Development and Plasticity of Extrastriate Visual Cortex in Monkeys

  • Hillary R. Rodman
  • Tirin Moore
Part of the Cerebral Cortex book series (CECO, volume 12)


The extrastriate visual cortex of the monkey has in recent decades come to include an ever-expanding portion of the neocortical domain as more and more traditional “association” or even motor territories are shown to have significant visual connections, visual responsiveness, or role in visual behavior (Felleman and van Essen, 1991; also see the chapter by Gross in this volume). In this chapter, discussion will be restricted (or broadened, depending upon one’s viewpoint) to consideration of cortical zones shown to have at least some visual sensory responsiveness and direct connectivity with other, unimodal visual areas. First, we will consider the normal anatomical, physiological, and metabolic development of extrastriate visual cortex, including the prenatal specification of visual areas. Next, we will discuss the plasticity of extrastriate visual cortex in adulthood by examining the ability of extrastriate areas to function in parallel with striate cortex and the consequences of damage to extrastriate cortex in adult monkeys. In addition, we will examine evidence for learning-or experience-dependent plasticity in the response properties of neurons in extrastriate cortex. In the subsequent section, we will address the special plasticity associated with damage to visual cortex in developing animals. We will then briefly compare the development and plasticity of extratriate cortex in monkeys with phenomena described for other mammalian groups. In the final section, we will summarize the data presented and comment on general principles of extrastriate and cerebral cortical development.


Visual Cortex Superior Colliculus Visual Area Primary Visual Cortex Macaque Monkey 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aigner, T. G., Walker, 1). L., and Mishkin, M., 1991, Comparison of the effects of scopolamine administered before and after acquisition in a test of visual recognition memory in monkeys, Beluiv. Neural Biol. 55: 61–67.Google Scholar
  2. Alexander, G. E., Witt, E. D., and Goldman-Rakic, P. S., 1980, Neuronal activity in the prefrontal cortex, caudate nucleus and mediodorsal thalamic nucleus during delayed response performance of immature and adult rhesus monkeys, Neurosci. Abstr. 6: 88.Google Scholar
  3. Bachevalier, J., 1990, Ontogenctic development of habit and memory formation in primates, in: Develolnnent and Neural Bases of Higher Cognitive Functions (A. Diamond, ed.), Academic Press, New York, pp. 457–484.Google Scholar
  4. Bachevalier, J., Hagger, C., and Mishkin, M., 1991, Functional maturation of the occipitotemporal pathway in infant rhesus monkeys, in: Brain Work and Mental Activity (N. A. Lassen, M. FI. Raichle, and L. Friberg, eds.), Munksgaard, Copenhagen, pp. 231–242.Google Scholar
  5. Barbur, J. 1.., Watson, 1. D., Frackowiak, R. S., and Zeki, S., 1993, Conscious visual perception without V1, Brain 116: 1293–1302.Google Scholar
  6. Barone, P., Dehay, C., Berland, M., and Kennedy, H., I 994a, Developmental changes in the distribution of acetylcholinesterase in the extrastriate visual cortex of the monkey, Dev. Brain Res. 77: 290–294.Google Scholar
  7. Barone, P., Dehay, C., Berland, M., and Kennedy, H., 1994b, Segregation of functional visual pathway in the prenatal monkey, Neurosci. Abstr. 20: 215.Google Scholar
  8. Barone, P., Dehay, C., Berland, M., Bullier, J., and Kennedy, H., 1995, Developmental remodeling of primate visual cortical pathways, Cerebral Cortex 1: 22–58.Google Scholar
  9. Bender, D. B., 1983, Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus, Brain Res. 279: 258–261.PubMedGoogle Scholar
  10. Berger, B., Febvret, A., Greengard, P., and Goldman-Rakic, P. S., 1990, DARPP-32, a phosphoprotein enriched in dopaminoceptive neurons bearing dopamine DI receptors: Distribution in the cerebral cortex of the newborn and adult rhesus monkey, J. Comp. Neurol. 299: 327–348.PubMedGoogle Scholar
