 1954, Die thalamocorticale Projektion beim Menschen, Monatcsehr. Psychiat. Neural. 127: 301–316.Google Scholar
  229. Smiley, J. F., Levey, A. 1., Ciliax, B. J., and Goldman-Rakic, P. S., 1994, D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: Predominant and extrasynaptic localization in dendritic spines, Proc. Natl. Acad. Sci. USA 91: 5720–5724.PubMedGoogle Scholar
  230. Spatz, W. B., 1975, An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset Callithrzx, Brain Res. 92: 450–455.Google Scholar
  231. Spatz, W. B., 1977, Topographically organized reciprocal connections between area 17 and MT visual area of superior temporal sulcus, in the marmoset Callithrix jacchus, Exp. Brain. Res. 27: 559–572.Google Scholar
  232. Spatz, W. B., and Kunz, B., 1984, Area 17 of anthropoid primates does participate in visual callosal connections, Neurosci. Lett. 48: 49–53.PubMedGoogle Scholar
  233. Standage, G. P., and Benevento, L. A., 1983, The organization of connections between the pulvinar and visual area MT in the macaque monkey, Brain Res. 262: 288–294.PubMedGoogle Scholar
  234. Steele, G. E., Weller, R. E., and Cusick, C. G., 1991, Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys, J. Camp. Neurol. 306: 495–520.Google Scholar
  235. Takeuchi, Y., and Sano, Y., 1983, Immunohistochemical demonstration of serotonin nerve fibers in the neocortex of the monkey (Macaca fuscata), Anal. Embryol. 166: 155–168.Google Scholar
  236. Tanaka, M., 1.indsley, E., Lausmann, S., and Creutzfeld, O. D., 1990, Afferent connections of the prelunate visual association cortex (areas V4 and DP), Anat. Embryol. 181 (1): 19–30.PubMedGoogle Scholar
  237. Tigges, J., Tigges, M., Anschel, S., Cross, N. A., Letbetter, W. D., and McBride, R. L., 1981, Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19 and MT in the squirrel monkey (Saimiri), J. Comp. Neurol. 202: 539–560.PubMedGoogle Scholar
  238. Tootell, R. B. 11., and Born, R. 1’., 1990, Patches and direction columns in primate area MT, Invest. Ophthalmol. Vis. Sci. 31: 238.Google Scholar
  239. Tootell, R. B. H., and Hamilton, S. 1.., 1989, Functional anatomy of the second visual area (V2) in the macaque, J. Neurosci. 9: 2620–2644.Google Scholar
  240. Tootell, R. B. H., and Taylor, J. B., 1995, Anatomical evidence for M1 and additional cortical visual areas in humans, Cerebral Cortex 5: 39–55.PubMedGoogle Scholar
  241. Tootell, R. B. H., Silverman, M. S., DeValois, R. L, and Jacobs, G. H., 1983, Functional organization of the second visual cortical area of primates, Scùncce 220: 737–739.Google Scholar
  242. Tootell, R. B. H., Hamilton, S. 1.., and Silverman, M. S., 1985, “Rrpography of cytochrome oxidase activity in owl monkey cortex, J. Neurosci. 5: 2786–2800.Google Scholar
  243. Powell, R. B. H., Hamilton, S. L., Silverman, M. S., and Switkes, E., 1988a, Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions and baseline conditions, J. Neurosci. 8: 1500–1530.Google Scholar
  244. Tootell, R. B. H., Hamilton, S. L., and Switkes, E., 1988b, Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams, J. Neurosci. 8: 1594–1609.PubMedGoogle Scholar
  245. Tootell, R. B. H., Born, R. T., and Ash-Bernal, R., 1993, Columnar organization in visual cortex in non-human primates and man, in: Functional Organisation of the Human Visual Cortex ( B. Gulyas, D. Ottosson, and P. E. Roland, eds.), Pergamon, New York, pp. 59–74.Google Scholar
  246. Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R., Brady, T. J., Rosen, B. R., and Belliveau, J. W., 1995a, Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging, J. Neurosci. 15: 3215–3230.PubMedGoogle Scholar