  11. Berman, N. E., and Payne, B. R., 1988, Development and plasticity of visual interhemispheric connections, in: Advances in Neural and Behavioral Development, Volume 3 (P. Shinkman, ed.), Ablex Press, Norwood, NJ.Google Scholar
  12. Blakemore, C., and Vital-Durand, F., 1981, Postnatal development of the monkey’s visual system, CIBA Symp. 86: 152–171.Google Scholar
  13. Blythe, L M., Kennard, C., and Ruddock, K. H., 1987, Residual vision in patients with retrogeniculate lesions of the visual pathways, Brain 110: 887–905.PubMedGoogle Scholar
  14. Bruce, C., Desimone, R., and Gross, C. G., 1986, Both striate cortex and the superior colliculus contribute to visual properties of neurons in the superior temporal polysensory area of the macaque, J. Neurophy.siol. 5: 1057–1075.Google Scholar
  15. Bullier, J., Girard, P., and Salin, P.-A., 1994, Flic role of area 17 in the transfer of information to extrastriate visual cortex, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. S. Rockland, eds.), Plenum Press, New York, pp. 301–330.Google Scholar
  16. Burkhalter, A., 1993, Development of forward and feedback connections between areas V1 and V2 of human visual cortex, Cerebral Cortex 3: 476–487.PubMedGoogle Scholar
  17. Campion, J., Latto, R., and Smith, Y. M., 1983, Is blindsight an effect of scattered light, spared cortex, and near-threshold vision? Behay. Brain Soi. 6: 423–486.Google Scholar
  18. Clark, C. R., G. M. Geffen, and L. B. Geffen, 1987, Catecholamines and attention. I. Animal and clinical studies, Neurosci. Biobehay. Rev. 11: 341–352.Google Scholar
  19. Colombo, M., and Gross, C. G., 1994, Responses of inferior temporal and hippocampal neurons during delayed matching-to-sample in monkeys (macaca fascicularis), Behay. Neurosci. 108: 443455.Google Scholar
  20. Cowey, A., and Stoerig, P., 1989, Projection patterns of surviving neurons in the dorsal lateral geniculate nucleus following discrete lesions of striate cortex: Implications for residual vision, Exp. Brain Res. 75: 631–638.PubMedGoogle Scholar
  21. Cowey, A., and Stoerig, P., 1991, The neurobiology of blindsight, Trends Neurosci. 14: 14–145.Google Scholar
  22. Cowey, A., and Stoerig, P., 1995, Blindsight in monkeys, Nature 373: 247–249.PubMedGoogle Scholar
  23. Cowey, A., Stoerig, P., and Perry, V. H., 1989, ‘Fransneuronal retrograde degeneration of retinal ganglion cells after damage to striate cortex in macaque monkeys: selective loss of Pß cells, Neuroscience 29: 65–80.Google Scholar
  24. Cowey, A., Stoerig, P., and Bannister, M., 1994, Retinal ganglion cells labelled from the pulvinar nucleus in macaque monkeys, Neuroscience 61: 691–705.PubMedGoogle Scholar
  25. Cusick, C. G., and Lund, R. 1)., 1982, Modification of visual callosal projections in rats, J. Comp. Neural. 212: 385–398.Google Scholar
  26. Dehay, C., and Kennedy, H., 1988, The maturational status of thalamocortical and callosal connec- tions of visual areas VI and V2 in the newborn monkey, Behay. Brain Res. 29: 237–244.Google Scholar
  27. Dehay, C., and Kennedy, H., 1993, Control mechanisms of primate corticogenesis, in: Functional Organisation of the Human Cerebral Cortex (B. Gulyas, 1 ). Ottoson, and P. E. Roland, eds.), Pergamon Press, Oxford, pp. 13–27.Google Scholar
  28. Dehay, C., Kennedy, H., and Bullier, J., 1986, Callosal connectivity of areas VI and V2 in the newborn monkey, J. Comp. Neuron. 254: 20–33.Google Scholar
  29. Dehay, C., Kennedy, H., Bullier, J., and Berland, M., 1988, Absence of interhemispheric connections of area 17 during development in the monkey, Nature 331: 348–350.PubMedGoogle Scholar
  30. Dehay, C., Girond, P., Berland, M., Smart, 1., and Kennedy, H., 1993, Modulation of the cell cycle contributes to the parcellation of the primate visual cortex, Nature 366. 464–466.Google Scholar
  31. Desimone, R., and Gross, C. G., 1979, Visual areas in the temporal cortex of the macaque, Brain Res. 178: 363–380.PubMedGoogle Scholar
  32. Desimone, R., and Ungerleider, L. G., 1989, Neural mechanisms of visual perception in monkeys, in: Handbook of Neuropsychology, Volume II ( R. Boller and J. Grafman, eds), Elsevier, Amsterdam, 267–299.Google Scholar
  33. Desimone, R., Miller, E. K., Chelazzi, L., and Lueschow, A., 1994, Multiple memory systems in the visual cortex, in: The Cognitive Neurosciences ( M. S. Gazzaniga, ed.), MIT Press, Cambridge, MA, 475–486.Google Scholar
  34. Diamond, I. ‘l’., Fitzpatrick, 1)., and Sprague, J. M., 1985, The extrastriate visual cortex: A historical approach to the relation between “visuo-sensory” and “visuo-psychic” areas, in: Cerebral Cortex, Volume 4, Association and Auditory Cortices ( A. Peters and E. G. Jones, eds.), Plenum Press, New York.Google Scholar
  35. Dineen, J. “F., and Hendrickson, A. E., 1981, Age-correlated differences in the amount of retinal degeneration after striate cortex lesions in monkeys, Invest. Ophthalmol. Vis. Sci. 21: 749–752.Google Scholar
  36. Distler, C., Ungerleider, L. G., Bachevalier, J., and Mishkin, M., 1990, Functional development of the cortical visual pathway for motion analysis in rhesus monkeys, Neurosci. Abstr. 16: 5.Google Scholar
  37. Dobkins, K. R., and Teller, D. Y., 1996, Infant contrast detectors are selective for direction of motion, Vision Res. 36: 281–294.PubMedGoogle Scholar
  38. Felleman, 1). J., and Van Essen, D. C., 1991, Distributed hierarchical processing in primate cerebral cortex, Cerebral Cortex 1: 1–48.Google Scholar
  39. Flechsig, P., 1876, Die Leitungsbahnen lm Gehirn und Ruckennuark des Menschen auf Grund Entwicklungsgeschichtlicher Untersuchungen, Engelmann, I.iepzig.Google Scholar
  40. Foote, S. L., and Morrison, J. H., 1987, Development of the noradrenergic, serotonergic, and dopaminergic innervation of neocortex, Curr. Top. Dev. Biol. 21: 391–423.PubMedGoogle Scholar
  41. Fuster, J. M., 1990, Inferotemporal units in selective visual attention and short-term memory, J. Neurophysiol. 64: 681–697.PubMedGoogle Scholar
  42. Galletti, C., and Battaglini, P. P., 1989, Gaze-dependent visual neurons in area V3A of monkey prestriate cortex, J. Neurosci. 9: 1112–1125.PubMedGoogle Scholar
  43. Garey, L. J., and Saini, K. D., 1981, Golgi studies of the normal development of neurons in the lateral geniculate nucleus of the monkey, Exp. Brain Res. 44: 117–128.PubMedGoogle Scholar
  44. Gattass, R., and Gross, C. G., 1981, Visual topography of the striate projection zone in the posterior superior temporal sulcus (MT) of the macaque, J. Neurophysiol. 46: 621–638.PubMedGoogle Scholar
  45. Gilbert, C. D., 1993, Rapid dynamic changes in adult cerebral cortex, Curr. Opin. Neurobiol. 3: 100–103.PubMedGoogle Scholar
  46. Girard, P., Salin, P. A., and Bullier, J., 1992, Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area VI, J. Neurophysiol. 67: 1437–1446.PubMedGoogle Scholar
  47. Goldman, P. S., 1972, Developmental determinants of cortical plasticity, Acta Neural. Exp. 32: 495–511.Google Scholar
  48. Goldman-Rakic, P. S., 1987, Development of cortical circuitry and cognitive function, Child Dev. 58: 601–622.PubMedGoogle Scholar
  49. Goldman-Rakic, P. S., and Brown, R. M., 1982, Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys, Dev. Brain Res. 4: 339–349.Google Scholar
  50. Gross, C. G., 1973, Inferotemporal cortex and vision, Prog. Physiol. Psychol. 5: 77–123.Google Scholar
  51. Gross, C. G., 1991, Contributions of striate cortex and the superior colliculus to visual function in area MT, the superior temporal polysensory area and the inferior temporal cortex, Neuropsychologia 29: 487–515.Google Scholar
  52. Gross, C. G., Bender, D. B., and Gerstein, G. L., 1979, Activity of inferior temporal neurons in behaving monkeys, Neuropsychologie. 7: 215–229.Google Scholar