  247. Tootell, R. B. FI., Reppas, J. B., Dale, A. M., Look, R. B., Sereno, M. I., Malach, R., Brady, T.J., and Rosen, B. R., 19951), Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging, Nature 375: 139–141.Google Scholar
  248. Trevarthen, C., 1990, Brain Circuits and Function, Cambridge University Press, Cambridge.Google Scholar
  249. Tusa, R. J., and Ungerleider, I. G., 1985, The inferior longitudinal fasciculus: A reexamination in humans and monkeys, Ann. Neurol. 18: 583–591.PubMedGoogle Scholar
  250. Ungerleider, L. G., and Desimone, R., 1986a, Projections to the superior temporal sulcus from the central and peripheral field representations of V I and V2, /. Comp. Neurol. 248: 147–163.Google Scholar
  251. Ungerleider, I. G., and Desimone, R., 1986b, Cortical connections of visual area MT in the macaque, J. Comp. Neural. 248: 190–222.Google Scholar
  252. Ungerleider, L. G., and Haxby, J. V., 1994, “What” and “where” in the human brain, Curr. Opin. Neurobiol. 4:157–165.Google Scholar
  253. Ungerleider, L. G., and Mishkin, M., 1979, The striate projection zone in the superior temporal sulcus of Macaca mulatta: Location and topographic organization,/ Comp. Neural. 188: 347–366.Google Scholar
  254. Ungerleider, I. G., and Mishkin, M., 1982, Two cortical visual systems, in: Analysis of Visual Behavior ( D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield, eds.), MIT Press, Cambridge, MA, pp. 549–586.Google Scholar
  255. Ungerleider, L. G., Desimone, R., Galkin, T. W., and Mishkin, M., 1984, Subcortical projections of area MT in the macaque, J. Comp. Neural. 223 (3): 368–386.Google Scholar
  256. Vaina, L., 1989, Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans, Biol. Cybernet. 61: 347–359.Google Scholar
  257. Van Buren, J. M., and Borke, R. C., 1972, Variations and Connections of the Human Thalamus. I. The Nuclei and Cerebral Connections of the Human Thalamus, Springer-Verlag, Berlin.Google Scholar
  258. Van Essen, D. C., 1985, Functional organization of primate visual cortex, in: Cerebral Cortex, Volume 3, Visual Cortex ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 259–329.Google Scholar
  259. Van Essen, I). C., and Maunsell, J. H. R., 1983, hierarchical organization and functional streams in the visual cortex, Trends Neurosci. 6: 370–375.Google Scholar
  260. Van Essen, D. C., and Zeki, S. M., 1978, The topographic organization of rhesus monkey prestriate cortex, J. Physiol. (Lond.) 277: 193–226.Google Scholar
  261. Van Essen, D. C., Maunsell, J. H. R., and Bixby, J. L., 1981, The middle temporal visual area in the macaque monkey: Myeloarchitecture, connections, functional properties and topographic organization, j. Comp. Neurol. 199: 293–326.Google Scholar
  262. Van Essen, D. C., Newsome, W. T., and Bixby, J. L., 1982, The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey,/ Neurosci. 2: 265–283.Google Scholar
  263. Van Essen, D. C., Newsome, W. T., Maunsell, J. H. R., and Bixby, J. L., 1986, The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections, J. Comp. Neurol. 224: 451–480.Google Scholar
  264. Vannucchi, M. G., and Goldman-Rakic, P. S., 1991, Age-dependent decrease in the affinity of muscarinic M I receptors in neocortex of rhesus monkeys, Proc. Natl. Acad.Sci. USA 88:11475— 1 1479.Google Scholar
  265. Van Valkenburg, C. TL, 1908, Zur Anatomie der Projections-und Balkenstrahlung des Hinterhauptlappens sowie des Cingulum, Monatsschr. Psychiat. Neurol. 24: 320–339.Google Scholar
  266. Van Valkenburg, C. T., 1913, Experimental and pathologico-anatomical researches on the corpus callosum, Brain 36: 119–165.Google Scholar
  267. Vogt, O., 1903, Zur anatomischen Gliederung des Cortex cerebri, J. Psychol. Neural. 2: 160–180.Google Scholar