  53. Gross, C. G., Rodman, H. R., Gochin, P. M., and Colombo, M. W., 1993, Inferior temporal cortex as a pattern recognition device, in: Proceedings of the Third Annual NEC Research Symposium ( E. Baum, ed.), SIAM Press, Philadelphia, pp. 44–73.Google Scholar
  54. Guido, W., Spear, P. D., and Tong, L., 1990, Functional compensation in the lateral suprasylvian visual area following bilateral visual cortex damage in kittens, Exp. Brain Res. 83: 219–224.PubMedGoogle Scholar
  55. Haenny, P. E., and Schiller, P. H., 1988, State dependent activity in monkey visual cortex. I. Single cell activity in V 1 and V4 on visual tasks, Exp. Brain Res. 69: 225–244.PubMedGoogle Scholar
  56. Harting, J. K., Huerta, M. F., Hashikawa, T., and van Lieshout, D. P., 1991, Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: Organization of tectogeniculate pathways in nineteen species, J. Comp. Neural. 304: 275–306.Google Scholar
  57. Hayashi, M., and Oshima, K., 1986, Neuropeptides in cerebral cortex of macaque monkey (Maraca fuscata /uscala): Regional distribution and ontogeny, Brain Res. 364: 360–368.PubMedGoogle Scholar
  58. Hayashi, M., Yamashita, A., Shimizu, K., and Oshima, K., 1989, Ontogeny of cholecystokinin-8 and glutamic acid decarboxylase in cerebral neocortex of macaque monkey, Exp. Brain Res. 74: 249–255.PubMedGoogle Scholar
  59. Holmes, G., 1918, Disturbances of visual orientation, Br. J. Ophthalmol. 2: 449–486.PubMedGoogle Scholar
  60. Innocenti, G. M., 1981a, Transitory’ structures as substrate for developmental plasticity of the brain, in: Functional Recovery from Brain Damage ( M. W. van Hof and G. Mohn, eds.), Elsevier, Amsterdam, pp. 305–333.Google Scholar
  61. Innocenti, G. M., 198Ib, Role of axon elimination in the development of visual cortex, in: Development of Visual Pathways in Mammals, Liss, New York, pp. 243–253.Google Scholar
  62. Innocenti, G. M., and Clarke, S., 1984a, The organization of immature callosal connections,/ Comp. Neurol. 23: 287–309.Google Scholar
  63. Innocenti, G. M., and Clarke, S., I984b, Bilateral transitory projection to visual areas troni auditory cortex in kittens, Dev. Brain Res. 14: 143–148.Google Scholar
  64. Johnson, M. H., 1990, Cortical maturation and the development of visual attention in early infancy, J. Cognitive Neurosci. 26: 81–95.Google Scholar
  65. Kaas, J. H., and Huerta, J. F., 1988, The subcortical visual system of primates, in: Comparative Primate Biology, Volume 4 ( H. Steklis and J. Erwin, eds.), Liss, New York, 327–39I.Google Scholar
  66. Kaas, J. H., and Krubitzer, L. A., 1991, Area 17 lesions deactivate area MT in owl monkeys, Visual Neurosci. 9: 399–407.Google Scholar
  67. Kasamatsu, T., 1987, Norepinephrine hypothesis for visual cortical plasticity: Thesis, antithesis, and recent development, Curr. Top. Dev. Biol. 21: 367–389.PubMedGoogle Scholar
  68. Kennedy, H., and Dehay, C., 1993, Cortical specification of mice and men. Cerebral Cortex 3: 171–186.PubMedGoogle Scholar
  69. Kennedy, H., Bullier, J., and Dehay, C., 1989a, Cytochrome oxidase activity in the striate cortex and lateral geniculate nucleus of the newborn and adult macaque monkey, Exp. Brain Res. 61: 204–209.Google Scholar
  70. Kennedy, H., Bullier, J., and Dehay, C., 19896, Transient projection from the superior temporal sulcus to area 17 in the newborn macaque monkey. Proc. Natl. Acad. Sci. USA 86: 8093–8097.Google Scholar
  71. Kluver, H., 1942, Functional significance of the geniculo-striate system, Biol., Symp. 7: 253–299.Google Scholar
  72. Kostovic, I., and Rakic, P., 1984, Development of prestriate visual projections in the monkey and human fetal cerebraum revealed by transient cholinesterase staining, J. Neurosci. 4: 25–42.PubMedGoogle Scholar
  73. LaMantia, A. S., and Rakic, P., 1990, Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey, J. Neurosci. 10: 2156–2175.PubMedGoogle Scholar