  268. Vogt, M., 1929, Über fokale Besonderheiten der Area occipitales, J. Psychol. Neural. 39: 506–510.Google Scholar
  269. Vogt, C., and Vogt, O., 1919, Allgemeinere Ergebnisse unserer Hirnforschung. Vierte Mitteilung. Die physiologische Bedeutung der architektonischen Rindenfelderung auf Grund neuer Rindenreizungen, j. Psychol. Neurol. 25: 399–462.Google Scholar
  270. Vogt Weisenhorn, D. M., Illing, R-B., and Spatz, W. B., 1995, Morphology and connections of neurons in area 17 projecting to the extrastriate areas MT and 19DM and to the superior colliculus in the monkey Callithrix jacchus, J. Comp. Neural. 362: 233–255.Google Scholar
  271. Von der Heydt, R., and Peterhans, E., 1989, Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity, J. Neurosci. 9: 1731–1748.PubMedGoogle Scholar
  272. von Economo, C., and Koskinas, G. N., 1925, Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen, Springer, Vienna.Google Scholar
  273. Walker, A. E., 1938, The Primate Thalamus, Chicago University Press, Chicago.Google Scholar
  274. Walsh, V., Carden, D., Butler, S. R., and Kulikowski, J. J., 1993, The effects of V4 lesions on the visual abilities of macaques: Hue discrimination and colour constancy, Behay. Brain Res. 53: 5162.Google Scholar
  275. Watson, J. I). G., Myers, R., Frackowiak, R. S. J., Hajnal, J. V., Woods, R. P., Mazziota, J. C., Shipp, S., and Zeki, S., 1993, Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging, Cerebral Cortex 3: 79–94.PubMedGoogle Scholar
  276. Webster, M., Bachevalier, J., and Ungerleider, L., 1993, Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys,/ Comp. Neurol. 335 (1): 73–91.Google Scholar
  277. Weller, R. E., 1988, Two cortical visual systems in Old World and New World primates, in: Progress in Brain Research, Volume 75 ( T. P. Hicks and G. Benedek, eds.), Elsevier, Amsterdam, pp. 293–306.Google Scholar
  278. Weller, R. E., and Kaas, J. H., 1983, Retinotopic patterns of connections of area 17 with visual areas V-II and MT in macaque monkeys,/ Comp. Neurol. 220: 253–279.Google Scholar
  279. Weller, R. E., Wall, J. T., and Kaas, J. H., 1984, Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys, J. Comp. Neural. 228: 81–104.Google Scholar
  280. Wild, H. M., Butler, D., Carden, D., and Kullikowski, J. J., 1985, Primate cortical area V4 important for colour constancy but not wavelength discrimination, Nature 313: 133–135.Google Scholar
  281. Wong-Riley, M. T. T., 1993, Cytochrome oxidase studies on the human visual system, in: Functional Organisation of the Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. E. Roland, eds.), Pergamon, New York, pp. 165–180.Google Scholar
  282. Wong-Riley, M. ‘F. T., 1994, Primate visual cortex. Dynamic metabolic organization and plasticity revealed by cytochrome oxidase, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates (A. Peters, and K. S. Rockland, eds.), Plenum Press, New York, pp. 141–200.Google Scholar
  283. Wong-Riley, M., and Carroll, E., 1984, Cytochrome oxidase-rich zones in primate visual cortex, Invest. Ophthalmol. Vis. Sci. 25: 16–109.Google Scholar
  284. Wong-Riley, M., Hevner, R., Cutlan, R., Earnest, M., Egan, R., Frost, J., and Nguyen, 1’., 1993, Cytochrome oxidase in the human visual cortex; distribution in the developing and the adult brain, Visual Neurosci. 10: 41–58.Google Scholar
  285. Yoshida, K., and Benevento, L. A., 1981, The projection from the dorsal lateral geniculate nucleus of the thalamus to extrastriate visual association cortex in the macaque monkey, Neurosci. Lett. 22 (2): 103–108.PubMedGoogle Scholar
  286. Young, M. P., 1992, Objective analysis of the topological organization of the primate cortical visual system, Nature 358: 152–155.PubMedGoogle Scholar
  287. Young, W. S., and Kuhar, M. J., 1979, Autoradiographic localisation of benzodiazepine receptors in the brains of humans and animals, Nature 280: 393–395.Google Scholar
  288. Young, A. B., and Penney, J. B., 1991, Bezodiazepine, GABA, and glutamate receptors in cerebral cortex, hippocampus, basal ganglia, and cerebellum, in: Receptors in the Human Nervous System ( F. A. O. Mendelsohn and G. Paxinos, eds.), Academic Press, San Diego, pp. 9–47.Google Scholar
  289. Yukie, M., and Iwai, E., 1981, Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys,/ Comp. Neural. 201: 81–97.Google Scholar
  290. Zeki, S. M., 1969, Representation of central visual fields in prestriate cortex of monkey, Brain Res. 14: 271–291.PubMedGoogle Scholar
  291. Zeki, S. M., 1970, Interhemispheric connections of prestriate cortex in monkey, Brain Res. 19: 63–75.PubMedGoogle Scholar
  292. Zeki, S. M., 197la, Convergent input from the striate cortex (area 17) to the cortex of the superior temporal sulcus in the rhesus monkey, Brain Res. 28: 338–340.Google Scholar
  293. Zeki, S. M., 1971b, Cortical projections from two prestriate areas in the monkey, Brain Res. 34: 19–35.PubMedGoogle Scholar
  294. Zeki, S. M., 1973, Colour coding in rhesus monkey prestriate cortex, Brain Res. 53: 422–427.PubMedGoogle Scholar
  295. Zeki, S. M., 1974, Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey, J. Physiol. (Lond.) 236: 549–573.Google Scholar
  296. Zeki, S. M., 1975, The projection to the superior temporal sulcus from areas 17 and 18 in the rhesus monkey, Proc. R. Soc. Lond. B Biol. Sci. 193: 199–207.Google Scholar
  297. Zeki, S. M., 1977a, Colour coding in the superior temporal sulcus of rhesus monkey visual cortex, Proc. R. Soc. Lond. B Biol. Sci. 197: 195–223.PubMedGoogle Scholar
  298. Zeki, S. M., 1977b, Simultaneous anatomical demonstration of the vertical and horizontal meiridans in areas V2 and V3 of rhesus monkey visual cortex, Proc. R. Soc. Lond. B Biol. Sci. 195: 517–523.PubMedGoogle Scholar
  299. Zeki, S. M., 1978a, Functional specialization in the visual cortex of the rhesus monkey, Nature 274: 423–428.PubMedGoogle Scholar
  300. Zeki, S. M., 19786, The third visual complex of rhesus monkey prestriate cortex,. Physiol. (Lond.) 277: 245–277.Google Scholar
  301. Zeki, S. M., 1978e, Uniformity and diversity of structure and function in rhesus monkey prestriate cortex, J. Physiol. (Loud.) 277: 273–290.Google Scholar
  302. Zeki, S. M., 1980a, The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex, Proc. R. Soc. Lond. B Biol. Sci. 207: 239–248.PubMedGoogle Scholar
  303. Zeki, S. M., 1980b, A direct projection from area VI to area V3a of rhesus monkey visual cortex, Proc. R. Soc. Lond. B Biol. Sci. 207: 499–506.PubMedGoogle Scholar
  304. Zeki, S., 1980c, The representation of colours in the cerebral cortex, Nature 284: 412–418.PubMedGoogle Scholar
  305. Zeki, S., I983a, Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours, Neuroscience 9: 741–765.Google Scholar
  306. Zeki, S., 1983b, The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex, Proc. R. Soc. Lond. B Biol. Sci. 217: 449–470.PubMedGoogle Scholar
  307. Zeki, S., 1985, Colour pathways and hierarchies in the cerebral cortex, in: Central and Peripheral Mechanisms of Colour Vision ( D. Ottoson, and S. Zeki, eds.), Macmillan, London, pp. 19–44.Google Scholar
  308. Zeki, S., 1986, The anatomy and physiology of area V6 of macaque monkey visual cortex,/ Physiol. (Lond.) 381: 62 P.Google Scholar
  309. Zeki, S., 1990a, Colour vision and functional specialisation in the visual cortex, Disc. Neurosci. 6: 7–64.Google Scholar