  74. LaMantia, A. S., and Rakic, P., 1994, Axon overproduction and elimination in the anterior commissure of the developing rhesus monkey, J. Comp. Neurol. 340: 328–336.Google Scholar
  75. Lidow, M. S., and Rakic, P., 1992, Scheduling of monoaminergic neurotransmitter receptor expres- sion in the primate neocortex during postnatal development, Cerebral Cortex 2: 401–416.PubMedGoogle Scholar
  76. Lidow, M. S., Goldman-Rakic, P. S., and Rakic, P., 1991, Synchronized overproduction of neurotransmitter receptors in diverse regions of the primate cerebral cortex, Proc:. Natl. Acad. Sci. USA 88: 10218–10221.Google Scholar
  77. Logothetis, N., Pauls, J., and Poggio, “F., 1995, Shape representation in the inferior temporal cortex of monkeys, Curr. Biol. 5: 552–563.Google Scholar
  78. Lomber, S. G., McNeil, M. A., and Payne, B. R., 1995, Amplification of thalamic projections to middle suprasylvian cortex following ablation of immature primary visual cortex in the cat, Cerebral Cortex 5: 166–191.PubMedGoogle Scholar
  79. Lund, J. S., and Harper, T. R., 1991, Postnatal development of thalamic recipient neurons in the monkey striate cortex. I11. Somatic inhibitory synapse acquisition by spiny stellate neurons of layer IVC, /. Comp. Neurol. 309: 141–149.Google Scholar
  80. Lund, J. S., and Holbach, S. M., 1991, Postnatal development of thalamic recipient neurons in the monkey striate cortex. I. Comparison of spine acquisition and dendritic growth of layer 4G alpha and beta spiny stellate neurons,/ Comp. Neural. 309: 115–128.Google Scholar
  81. Lynch, J. C., 1992, Saccade initiation and latency deficits after combined lesions of the frontal and posterior eye fields in monkeys,/ Neurophysioi. 68: 1913–1916.Google Scholar
  82. Malkova, L., Mishkin, M., and Bachevalier,J., 1995, Long-term effects of selective neonatal temporal lobe lesions on learning and memory in monkeys, Behan. Neurosci. 109: 212–226.Google Scholar
  83. Maunsell, J. H. R., Sclar, G., Nealey, T. A., and DePriest, D. D., 1991, Extraretinal representations in area V4 of the macaque monkey, Visual Neurosci. 7: 561–573.Google Scholar
  84. Merigan, W. H., 1993, Human V4? Curt. Biol. 3: 226–229.Google Scholar
  85. Merigan, W. H., and Maunsell, J. H. R., 1993, How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16: 369–402.PubMedGoogle Scholar
  86. Merzenich, M. M., and Sameshima, K., 1993, Cortical plasticity in memory, Cure. O/yin. Neurobiol. 3: 187–196.Google Scholar
  87. Mikami, A., and Fujita, K., 1992, Development of the ability to detect visual motion in infant macaque monkeys, Dev. Psychobiol. 25: 345–354.PubMedGoogle Scholar
  88. Mikami, A., and Kubota, K., 1980, 1nferotemporal neuron activities and color discrimination with delay, Brain Res. 182: 65–78.Google Scholar
  89. Miller, E. K., Gochin, P. M., and Gross, C. G., 1991, Habituation-like decrease in the responses of neurons in inferior temporal cortex of the macaque, Visual Neurosci. 7: 357–362.Google Scholar
  90. Miller, E. K., Li, L., and Desimone, R., 1993, Activity of neurons in anterior inferior temporal cortex during a short-term memory task, J. Neurosci. 13: 1460–1478.PubMedGoogle Scholar
  91. Miyashita, Y., 1988, Neuronal correlate of visual associative long-terni memory ill the primate temporal cortex, Nature 335: 817–820.PubMedGoogle Scholar
  92. Mohler, C. W., and Wurtz, R. H., 1977, Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys, J. Neurophysiol. 40: 74–94.PubMedGoogle Scholar
  93. Molotchnikoff, S., and Hubert, F., 1990, Susceptibility of neurons in area 18a to blockade of.urea 17 in rats, Brain Res. 510: 223–228.PubMedGoogle Scholar
  94. Moore, T., Rodman, H. R., Repp, A. B., and Gross, C. G., 1993, Comparison of residual visual function after damage to striate cortex in infancy and adulthood, Neurosci. Abstr. 19: 1801.Google Scholar
  95. Moore, T., Rodman, H. R., Repp, A. B., and Gross, C. G., 1995a. Localization of visual stimuli after striate cortex damage in monkeys: Parallels with human blindsight, Proc. Nall. Acad. Sci. USA 92: 8215–8218.Google Scholar
  96. Moore, T., Repp, A. B., Rodman, H. R., and Gross, C. G., 1995b, Preserved motion discrimination in monkeys with early lesions of striate cortex, Neurosci. Absl. 21: 1651.Google Scholar
  97. Moore, ‘F., Rodman, H. R., Repp, A. B., Gross, C. G., and Mezrich, R., 1996, Greater residual vision after striate cortex damage in infancy,/ Neurophysiol. 76: 3928–3933.Google Scholar
  98. Morrison, J. H., and Foote, S. L., 1986, Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkeys,]. Comp. Neurol. 243: 117–138.Google Scholar
  99. Newsome, W. ‘F., Wurtz, R. H., Dursteler, M. R., and Mikami, A., 1985, Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey, J. Neurosci. 5: 825–840.Google Scholar
  100. Olavarria, J., and Torrealba, F., 1978, ‘Fhe effects of acute lesions of striate cortex on the ret isotopic organization of lateral peristriate cortex in the rat, Brain Res. 151: 386–391.Google Scholar
  101. O Scalaidhe, S. P., Albright, ‘F. D., Rodman, H. R., and Gross, C. G., 1995, Effects of superior temporal polysensory area lesions on eye movements in the macaque monkey, J. Neurop/mysiol. 73: 1–19.Google Scholar
  102. O Scalaidhe, S. P., Rodman, H. R., Albright, ‘F. D., and Gross, C. G. 1997, The effects of combined superior temporal polysensory area and frontal eye field lesions on eye movements, Be/may. Brain Res. 84: 31–46.Google Scholar
  103. Pasik, P., and Pasik, T., 1982, Visual functions in monkeys after total removal of visual cerebral cortex, Contrib. Sensory Physiol. 7: 147–200.Google Scholar
  104. Payne, B. R., 1993, Evidence for visual cortical area homologs in cat and macaque monkey, Cerebral Cortex 3: 1–25.PubMedGoogle Scholar
  105. Payne, B. R., and Cornwell, P., 1994, System-wide repercussions of damage to the immature visual cortex, Trends Neurosci. 17: 126–130.PubMedGoogle Scholar
  106. Payne, B. R., Pearson, H., and Cornwell, P., 1988, Development of visual and auditory cortical connections in the cat, in: Cerebral Cortex, Volume 7, Development and Maturation of Cerebral Cortex ( A. Peters and E. G. Jones, eds), Plenum Press, New York, pp. 309–389.Google Scholar
  107. Payne, B. R., Lomber, S. G., McNeil, M., and Cornwell, P., 1996, Evidence for greater sight in blindsight following damage to primary visual cortex early in life: A review, Neuropsyclmnlogia 34: 741–774.Google Scholar
  108. Raisler, R. 1.., and Harlow, H. F., 1965, Learned behavior following lesions of posterior association cortex in infant, immature and preadolescent monkeys, J. Comp. Plmysiol. Psychol. 60: 167–174.Google Scholar
  109. Rakic, P., 1976, Difference in the time of neuron origin and in eventual distribution of neurons in areas 17 and 18 of the visual cortex in rhesus monkey, Exp. Brain Res. 1: 244–248.Google Scholar
  110. Rakic, P., 1988, Specification of cerebral cortical areas, Science 241: 170–176.Google Scholar
  111. Rakic, P., and Goldman-Rakic, P. S., 1982, Development and modifiability of the cerebral cortex, Neurosci. Res. Prog. Bull. 20: 429–611.Google Scholar
  112. Rakic, P., Bourgeois, J. P., Eckenhoff, M. E. F., Zecevic, N., and Goldman-Rakic, P. S., 1986, Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex, Science 232: 232–235.PubMedGoogle Scholar
  113. Rocha-Miranda, C., Bender, 1)., Gross, C. G., and Mishkin, M., 1975, Visual activation of neurons in inferotemporal cortex depends on striate cortex and the forebrain commissures, J. Neurophysiol. 58: 1292–1306.Google Scholar
  114. Rodman, H. R., 1994, Development of inferior temporal cortex in the monkey, Cerebral Cortex 5: 484–498.Google Scholar
  115. Rodman, H. R., and Consuclos, M. C., 1994, Cortical projections to anterior inferior temporal cortex in infant macaque monkeys, Visual Neurosci. 11: 119–133.Google Scholar