  310. Zeki, S., 19906, A century of cerebral achromatopsia, Brain 113: 1721–1777.Google Scholar
  311. Zeki, S. M., 1990c, Parallelism and functional specialization in human visual cortex, Cold Spring Harbor Symp. Quant. Biol. 55: 651–661.PubMedGoogle Scholar
  312. Zeki, S., 1991, Cerebral akinetopsia (visual motion blindness): A review, Brain 114: 811–824.PubMedGoogle Scholar
  313. Zeki, S., 1993, A Vision of the Brain, Blackwell, Oxford.Google Scholar
  314. Zeki, S. M., and Sandeman, D. R., 1976, Combined anatomical and electrophysiological studies on the boundary between the second and third visual areas of rhesus monkey visual cortex, Proc. R. Soc. Lond. B Biol. Sci. 194: 555–562.PubMedGoogle Scholar
  315. Zeki, S., and Shipp, S., 1988, The functional logic of cortical connections, Nature 335: 31 I - 317.Google Scholar
  316. Zeki, S., and Shipp, S., 1989, Modular connections between areas V2 and V4 of macaque monkey visual cortex, Eur. J. Neurosci. 1: 494–506.PubMedGoogle Scholar
  317. Zeki, S., Watson, J. D. G., Lueck, C. J., Friston, K. J., Kennard, C., and Frackowiak, R. S. J., 1991, A direct demonstration of functional specialization in human visual cortex, J. Neurosci. 11: 641–649.PubMedGoogle Scholar
  318. Zeki, S. M., Watson, J. D., Frackowiak, R. S. J., 1993, Going beyond the information given: The relation of illusory visual motion to brain activity, Proc. R. Soc. Lond. B Biol. Sci. 252: 215–222.Google Scholar
  319. Zihl, J., von Cramon, D., and Mai, N., 1983, Selective disturbance of movement vision after bilateral brain damage, Brain 106: 313–340.PubMedGoogle Scholar
  320. Zilles, K., 1991, Codistribution of receptors in the human cerebral cortex, in: Receptors in the Human Nervous System ( F. A. O. Mendelsohn, and G. Paxinos, eds.), Academic Press, San Diego, pp. 165–206.Google Scholar
  321. Zilles, K., 1992, Receptors in the central nervous system. Neurotransmitter receptors in the forebrain: Regional and laminar distribution, in: Histochemistry of Receptors, (W. Graumann and J. Drukker, eds.), Fischer-Verlag, Stuttgart, pp. 229–240.Google Scholar
  322. Zilles, K., and Schleicher, A., 1993, Cyto-and myeloarchitecture of human visual cortex and the periodical GABAA receptor distribution, in: Functional Organization of the Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. Roland, eds.), Pergamon Press, Oxford, pp. 111–121.Google Scholar
  323. Lilies, K., and Schleicher, A., 1995, Correlative imaging of transmitter receptor distributions in human cortex, in: Autoradiography and Correlative Imaging ( W. E. Stumpf and H. F. Solomon, eds), Academic Press, San Diego, pp. 277–307.Google Scholar
  324. Zilles, K., Werners, R., Büsching, U., and Schleicher, A., 1986, Ontogenesis of the laminar structure in areas 17 and 18 of the human visual cortex. A quantitative study, Anal. Emhryol. 174: 339–353.Google Scholar
  325. Zilles, K., zur Nieden, K., Schleicher, A., and Traber, J., 1990, A new method for quenching correction leads to revisions of data in receptor autoradiography, Histochemistry 94: 569–578.PubMedGoogle Scholar
  326. Lilies, K., Qü, M., Schröder, H., and Schleicher, A., 1991, Neurotransmitter receptors and cortical architecture, J. Hirnforsch. 32: 343–356.Google Scholar
  327. Zilles, K., Qü, M., and Schleicher, A., 1993, Regional distribution and heterogeneity of a-adreuoceptors in the rat and human central nervous system, J. Hirnforsch. 34: 123–132.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Karl Zilles
    • 1
  • Stephanie Clarke
    • 2
  1. 1.C. & O. Vogt-Institute of Brain ResearchUniversity of DüsseldorfDüsseldorfGermany
  2. 2.Institut de PhysiologieUniversité de LausanneLausanneSwitzerland

Personalised recommendations