  116. Rodman, H. R., and Nace, K. I.., 1997, In: ( N. A. Krasnegor, G. R. Lyon, and P. S. Goldman-Rakic, eds.), Development of the Prefrontal Cortex: Evolution, Neurobiology and Behavior Brookes Publishing, Baltimore, MD, pp. 167–190.Google Scholar
  117. Rodman, H. R., Gross, C. G., and Albright, T. D., 1989, Afferent basis of visual response properties in area MT of the macaque: I. Effects of striate cortex removal, J. Neurosci 9: 203–2050.Google Scholar
  118. Rodman, H. R., Gross, C. G., and Albright, T. D., 1990, Afferent basis of visual response properties in area MT of the macaque: II. Effects of superior colliculus removal,/ Neurosci. 10: 1154–1164.Google Scholar
  119. Rodman, H. R., Skelly, J. P., and Gross, C. G., 1991, Stimulus selectivity and state dependence of activity in inferior temporal cortex of infant monkeys, Proc. Natl. Acad. Sci. USA 88: 7572–7575.PubMedGoogle Scholar
  120. Rodman, H. R., O Scalaidhe, S. P., and Gross, C. G., 1993, Visual response properties of neurons in temporal cortical visual areas of infant monkeys, J. Neuropaysiol. 70: 1115–1136.Google Scholar
  121. Rolls, E. ‘l’., Baylis, G. C., Hasselmo, M. E., and Nalwa, V., 1989, The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey, Exp. Brain. Res. 76: 153–164.Google Scholar
  122. Sakai, K., and Miyashita, Y., 1991, Neural organization for the long-term memory of paired associates, Nature 354: 152–155.PubMedGoogle Scholar
  123. Saper, C. B., 1987, Function of the locus coeruleus, Trends Neurosci. 10: 343–344.Google Scholar
  124. Schiller, P. H., and Malpeli, J. G., 1977, The effect of striate cortex cooling on area 18 cells in the monkey, Brain Res. 126: 366–369.PubMedGoogle Scholar
  125. Schiller, P. H., Stryker, M., Cynader, M., and Berman, N., 1974, Response characteristic of single cells in the monkey superior colliculus following ablation or cooling of visual cortex, J. Neuropltysiol. 37: 181–194.Google Scholar
  126. Schwartz, M. L., and Goldman-Rakic, P. S., 1990, Development and plasticity of the primate cerebral cortex, Clin. Perinatol. 17: 83–102.PubMedGoogle Scholar
  127. Segraves, M. A., Goldberg, M. E., Deng, S., Bruce, C. J., Uugerleider, L. G., and Mishkin, M., 1987, The role of the striate cortex in the guidance of eye movements in the monkey, J. Neurosci. 7: 3040–3058.PubMedGoogle Scholar
  128. Sereno, M. l., Rodman, H. R., and Karten, H. J., 1991, Organization of visual cortex in the California ground squirrel, Neurosci. Abstr. 17: 844.Google Scholar
  129. Sesma, M. A., and Burkhalter, A., 1994, Development of modular organization in area V2 of monkey and human visual cortex, Neurosci. Abstr. 20: 215.Google Scholar
  130. Slater, A., Morison, V., “limn, C., and Rose, D., 1985, Movement perception and identity constancy in the new-born baby, Br. J. Dev. Psychol. 3: 211–220.Google Scholar
  131. Sobotka, S., and Ringo,,J. L., 1991, Failure of visual image pairings to produce correlated single-unit responses in inferotemporal cortex of a macaque, Neurosci. Abstr. 17: 660.Google Scholar
  132. Spear, P. D., 1983, Neural mechanisms of compensation following neonatal visual cortex damage, in: Synaptic Plasticity and Remodeling ( C. W. Cotman, ed.), Guilford Press, New York, 111–167.Google Scholar
  133. Spitzer, H., and Richmond, B. J., 1991, ‘Cask difficulty: Ignoring, attending to, and discriminating a visual stimulus yield progressively more activity in inferior temporal neurons, Exp. Brain Res. 83: 340–348.Google Scholar
  134. Stryker, M., 1991, Temporal associations, Nature 354: 108.PubMedGoogle Scholar
  135. Tootell, R. B. H., and Taylor, J. B., 1995, Anatomical evidence for MT and additional cortical visual areas in humans, Cerebral Cortex 5: 39–55.PubMedGoogle Scholar
  136. Uylings, H. B., 1994, What determines the specification of cortical areas? Trends Neurosci. 17: 1–2.PubMedGoogle Scholar
  137. Van Buren, J. M., 1963, Trans-synaptic retrograde degeneration in the visual system of primates, J. Neurol. Neurosurg. Psychiatr, 26: 402–409.Google Scholar
  138. Voytko, M. L., Kitt, C. A., and Price, D. L., 1992, Cholinergie immunoreactive fibers in monkey anterior temporal cortex, Cerebral Cortex 2: 48–55.PubMedGoogle Scholar
  139. Walsh, C., and Cepko, C. L., 1992, Widespread dispersion of neuronal clones across functional regions of the cerebral cortex, Science 255: 434–440.PubMedGoogle Scholar
  140. Webster, M. J., Ungerleider, L. G., and Bachevalier, J., 1991a, Connections of inferior temporal areas TE and TE() with medial temporal-lobe structures in infant and adult monkeys, Neurosci. 11: 1095–1116.Google Scholar
  141. Webster, M. J., Ungerleider, L. G., and Bachevalier, J., 1991b, Lesions of inferior temporal area ‘TE its infant monkeys alter cortico-amygdalar projections, NeuroReport 2: 769–772.PubMedGoogle Scholar
  142. Webster, M. J., Bachevalier, J., and Ungerleider, L. G., 1994, Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys, Cerebral Cortex 4: 470–483.PubMedGoogle Scholar
  143. Webster, M. J., Bachevalier, J., and Ungerleider, L. G., 1995a, Transient subcortical connections of inferior temporal areas TEO and TEO in infant macaque monkeys, f. Comp. Neurol. 352: 213226.Google Scholar
  144. Webster, M. J., Bachevalier, J., and Ungerleider, L. G., 1995b, Development and plasticity of visual memory circuits, in: Maturational Windows and Adult Cortical Plasticity. SFI Studies in the Sciences of Complexity, Volume 14 (B. Julesz and I. Kovacs, eds.), Addison-Wesley, Reading, MA.Google Scholar
  145. Weller, R. E., and Kaas, J. H., 1989, Parameters affecting the loss of ganglion cells following ablations of striate cortex in primates, Visual Neurosci. 3: 327–349.Google Scholar
  146. Weiskrantz, L., 1986, Blindsight: A Case Study and Implications, Oxford University Press, Oxford.Google Scholar
  147. Weiskrantz, L., Barbur, J. L., and Sahraie, A., 1995, Parameters affecting conscious versus unconscious visual discrimination with damage to V1, Proc. Natl. Acad. Sci. USA 92: 6122–6126.PubMedGoogle Scholar
  148. Wilson, F. A. W., O Scalaidhe, S. P., and Goldman-Rakic, P. S. 1993, Dissociation of object and spatial processing domains in primate prefrontal cortex, Science 260: 1955–1958.PubMedGoogle Scholar
  149. Yakovlev, P. I., and Lecours, A. R., 1967, The myelogenetic cycles of regional maturation of the brain, in: Regional Maturation of Brain in Early Life ( A. Minkowski, ed.), Davis, Philadelphia, pp. 3–70.Google Scholar
  150. Yamasaki, D. S., and Wurtz, R. H., 1987, Recovery of function following chemical lesions of cortical area MT, Neurosci. Abstr. 13: 625.Google Scholar
  151. Yamasaki, D. S., and Wurtz, R. H., 1991, Recovery of function after lesions in the superior temporal sulcus in the monkey,/ Neurophysiol. 66: 651–673.Google Scholar
  152. Yamashita, A., 1992, Ontogeny of cholecystokinin-immunoreactive structures in the primate cerebral neocortex, Int. J. Neurosci. 64: 139–151.Google Scholar
  153. Yamashita, A., Hayashi, M., Shimizu, K., and Oshima, K., 1989, Ontogeny of somatostatin in cerebral cortex of macaque monkey: An immunohistochemical study, Dev. Brain Res. 45:103–1 l I.Google Scholar
  154. Yamashita, A., Shimizu, K., and Hayashi, M., 1990, Ontogeny of substance P immunoreactive structures in the primate cerebral neocortex, Dev. Brain Res. 57: 197–207.Google Scholar
  155. Zohary, E., Celebrini, S., Britten, K. H., and Newsome, W. T., 1994, Neuronal plasticity that underlies improvement in perceptual performance, Science 263: 1289–1292.PubMedGoogle Scholar
  156. Zola-Morgan, S., and Squire, L. R., 1993, Neuroanatomy of memory, Anon. Rev. Neurosci. 16: 547–563.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Hillary R. Rodman
    • 1
  • Tirin Moore
    • 2
  1. 1.Department of Psychology and Yerkes Regional Primate Research CenterEmory UniversityAtlantaUSA
  2. 2.Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations