Advertisement

Visuomotor Areas of the Frontal Lobe

  • Jeffrey D. Schall
Part of the Cerebral Cortex book series (CECO, volume 12)

Abstract

That frontal cortex is involved in visually guided behavior has been known for over a century. Since the pioneering work of Ferrier, several areas in frontal cortex have been identified as having visual responses and playing some role in producing movements of the eyes, head, and limbs. Comprehensive reviews of frontal lobe organization and function have appeared (Fuster, 1989; Goldman-Rakic, 1987, 1988; Passingham, 1993; Levin et al., 1991; Perecman, 1987; Stuss and Benson, 1986; Petrides and Pandya, 1994). This chapter will survey recent findings regarding the possible roles of the different areas of frontal cortex in the production of visually guided movements. Areas of disagreement in the literature will be examined. Although some neurons in primary motor cortex are visually responsive (e.g., Kwan et al., 1985), such signals seem to be fairly nonspecific activations. Most emphasis will be on eye movements and the function of the frontal and supplementary eye fields. Recent experiments will also be reviewed that examine the function of the agranular premotor cortex and the granular dorsolateral and ventrolateral prefrontal cortex. The state of knowledge and the author’s competence wane toward the rostral pole. Nevertheless, the orbitofrontal and cingulate cortex are integral if poorly understood parts of frontal cortex that relate to affect and personality.

Keywords

Receptive Field Superior Colliculus Supplementary Motor Area Premotor Cortex Saccade Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, G. E., and Crutcher, M. D., 1990, Preparation for movement: Neural representations of intended direction in three motor areas of the monkey, J. Neurophysiol. 64: 133–150.PubMedGoogle Scholar
  2. Amaral, D. G., and Price, 1. L., 1984, Amygdalo-cortical projections in the monkey (Maraca fiiscicularis), J. COMP. Neurol. 230: 465–496.CrossRefGoogle Scholar
  3. Andersen, R. A., Asanuma, C., and Cowan, W. M., 1985, Callosal and prefrontal associational projecting cell populations in area 7a of the macaque monkey: A study using retrogradely transported fluorescent dyes, J. Comp. Neurol. 232: 443–455.CrossRefPubMedGoogle Scholar
  4. Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W., and Fugassi, L., 1990, Eye position effects on visual memory, and saccade-related activity in areas LIP and 7a of macaque, J. Neurosci. 10: 1176–1196.PubMedGoogle Scholar
  5. Anderson, T. J., Jenkins, I. H., Brooks, D. J., Hawken, M. B., Rackowiak, R. S. J., and Kennard, C., 1994, Cortical control of saccades and fixation in man. A PET study, Brain 117: 1073–1084.CrossRefPubMedGoogle Scholar
  6. Andreasen, N., Nasrallah, H. A., Dunn, V., Olson, S. C., Grove, W. M., Ehrhardt, J. C., Coffman, J. A., and Crossett, J. H., 1986, Structural abnormalities in the frontal system in schizophrenia. A magnetic resonance imaging study, Arch. Gen. Psychiatry 43: 136–144.CrossRefPubMedGoogle Scholar
  7. Antes, J. R., 1974, The time course of picture viewing, J. Exp. Psychol. 103: 62–70.CrossRefPubMedGoogle Scholar
  8. Apicella, P., Ljungberg, T., Scarnati, E., and Schultz, W., 1991, Responses to reward in monkey dorsal and ventral striatum, Exp. Brain Res. 85: 491–500.CrossRefPubMedGoogle Scholar
  9. Arikuni, T., and Kubota, K., 1986, The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: A retrograde study using HRP-gel, J. Comp. Neurol. 244: 492–510.CrossRefPubMedGoogle Scholar
  10. Arnsten, A. F. T., Cai, J. X., Murphy, B. L., and Goldman-Rakic, P. S., 1994, Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys, Psychopharmacology 116: 143–151.CrossRefPubMedGoogle Scholar
  11. Asanuma, C., Thach, W. T., and Jones, E. G., 1983, Distribution of cerebellar terminations and their relation to other afferent terminations in the thalamic ventral lateral region of the monkey, Brain Res. Rev. 5: 237–265.CrossRefGoogle Scholar
  12. Azuma, M., and Suzuki, H., 1984, Properties and distribution of auditory neurons in the dorsolateral prefrontal cortex of the alert monkey, Brain Res. 298: 343–346.CrossRefPubMedGoogle Scholar
  13. Bachevalier, J., and Mishkin, M., 1986, Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys, Behay. Brain Res. 20: 249–261.CrossRefGoogle Scholar
  14. Baedeker, C., and Wolf, W., 1987, Influence of saccades on manual reactions—A reaction time and VEP study, Vision Res. 27: 609–619.CrossRefPubMedGoogle Scholar
  15. Baizer, J. S., Ungerleider, L. G., and Desimone, R., 1991, Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques, J. Neurosci. 11: 168–190.Google Scholar
  16. Baleydier, C., and Maguire, F., 1980, The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis, Brain 103: 525–554.CrossRefPubMedGoogle Scholar
  17. Barbas, H., 1988, Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey, J. Comp. Neural. 276: 313–342.CrossRefGoogle Scholar
  18. Barbas, H., 1993, Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey, Neuroscience 56: 841–864.CrossRefPubMedGoogle Scholar
  19. Barbas, H., and Mesulam, M.-M., 1981, Organization of afferent input to subdivisions of area 8 in the rhesus monkey, J. Comp. Neurol. 200: 407–431.CrossRefPubMedGoogle Scholar
  20. Barbas, H., and Pandya, D. N., 1987, Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey, J. Comp. Neurol. 256: 211–228.CrossRefPubMedGoogle Scholar
  21. Barone, P., and,Joseph, J.-P., 1989, Prefrontal cortex and spatial sequencing in macaque monkey, Exp. Brain Res. 78: 447–464.CrossRefPubMedGoogle Scholar
  22. Bates, J. F., and Goldman-Rakic, P. S., 1993, Prefrontal connections of medial motor areas in the rhesus monkey, J. Comp. Neurol. 336: 211–228.CrossRefPubMedGoogle Scholar
  23. Batuev, A. S., Shaefer, V. I., and Orlov, A. A., 1985, Comparative characteristics of unit activity in the prefrontal and parietal areas during delayed performance in monkeys, Behay. Brain Res. 16: 57–70.CrossRefGoogle Scholar
  24. Bauer, R. H., and Fuster, J., 1976, Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys, J. Comp. Physiol. Pchol. 90: 293–302.Google Scholar
  25. Baylis, G. C., Rolls, E. T., and Leonard, C. M., 1987, Functional subdivisions of the temporal lobe neocortex, J. Neurosci. 7: 330–342.PubMedGoogle Scholar
  26. Becker, W., and Jürgens, R., 1979, An analysis of the saccadic system by means of double step stimuli, Vision Res. 19: 976–983.CrossRefGoogle Scholar
  27. Beevor, C. E., and Horsley, V., 1888, A further minute analysis by electric stimulation of the so-called motor region of the cortex cerebri in the monkey (Macacus sinicus), Phil. Trans. R. Soc. Lond. 179: 205–256.CrossRefGoogle Scholar
  28. Beevor, C. E., and Horsley, V., 1890, A record of the results obtained by electrical excitation of the socalled motor cortex and internal capsule in an orang-outang, Phil. Trans. R. Soc. Loud. 181: 129–158.CrossRefGoogle Scholar
  29. Bekkering, H., Adam, J. J., Kingma, H., Huson, A., and Whiting, H. T. A., 1994, Reaction time latencies of eye and hand movements in single-and dual-task conditions, Exp. Brain Res. 97: 471–476.CrossRefPubMedGoogle Scholar
  30. Benecke, R., Dick, J. P. R., Rothwell, J. C., Day, B. L., and Marsden, C. I)., 1985, Increase of the Bereitschaftspotential in simultaneous and sequential movements, Neurosci. Lett. 62: 347–352.Google Scholar
  31. Benevento, L. A., Fallon, J. H., Davis, B. J., and Rezak, M., 1977, Auditory-visual interaction in single cells of the superior temporal sulcus and orbito-frontal cortex of the macaque monkey, Exp. Neurol. 57: 849–872.CrossRefPubMedGoogle Scholar
  32. Berman, R. A., Luna, B., McCurtain, B. J., Strojwas, M. H., Voyvodic, J. T., Thulhorn, K. R., and Sweeney, J. A., 1996, FMRI studies of human frontal eye fields, Soc. Neurosci. Abstr. 22: 1687.Google Scholar
  33. Bichot, N. P., Schall, J. D., and Thompson, K. G., 1996, Visual feature selectivity in frontal eye fields induced by experience in mature macaques, Nature 381: 697–699.CrossRefPubMedGoogle Scholar
  34. Bizzi, E., 1968, Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys, Exp. Brain Res. 6: 69–80.CrossRefPubMedGoogle Scholar
  35. Bizzi, E., and Schiller, P. H., 1970, Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement, Exp. Brain Res. 10: 151–158.CrossRefGoogle Scholar
  36. Blum, B., Kulikowski, J. J., Carden, D., and Harwood, D., 1982, Eye movements induced by electrical stimulation of the frontal eye fields of marmosets and squirrel monkeys, Brain Behay. Evol. 21: 34–41.CrossRefGoogle Scholar
  37. Boch, R., and Goldberg, M. E., 1989, Participation of prefrontal neurons in the preparation of visually guided eye movements in the rhesus monkey, J. Neurophysiol. 61: 1064–1084.PubMedGoogle Scholar
  38. Bock, O., 1987, Coordination of arm and eye movements in tracking of sinusoidally moving targets, Behay. Brain Res. 24: 93–100.CrossRefGoogle Scholar
  39. Bolles, R. C., 1975, Theory of Motivation, Harper Row, New York.Google Scholar
  40. Bon, L., and Lucchetti, C., 1991, Behavioral and motor mechanisms of dorsomedial frontal cortex of macaca monkey, Lnt. J. Neurosci. 60: 187–193.Google Scholar
  41. Bon, L., and Lucchetti, C., 1992, The dorsomedial frontal cortex of the macaca monkey: Fixation and saccade-related activity, Exp. Brain Res. 89: 571–580.CrossRefPubMedGoogle Scholar
  42. Bon, L., and Lucchetti, C., 1994, Ear and eye representation in the frontal cortex, area 8h, of the macaque monkey: An electrophysiological study, Exp. Brain Res. 102: 259–271.CrossRefPubMedGoogle Scholar
  43. Botzel, K., Plendl, H., Paulus, W., and Scherg, M., 1993, Bereitschaftspotential: Is there a contribution of the supplementary motor area: Electroenceph. Clin. Neurophysiol. 89: 187–196.CrossRefPubMedGoogle Scholar
  44. Boussaoud, D., and Wise, S. P., 1993a, Primate frontal cortex: Neuronal activity following attentional versus intentional cues, Exp. Brain Res. 95: 15–27.CrossRefPubMedGoogle Scholar
  45. Boussaoud, D., and Wise, S. P., 1993b, Primate frontal cortex: Effects of stimulus movement, Exp. Brain Res. 95: 28–40.PubMedGoogle Scholar
  46. Boussaoud, D., 1995, Primate premotor cortex: Modulation of preparatory neuronal activity by gaze angle, J. Neurophysiol. 73: 886–890.PubMedGoogle Scholar
  47. Boussaoud, I)., Barth, T. M., and Wise, S. P., 1993, Effects of gaze on apparent visual responses of frontal cortex neurons, Exp. Brain Res. 93: 423–434.Google Scholar
  48. Bradley, A., Skottun, B. C., Ohzawa, 1., Sclar, G., and Freeman, R., 1987, Visual orientation and spatial frequency discrimination: A comparison of single neurons and behavior,/ Neurophysiol. 57: 755–772.Google Scholar
  49. Bridgeman, B., van der Heijden, A. H. C., and Velichkovsky, B. M., 1994, A theory of visual stability across saccadic eye movements, Behay. Brain Sci. 17: 247–292.CrossRefGoogle Scholar
  50. Brinkman, C., 1984, Supplementary motor area of the monkey’s cerebral cortex: Short-and longterm deficits after unilateral ablation and the effects of subsequent callosal section,/ Neurosci. 4: 918–929.Google Scholar
  51. Brinkman, C., and Porter, R., 1979, Supplementary motor area in the monkey: Activity of neurons during performance of a learned motor task,/ Neurophysiol. 42: 681–709.Google Scholar
  52. Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A., 1992, The analysis of visual motion: A comparison of neuronal and psychophysical performance, J. Neurosci.. 12: 4745–4765.PubMedGoogle Scholar
  53. Bruce, C. J., 1990, Integration of sensory and motor signals for saccadic eye movements in the primate frontal eye fields, in: Signals and Sense, Local and Global Order in Perceptual Maps ( G. M. Edelman, W. E. Gall, and W. M. Cowan, eds.), Wiley, New York, pp. 261–314.Google Scholar
  54. Bruce, C.,J., and Goldberg, M. E., 1985, Primate frontal eye fields. I. Single neurons discharging before saccades, J. Neurophysiol. 53: 603–635.Google Scholar
  55. Bruce, C. J., Goldberg, M. E., Bushnell, C., and Stanton, G. B., 1985, Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements, J. Neurophysiol. 54: 714–734.PubMedGoogle Scholar
  56. Buchsbaum, M. S., and Haier, R. J., 1987, Functional and anatomical brain imaging: Impact on schizophrenia research, Schizophrenia Bull. 13: 115 — I32.CrossRefGoogle Scholar
  57. Burman, D. D., and Segraves, M. A., 1994, Primate frontal eye field activity during natural scanning eye movements, j. Neurophysiol. 71: 1266–1271.Google Scholar
  58. Butter, C. M., 1969, Perseveration in extinction and in discrimination reversal tasks following selective frontal ablations in Macaca mulatta, Physiol. Behay. 4: 163–171.CrossRefGoogle Scholar
  59. Caminiti, R., Johnson, P. B., and Urbano, A., 1991, Making arm movements within different parts of space: The premotor and motor cortical representation of a coordinate system for reaching to visual targets, J. Neurosci. 11:1182–1197.Google Scholar
  60. Carpenter, R. H. S., and Williams, M. L. L., 1995, Neural computation of log likelihood in control of saccadic eye movements, Nature 377: 59–62.CrossRefPubMedGoogle Scholar
  61. Cavada, C., and Goldman-Rakic, P. S., 1989, Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe,/ Comp. Neurol. 287: 422–445.CrossRefGoogle Scholar
  62. Chedru, F., Leblanc, M., and Lhermitte, F., 1973, Visual searching in normal and brain-damaged subjects (contribution to the study of unilateral inattention), Cortex 9: 94–111.CrossRefPubMedGoogle Scholar
  63. Chen, D. F., Hyland, B., Maier, V., Palmeri, A., and Wiesendanger, M., 1991, Comparison of neural activity in the supplementary motor area and in the primary motor cortex in monkeys, Somatosensory Motor Res. 8: 27–44.CrossRefGoogle Scholar
  64. Chen, L. L., and Wise, S. P., 1995a, Neuronal activity in the supplementary eye field during acquisition of conditional oculomotor associations, J. Neurophysiol. 73: 1101–1121.Google Scholar
  65. Chen, L. L., and Wise, S. P., 1995b, Supplementary eye field contrasted with the frontal eye field during acquisition of conditional oculomotor associations, J. Neurophysiol. 73: 1122–1134.Google Scholar
  66. Chen, Y.-C.,’I’haler, D., Nixon, P. D., Stern, C. E., and Passingham, R. E., 1995, The functions of the medial premotor cortex. II. The timing and selection of learned movements, Exp. Brain Res. 102: 461–473.Google Scholar
  67. Cohn, T. E., Green, D. G., and Tanner, W. P., 1975, Receiver operating characteristic analysis: Application to the study of quantum fluctuation effects in optic nerve of Rana pipiens, J. Gen. Physiol. 66: 583–616.CrossRefGoogle Scholar
  68. Colby, C. L., and Duhanmel, J.-R., 1991, Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey, Neuropsychologza 29: 517–537.CrossRefGoogle Scholar
  69. Colebatch, J. G., Deiber, M. P., Passingham, R. E., Friston, K. J., and Frackowiak, R. S. J., 1991, Regional cerebral blood flow during voluntary arm and hand movements in human subjects,/ Neurophysiol. 65: 1392–1401.Google Scholar
  70. Collin, N. G., Cowey, A., Latto, R., and Marzi, C., 1982, The role of frontal eye-fields and superior colliculi in visual search and non-visual search in rhesus monkeys, Behay. Brain Res. 4: 177–193.CrossRefGoogle Scholar
  71. Colombo, M., and Gross, C. G., 1994, Responses of inferior temporal cortex and hippocampal neurons during delayed matching to sample in monkeys (Macaca fascicularis), Behay. Neurosci. 108: 443–455.CrossRefGoogle Scholar
  72. Colombo, M., Eickhoff, A. E., and Gross, C. G., 1993, The effects of inferior temporal and dorsolateral frontal lesions on serial-order behavior and visual imagery in monkeys, Cognitive Brain Res. 1: 211–217.CrossRefGoogle Scholar
  73. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., and Petersen, S. E., 1991, Selective and divided attention during visual discriminations of shape, color and speed: Functional anatomy by positron emission tomography, j. Neurosci. 11: 2383–2402.Google Scholar
  74. Crammond, D. J., and Kalaska, J. F., 1994, Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus—response compatibility, J. Neurophysiol. 71: 1281–1284.PubMedGoogle Scholar
  75. Crick, F., and Koch, C., 1995, Are we aware of neural activity in primary visual cortex? Nature 375: 121–123.CrossRefPubMedGoogle Scholar
  76. Crosby, E. C., Voss, R. E., and Henderson, J. W., 1952, The mammalian midbrain and isthmus regions. Part 11. The fiber connections. D. The pattern for eye movements in the frontal eye field and the discharge of specific portions of this field to and through midbrain levels, J. Comp. Neurol. 97: 357–381.CrossRefPubMedGoogle Scholar
  77. Crowne, D. P., Dawson, K. A., and Richardson, C. M., 1989, Unilateral periarcuate and posterior parietal lesions impair conditional position discrimination learning in the monkey, Neuropsychologia 27: 1119–1127.CrossRefPubMedGoogle Scholar
  78. Darby, D. G., Nobre, A. C., Thangaraj, V., Edelman, R., Mesulam, M. M., and Warach, S., 1996, Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging, Neuroimage 3: 53–62.CrossRefPubMedGoogle Scholar
  79. Dassonville, P., Schlag, J., and Schlag-Rey, M., 1992a, Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates, Visual Neurosci. 9: 261–269.CrossRefGoogle Scholar
  80. Dassonville, P., Schlag, J., and Schlag-Rey, M., 19926, The frontal eye field provides the goal of saccadic eye movement, Exp. Brain Res. 89: 300–310.Google Scholar
  81. Dassonville, P., Schlag, J., and Schlag-Rey, M., 1995, The use of egocentric and exocentric location cues in saccadic programming, Vision Res. 35: 2191–2199.CrossRefPubMedGoogle Scholar
  82. Deacon, T. W., 1992, Cortical connections of the inferior arcuate sulcus cortex in the macaque brain, Brain Res. 573: 8–26.CrossRefPubMedGoogle Scholar
  83. Deecke, L., and Kornhuber, H. H., 1978, An electrical sign of participation of the mesial “supple- mentary” motor cortex in human voluntary finger movements, Brain Res. 159: 473–476.CrossRefPubMedGoogle Scholar
  84. Deecke, L., Scheid, P., and Kornhuber, H. H., 1969, Distribution of readiness potential, pre-motion positivity and motor potential of the human cerebral cortex preceding voluntary finger movements, Exp. Brain Res. 7: 158–168.CrossRefPubMedGoogle Scholar
  85. Deecke, L., Kornhuber, H. H., Lang, W., Lang, M., and Schreiber, H., 1985, Timing function of the frontal cortex in sequential motor and learning tasks, Human Neurobiol. 4: 143–154.Google Scholar
  86. Démonet, J. F., Chollet, F., Ramsey, S., Cardebat, D., Nespoulous, J. L., Wise, R., Rascol, A., and Frackowiak, R., 1992, “Me anatomy of phonological and semantic processing in normal subjects, Brain 115: 1753–1768.Google Scholar
  87. Deng, S.-Y., Goldberg, M. E., Segraves, M. A., Ungerleider, L. G., and Mishkin, M., 1986, ‘Fhe effect of unilateral ablation of the frontal eye fields on saccadic performance in the monkey, in Adaptive Processes in Visual and Oculomotor Systems, (E. L. Keller and D. S. Zee, eds.), Pergamon Press, Oxfrd, pp. 201–208.Google Scholar
  88. Desimone, R., and Duncan, J., 1995, Neural mechanisms of selective visual attention, Ann. Rev. Neurosci. 18: 193–222.CrossRefPubMedGoogle Scholar
  89. Dias, E. C., and Bruce, C. J., 1994, Physiological correlate of fixation disengagement in the primate’s frontal eye field, J. Neurophysiol. 72: 2532–2537.PubMedGoogle Scholar
  90. Dick, J. P. R., Benecke, R., Rothwell, J. C., Day, B. L., and Marsden, C. D., 1986, Simple and complex movements in a patient with infarction of the right supplementary motor area, Movement Disord. 1: 255–266.CrossRefPubMedGoogle Scholar
  91. Di Pelligrino, G., and Wise, S. P., 1993a, Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate, J. Neurosci. 13: 1227–1243.Google Scholar
  92. Di Pelligrino, G., and Wise, S. P., 19936, Effects of attention on visuomotor activity in the premotor and prefrontal cortex of a primate, Somotosensory Motor Res. 10: 245–262.Google Scholar
  93. Di Pelligrino, G., Fadiga, L., Fogassi, L., Gallese, V., and Rizzolatti, G., 1992, Understanding motor events: A neurophysiological study, Exp. Brain Res. 91: 176–180.Google Scholar
  94. Distler, C., Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1993, Cortical connections of inferior temporal area TEO in macaque monkeys, J. Cornp. Neurol. 334: 125–150.CrossRefGoogle Scholar
  95. Dorris, M. C., and Munoz, D. P., 1995, A neural correlate for the gap effect on saccadic reaction times in monkey, J. Neurophysiol. 73: 2558–2562.PubMedGoogle Scholar
  96. Duhamel, J.-R., Colby, C. L., and Goldberg, M. E., 1992, The updating of the representation of visual space in parietal cortex by intended eye movements, Science 255: 90–92.Google Scholar
  97. Dum, R. P., and Strick, P. L., 1991, The origin of corticospinal projections from the premotor areas in the frontal lobe, J. Neurosci. 11: 667–689.PubMedGoogle Scholar
  98. Eccles, J. C., 1982, The initiation of voluntary movements by the supplementary motor area, Arch. Psych. Nervenkr. 231: 423–441.CrossRefGoogle Scholar
  99. Erickson, R. G., and Dow, B. M., 1989, Foveal tracking cells in the superior temporal sulcus of the macaque monkey, Exp. Brain Res. 78: 113–131.PubMedGoogle Scholar
  100. Evdokimidis, I., Mergner, ‘f., and Lucking, C. IL, 1992, Dependence of presaccadic cortical poten tials on the type of saccadic eye movement, Electroenceph. Clin. Neurophysiol. 83: 179–191.CrossRefGoogle Scholar
  101. Evinger, C., Manning, K. A., Pellegrini, J. J., Basso, M. A., Powers, A. S., and Sibony, P. A., 1994, Not looking while leaping: The linkage ofblin king and saccadic gaze shifts, Exp. Brain Res. 100: 337–344.CrossRefPubMedGoogle Scholar
  102. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1: 1–47.CrossRefPubMedGoogle Scholar
  103. Ferrier, D., 1874, The localization of function in brain, Proc. R. Soc. Lond. 22: 229–232.Google Scholar
  104. Ferrier, D., 1875, Experiments on the brain of monkeys, Proc. R. Soc. Lond. 23: 409–432.Google Scholar
  105. Fischer, B., and Weber, H., 1993, Express saccades and visual attention, Behay. Brain Sci. 16: 553–610.CrossRefGoogle Scholar
  106. Fisk, J. D., and Oxidate, M. A., 1985, The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space, Exp. Brain Res. 60: 159–178.CrossRefPubMedGoogle Scholar
  107. Flanders, M., ‘Fillery, S. 1. If., and Soechting, J. F., 1992, Early stages in a sensorimotor transformation, Behay. Brain Sci. 15: 309–362.CrossRefGoogle Scholar
  108. Foerster, O., 1931, The cerebral cortex in man, Lancet 2:309–3I2.Google Scholar
  109. Foerster, O., 1936, Motorische Felder und Bahnen. Sensible corticale Felder, in: Handbuch der Neurologic, Volume 6 ( H. Bumke and O. Foerster, eds.), Springer, Berlin, pp. 1–448.Google Scholar
  110. Fugassi, L., Gallese, V., di Pellegrino, G., Fadiga, L., Gentilucci, M., Luppino, G., Matelli, M., Pedotti, A., and Rizzolatti, G., 1992, Space coding by premotor cortex, Exp. Brain Res. 89: 686–690.Google Scholar
  111. Fox, P. T., Fox, J. M., Raichle, M. E., and Burde, R. M., 1985, The role of cerebral cortex in the generation of voluntary saccades: A positron emission tomographic study, J. Neurophysiol. 54: 348–369.PubMedGoogle Scholar
  112. Franke, P., Maier, W., Hardt, J., Frieboes, R., Lichtermann, D., and Hain, C., 1993, Assessment of frontal lobe functioning in schizophrenia and unipolar major depression, Psychopathology 26: 7684.CrossRefGoogle Scholar
  113. Fried, I., Katz, A., McCarthy, G., Sass, K.J., Williamson, P., Spencer, S. S., and Spencer, D. D., 1991, Functional organization of human supplementary motor cortex studied by electrical stimulation, J. Neurosci. 11: 3656–3666.PubMedGoogle Scholar
  114. Fries, W., 1984, Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase, J. Comp. Neurol. 230: 55–76.CrossRefPubMedGoogle Scholar
  115. Frith, C. D., Friston, K., Liddle, P. F., and Frackowiak, R. S. J., 1991, Willed action and the prefrontal cortex in man: A study with l’E’F, Proc. R. Soc. Lond. B 244: 241–246.CrossRefGoogle Scholar
  116. Fujii, N., Mushiake, H., ‘lamai, M., and Tanji, J., 1995, Microstimulation of the supplementary eye field during saccade preparation, NeuroReport 6: 2565–2568.Google Scholar
  117. Fukushima, J., Fukushima, K., Miyasaka, K., and Yamashita, I., 1994, Voluntary control of saccadic eye movement in patients with frontal cortical lesions and Parkinsonian patients in comparison with that in schizophrenics, Biol. Psychiatry 36: 21–30.CrossRefPubMedGoogle Scholar
  118. Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S., 1989, Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex, J. Neurophysiol. 61: 331–349.PubMedGoogle Scholar
  119. Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S., 1990, Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms, J. Neurophysiol. 63: 814–831.PubMedGoogle Scholar
  120. Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S., 1993a, Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas,” J. Neurosci. 13: 1479–1497.PubMedGoogle Scholar
  121. Funahashi, S., Chafee, M. V., and Goldman-Rakic, P. S., 19936, Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task, Nature 365: 753–756.Google Scholar
  122. Fuster, J. M., 1973, Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory, J. Neurophysiol. 36: 61–78.PubMedGoogle Scholar
  123. Fuster, J. M., 1989, The Prefrontal Cortex, Raven Press, New York.Google Scholar
  124. Fuster, J. M., and Jervey, J. P., 1982, Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task, J. Neurosci. 2: 361–375.PubMedGoogle Scholar
  125. Fuster, J. M., Bauer, R. H., and Jervey, J. P., 1982, Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks, Exp. Neurol. 77: 679–694.CrossRefPubMedGoogle Scholar
  126. Gaffan, D., and Murray, E. A., 1990, Amygdalar interaction with the mediodorsal nucleus of the thalamus and the ventromedial prefrontal cortex in stimulus-reward associative learning in the monkey, J. Neurosci. 10: 3479–3493.PubMedGoogle Scholar
  127. Gaffan, D., Gaffan, E. A., and Harrison, S., 1989, Visual-visual associative memory and reward-association learning in monkeys: The role of the amygdala, J. Neurosci. 9: 558–564.PubMedGoogle Scholar
  128. Gaffan, E. A., Gaffan, D., and Harrison, S., 1988, Disconnection of the amygdala from visual association cortex impairs visual reward-association learning in monkeys, J. Neurosci. 8: 3144–3150.PubMedGoogle Scholar
  129. Galletti, C., and Battaglini, P. P., 1989, Gaze-dependent visual neurons in area V3A of monkey prestriate cortex, J. Neurosci. 9: 1112–1125.PubMedGoogle Scholar
  130. Gaspar, P., Stepniewska, I., and Kaas, J. H., 1992, Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys, J. Comp. Neurol. 325: 1–21.CrossRefPubMedGoogle Scholar
  131. Gaymard, B., Pierrot-Deseilligny, C., and Rivaud, S., 1990, Impairment of sequences of memory guided saccades after supplementary motor area lesions, Ann. Neurol. 28: 622–626.CrossRefPubMedGoogle Scholar
  132. Gaymard, B., Rivaud, S., and Pierrot-Deseilligny, C., 1993, Role of the left and right supplementary motor areas in memory-saccade sequences, Ann. Neurol. 34: 404–406.CrossRefPubMedGoogle Scholar
  133. Gellman, R. S., and Fletcher, W. A., 1992, Eye position signals in human saccadic processing, Exp. Brain Res. 89: 425–434.CrossRefPubMedGoogle Scholar
  134. Gemba, H., Sasaki, K., and Brooks, V. B., 1986, `Error’ potentials in limbic cortex (anterior ungulate area 24) of monkeys during motor learning, Neurosci. Lett. 70:223–227.Google Scholar
  135. Gentilucci, M., and Rizzolatti, G., 1989, Cortical motor control of arm and hand movements, in: Vision in Action: The Control of Grasping ( M. A. Goodale, ed.), Ablex, Norwood, NJ, pp. 147–162.Google Scholar
  136. Gentilucci, M., Scandolara, C., Pigarev, I., and Rizzolatti, G., 1983, Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position, Exp. Brain Res. 50: 464–468.PubMedGoogle Scholar
  137. Gentilucci, M., Fogassi, L., Luppino, G., Matelli, M., Camarda, R., and Rizzolatti, G., 1988, Functional organization of inferior area 6 in the macaque monkey I. Somatotopy and the control of proximal movements, Exp. Brain Res. 71: 475–490.CrossRefPubMedGoogle Scholar
  138. Ghez, C., Hening, W., and Favilla, M., 1990, Parallel interacting channels in the initiation and specification of motor response features, in: Attention and Performance XIII: Motor Representation and Control ( M. Jeannerod, ed.), Erlbaum, Hillsdale, NJ, pp. 265–293.Google Scholar
  139. Gielen, C. C. A. M., van den Heuvel, P. J. M., and van Gisbergen, J. A. M., 1984, Coordination of fast eye and arm movements in a tracking task, Exp. Brain Res. 56: 154–161.CrossRefPubMedGoogle Scholar
  140. Giguere, M., and Goldman-Rakic, P. S., 1988, Mediodorsal nucleus: Areal, laminar and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys, J. Comp. Neurol. 277: 195–213.CrossRefPubMedGoogle Scholar
  141. Glimcher, P. W., and Sparks, D. L., 1992, Movement selection in advance of action in superior colliculus, Nature 355: 542–545.CrossRefPubMedGoogle Scholar
  142. Gnadt, J. W., and Andersen, R. A., 1988, Memory related motor planning activity in posterior parietal cortex of macaque, Exp. Brain Res. 70: 216–220.PubMedGoogle Scholar
  143. Godoy, J., Luders, H., Dinner, D. S., Morris, H. H., and Wyllie, E., 1990, Versive eye movements elicited by cortical stimulation of the human brain, Neurology 40: 296–299.CrossRefPubMedGoogle Scholar
  144. Godschalk, M., Lemon, R. N., Kuypers, H. G. J. M., and Ronday, H. K., 1984, Cortical afferents and afferents of monkey postarcuate area: An anatomical and electrophysiological study, Exp. Brain Res. 56: 410–424.CrossRefPubMedGoogle Scholar
  145. Godschalk, M., Lemon, R. N., Kuypers, H. G. J. M., and van der Steen, J., 1985, The involvement of monkey premotor cortex neurones in preparation of visually cued arm movements, Behay. Brain Res. 18: 143–157.CrossRefGoogle Scholar
  146. Goldberg, G., 1985, Supplementary motor area structure and function: Review and hypotheses, Behay. Brain Sci. 8: 567–616.CrossRefGoogle Scholar
  147. Goldberg, M. E., and Bruce, C. J., 1985, Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey, Vision Res. 25: 471–481.CrossRefPubMedGoogle Scholar
  148. Goldberg, M. E., and Bruce, C. J., 1990, Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal, J. Neurophysiol. 64: 489–508.PubMedGoogle Scholar
  149. Goldberg, M. E., and Bushnell, M. C., 1981, Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades, J. Neurophysiol. 46: 773–787.PubMedGoogle Scholar
  150. Goldberg, M. E., and Segraves, M. A., 1989, Visual and frontal cortices, in: The Neurobiology of. Saccadic Eye Movements ( R. H. Wurtz and M. E. Goldberg, eds.), Elsevier, New York, pp. 283–313.Google Scholar
  151. Goldberg, M. E., Bushnell, M. C., and Bruce, C. J., 1986, The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields, Exp. Brain Res. 61: 579–584.CrossRefPubMedGoogle Scholar
  152. Goldberg, T. E., Weinberger, D. R., Berman, K. F., Pliskin, N. H., and Podd, M. H., 1987, Further evidence for dementia of the prefrontal type in schizophrenia? A controlled study of teaching the Wisconsin Card Sorting Test, Arch. Gen. Psychiatry 44: 1008–1014.CrossRefPubMedGoogle Scholar
  153. Goldman-Rakic, P. S., 1987, Circuitry of primate prefrontal cortex and regulation of behavior by representational memory, in Handbook of Physiology, Volume 5, The Nervous System ( V. B. Mountcastle, F. Plum, and S. Geiger, eds.), American Physiological Society, Bethesda, MD, pp. 373–417.Google Scholar
  154. Goldman-Rakic, P. S., 1988, Topography of cognition: Parallel distributed networks in primate association cortex, Annu. Rev. Neurosci. 11: 137–156.CrossRefPubMedGoogle Scholar
  155. Goldman-Rakic, P. S., 1990, Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates, Prog. Brain Res. 85: 325–335.CrossRefPubMedGoogle Scholar
  156. Goldman-Rakic, P. S., and Porrino, L. J., 1985, The primate mediodorsal (MD) nucleus and its projection to the frontal lobe, J. Comp. Neurol. 242: 535–560.CrossRefPubMedGoogle Scholar
  157. Goodale, M. A., and Milner, A. D., 1992, Separate visual pathways for perception and action, TINS 15: 20–25.PubMedGoogle Scholar
  158. Gottlieb, J. P., Bruce, C. J., and MacAvoy, M. G., 1993, Smooth eye movements elicited by micro-stimulation in the primate frontal eye field, J. Neurophysiol. 69: 786–799.PubMedGoogle Scholar
  159. Gottlieb, J. P., MacAvoy, M. G., and Bruce, C. J., 1994, Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field, J. Neurophysiol. 72: 1634–1653.PubMedGoogle Scholar
  160. Gould, H. J., Cusick, C. G., Pons, T. P., and Kaas, J. H., 1986, The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys, J. Comp. Neurol. 247: 297–325.CrossRefPubMedGoogle Scholar
  161. Gower, E. C., 1989, Efferent projections from limbic cortex of the temporal pole to the magnocellutar medial dorsal nucleus in the rhesus monkey, J. Comp. Neurol. 280: 343–358.CrossRefPubMedGoogle Scholar
  162. Grafton, S. T., Mazziotta, J. C., Woods, R. P., and Phelps, M. E., 1992, Human functional anatomy of visually guided finger movements, Brain 115: 565–587.CrossRefPubMedGoogle Scholar
  163. Graziano, M. S. A., Yap, G. S., and Gross, C. G., 1994, Coding of visual space by premotor neurons, Science 266: 1054–1057.CrossRefPubMedGoogle Scholar
  164. Grunbaum, A. S. F., and Sherrington, C. S., 1901, Observations on the physiology of the cerebral cortex of some of the higher apes, l’roc. R. Soc. 69: 206–209.CrossRefGoogle Scholar
  165. Guitton, D., 1991, Control of saccadic eye and gaze movements by the superior colliculus and basal ganglia, in: Eye Movements ( R. H. S. Carpenter, ed.), CRC Press, Boca Raton, FL, pp. 244–276.Google Scholar
  166. Guitton, D., and Volle, M., 1987, Gaze control in humans: Eye—head coordination during orienting movements to targets within and beyond the oculomotor range, J. Neurophysiol. 58: 427–459.PubMedGoogle Scholar
  167. Guitton, D., Buchtet, H. A., and Douglas, R. M., 1985, Frontal Lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades, Exp. Brain Res. 58: 455–472.CrossRefPubMedGoogle Scholar
  168. Haber, S. N., Kunishio, K., Mizobuchi, M., and Lynd-Balta, E., 1995, The orbital and medial prefrontal circuit through the primate basal ganglia, J. Neurosci. 15: 4851–4867.PubMedGoogle Scholar
  169. Hallett, M., 1994, Movement-related cortical potentials, Electromyography Clin. Neurophysiol. 34: 5–13.Google Scholar
  170. Hallett, P. E., and Adams, B. D., 1980, The predictability of saccadic latency in a novel voluntary oculomotor task, Vision Res. 20: 329–339.CrossRefPubMedGoogle Scholar
  171. Hattet, P. E., and Lightstone, A. D., 1976, Saccadic eye movement towards stimuli triggered by prior saccades, Vision Res. 16: 99–106.CrossRefGoogle Scholar
  172. Halsband, U., and Freund, H.-J., 1990, Premotor cortex and conditional motor learning in man, Brain 113: 107–222.CrossRefGoogle Scholar
  173. Halsband, U., and Passingham, R., 1982, The role of premotor and parietal cortex in the direction of action, Brain Res. 240: 368–372.CrossRefPubMedGoogle Scholar
  174. Halsband, U., and Passingham, R. E., 1985, Premotor cortex and the conditions for movements in monkeys (Macaca fascicularis), Behan. Brain Res. 18: 269–277.CrossRefGoogle Scholar
  175. Halsband, U., Ito, N., ‘Fanji, J., and Freund, H.-J., 1993, The role of premotor cortex and the supplementary motor area in the temporal control of movement in man, Brain 116: 243–266.Google Scholar
  176. Halsband, U., Matsuzaka, Y., and ‘Fanji, J., 1994, Neuronal activity in the primate supplementary, presupplementary and premotor cortex during externally and internally instructed sequential movements, Neurosci. Res. 20: 149–155.CrossRefPubMedGoogle Scholar
  177. Hanes, D. P., and Schall, J. D., 1995, Countermanding saccades in macaque, Visual Neurosci. 12: 929–937.CrossRefGoogle Scholar
  178. Hanes, D. P., and Schall, J. D., 1996, Neural control of voluntary movement initiation, Science 274: 427–430.Google Scholar
  179. Hanes, D. P., Thompson, K. G., and Schall, J. D., 1995, Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis, Exp. Brain Res. 103: 85–96.CrossRefPubMedGoogle Scholar
  180. Harting, J. K., Huerta, M. F., Frankfurter, A. L., Strominger, N. L., and Royce, G.J., 1980, Ascending pathways from monkey superior colliculus: An autoradiographic analysis, J. Comp. Neurol. 192: 853–882.CrossRefPubMedGoogle Scholar
  181. He, S.-Q., Dum, R. P., and Strick, P. L., 1995, topographic: organization of corticospinal projections from the frontal lobe: Motor areas on the medial surface of the hemisphere, J. Neurrosci. 15: 3284–3306.Google Scholar
  182. Heinen, S. J., 1995, Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements, Exp. Brain Res. 104: 357–361.CrossRefPubMedGoogle Scholar
  183. Helmholtz, H., 1962, Handbook of Physiological Optics 118661, Dover, New York.Google Scholar
  184. Henik, A., Rafal, R., and Rhodes, D., 1994, Endogenously generated and visually guided saccades after lesions of the human frontal eye fields,,. Cognitive Neurosci. 6: 400–411.CrossRefGoogle Scholar
  185. Hepp, K., Henn, V., Vilis, T., and Cohen, B., 1989, Brainstem regions related to saccade generation, in: The Neurobiology of Saccadic Eye Movements (R. H. Wurtz and M. E. Goldberg, Elsevier, Amsterdam.Google Scholar
  186. Hikosaka, O., and Wurtz, R. H., 1983a, Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses,/ Neurophysiol. 49: 1268–1284.Google Scholar
  187. Hikosaka, O., and Wurtz, R. H., 19836, Visual and oculomotor functions of monkey substantia nigra pars reticulata. I V. Relation of substantia nigra to superior colliculus, J. Neurophysiol. 49: 1285–1301.Google Scholar
  188. Hikosaka, O., and Wurtz, R. H., 1985a, Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in the monkey superior colliculus, J. Nearsphysiol. 53: 266–291.Google Scholar
  189. Hikosaka, O., and Wurtz, R. H., 1985b, Modification of saccadic eye movements by GARA-related substances. II. Effects of muscimol in the monkey substantia nigra pars reticulate, J. Nearsphysiol. 53: 292–307.Google Scholar
  190. Hikosaka, O., Sakamoto, M., and Usui, S., 1989a, Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements, J. Neurophysiol. 61: 780–798.PubMedGoogle Scholar
  191. Hikosaka, O., Sakamoto, M., and Usui, S., 1989b, Functional properties of monkey caudate neurons. Il. Visual and auditory responses, /. Neuropleysiol. 61: 799–813.Google Scholar
  192. Hikosaka, O., Sakamoto, M., and Usui, S., 1989e, Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward, J. Neurophysiol. 61: 814–832.PubMedGoogle Scholar
  193. Hikosaka, O., Sakamoto, M., and Miyashita, N., 1993, Effects of caudate nucleus stimulation on substantia nigra cell activity in monkey, Exp. Brain Res. 95: 457–472.CrossRefPubMedGoogle Scholar
  194. Holmes, G., 1938, The cerebral integration of the ocular movements, Br. Med. J. 2: 107–112.CrossRefPubMedGoogle Scholar
  195. Honda, H., 1990, Eye movements to a visual stimulus flashed before, during or after a saccade, in: Attention and Performance XIII: Motor Representation and Control ( M. Jeannerod, ed.), Erlbaum, Hillsdale, NJ, pp. 567–582.Google Scholar
  196. Honda, H., 1991, The timecourse of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades, Vision Res. 31: 1915–1921.CrossRefPubMedGoogle Scholar
  197. Horsley, V., and Schäfer, E. A., 1888, A record of experiments upon the functions of the cerebral cortex, Phil. Trans. R. Soc. Lond. B 179: 1–45.CrossRefGoogle Scholar
  198. Huerta, M. F., and Kaas, J. H., 1990, Supplementary eye field as defined by intracortical micro-stimulation: Connections in macaques, f. Comp. Neurol. 293: 299–330.CrossRefGoogle Scholar
  199. Huerta, M. F., Krubitzer, L. A., and Kaas, J. H., 1986, Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys and macaque monkeys: 1. Subcortical connections, J. Comp. Neurol. 253: 415–439.CrossRefGoogle Scholar
  200. Huerta, M. F., Krubitzer, L. A., and Kaas, J. H., 1987, Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys and macaque monkeys: 11. Cortical connections, J. Comp. Neurol. 265: 332–361.CrossRefGoogle Scholar
  201. Hummelsheim, H., Wiesendanger, M., Bianchetti, M., Wiesendanger, R., and Macpherson, J., 1986, Further investigations of the efferent linkage of the supplementary motor area (SMA) with the spinal cord in the monkey, Exp. Brain Res. 65: 75–82.CrossRefPubMedGoogle Scholar
  202. Hummelsheim, H., Bianchetti, M., Wiesendanger, M., and Wiesendanger, R., 1988, Sensory inputs to the agranular motor fields: A comparison between precentral, supplementary motor and premotor areas in the monkey, Exp. Brain Res. 69: 289–298.CrossRefPubMedGoogle Scholar
  203. Hutchins, K. I)., Martina, A. M., and Strick, P. L., 1988, Corticospinal projections from the medial wall of the hemisphere, Exp. Brain Res. 71: 667–672.CrossRefPubMedGoogle Scholar
  204. Ikeda, A., I.üders, H. O., Burgess, R. C., and Shibasaki, H., 1992, Movement-related potentials recorded from supplementary motor area and primary motor area. Role of supplementary motor area in voluntary movements, Brain 115: 1017–1043.Google Scholar
  205. Ilinsky, I. A., Jouandet, M. L., and Goldman-Rakic, P. S., 1985, Organization of the nigrothalamocortical system in the rhesus monkey, J. Comp. Neurol. 236: 315–330.CrossRefPubMedGoogle Scholar
  206. Ito, S.-I., 1982, Prefrontal unit activity of macaque monkeys during auditory and visual reaction time tasks, Brain Res. 247: 39–47.CrossRefPubMedGoogle Scholar
  207. Iversen, S. D., and Mishkin, M., 1970, Perseverative interference in monkey following selective lesions of the inferior prefrontal convexity, Exp. Brain Res. 11: 376–386.CrossRefPubMedGoogle Scholar
  208. Jacobsen, C. F., 1936, Studies of cerebral function in primates: I. “Che functions of the frontal association areas in monkeys, Comp. Psychol. Monogr. 13: 3–60.Google Scholar
  209. Jay, M. F., and Sparks, D. L., 1987a, Sensorimotor integration in the primate superior colliculus. I. Motor convergence, J. Neurophysiol. 57: 22–34.PubMedGoogle Scholar
  210. Jay, M. F., and Sparks, I). L., 19876, Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals, J. Neurophysiol. 57: 35–55.Google Scholar
  211. Jolly, W. A., and Simpson, S., 1907, The functions of the Rolandic cortex in monkeys, Proc. R. Soc. Edinb. 27: 64–78.Google Scholar
  212. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., and Mintun, M. A., 1993, Spatial working memory in humans as revealed by PET, Nature 363: 623–625.CrossRefPubMedGoogle Scholar
  213. Joseph, J. P., and Barone, P., 1987, Prefrontal unit activity during a delayed oculomotor task in the monkey, Exp. Brain Res. 67: 460–468.CrossRefPubMedGoogle Scholar
  214. Jürgens, R., Becker, W., and Kornhuber, H. H., 1981, Natural and drug-induced variations of velocity and duration of human saccadic eye movements: Evidence for a control of the neural pulse generator by local feedback, Biol. Cybernet. 39: 87–96.CrossRefGoogle Scholar
  215. Kaas, J. H., 1995, Human visual cortex: Progress and puzzles, (,’urr. Biol. 5: 1126–1128.CrossRefGoogle Scholar
  216. Kalaska, J., and Crammond, 1)., 1992, Cerebral cortical mechanisms of reaching movements, Science 266: 1517–1523.CrossRefGoogle Scholar
  217. Karpov, B. A., Luria, A. R., and Yarbus, A. L., 1968, Disturbance of the structure of active perception in lesions of the posterior and anterior regions of the brain, Neuropsychologia 6: 157–166.CrossRefGoogle Scholar
  218. Kawamura, K., and Naito, J., 1984, Corticocortical projections to the prefrontal cortex in the rhesus monkey investigated with horseradish peroxidase techniques, Neurosci. Res. 1: 89–103.CrossRefPubMedGoogle Scholar
  219. Keating, E. G., 1991, Frontal eye field lesions impair predictive and visually-guided pursuit eye movements, Exp. Brain Res. 86: 311–323.CrossRefPubMedGoogle Scholar
  220. Keating, C. F., and Keating, E. G., 1993, Monkeys and mug shots: Cues used by rhesus monkeys (Macaca mulatta) to recognize a human face, J. Comp. Psychol. 107: 131–139.CrossRefPubMedGoogle Scholar
  221. Keller, E. K., 1991, The brainstem, in: Eye Movements ( R. H. S. Carpenter, ed.), CRC Press, Boca Raton, FL, pp. 200–223.Google Scholar
  222. Keller, I., and Heckhausen, H., 1990, Readiness potentials preceding spontaneous motor acts: Voluntary vs. involuntary control, Electroenceph. Clin. Neurophysiol. 76: 351–361.CrossRefPubMedGoogle Scholar
  223. Kitamura, J., Shibasaki, H., Takagi, A., Nabeshima, H., and Yamaguchi, A., 1993, Enhanced negative slope of cortical potentials before sequential as compared with simultaneous extensions of two fingers, Electroenceph. Clin. Neurophysiol. 86: 176–182.CrossRefPubMedGoogle Scholar
  224. Klostermann, W., Kompf, D., Heide, W., Verleger, R., Wauschkuhn, B., and Seyfert, “1’., 1994, The presaccadic cortical negativity prior to self-paced saccades with and without visual guidance. Electroenceph. Clin. Neurophysiol. 91: 219–228.Google Scholar
  225. Kojima, S., 1980, Prefrontal unit activity in the monkey: Relation to visual stimuli and movements, Exp. Neurol. 69: 110–123.CrossRefPubMedGoogle Scholar
  226. Kojima, S., and Goldman-Rakic, P. S., 1982, Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response, Brain Res. 248: 43–49.CrossRefPubMedGoogle Scholar
  227. Komatsu, H., and Suzuki, H., 1985, Projections from the functional subdivisions of the frontal eye field to the superior colliculus in the monkey, Brain Res. 327: 324–327.CrossRefPubMedGoogle Scholar
  228. Komatsu, H., and Wurtz, R. H., 1988, Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons, J. Neurophysiol. 60: 580–603.PubMedGoogle Scholar
  229. Kowler, E., 1990, The role of visual and cognitive processes in the control of eye movement, in: Eye Movements and Their Role in Visual and Cognitive Processes ( E. Kowler, ed.), Elsevier, New York, pp. 1–70.Google Scholar
  230. Krubitzer, L. A., and Kaas, J. H., 1990, Cortical connections of MT in four species of primates: Areal, modular and retinotopic patterns, Vis. Neurosci. 5: 165–204.CrossRefPubMedGoogle Scholar
  231. Kubota, K., and Funahashi, S., 1982, Direction-specific activities of dorsolateral prefrontal and motor cortex pyramidal tract neurons during visual tracking, J. Neurophysiol. 47: 362–376.PubMedGoogle Scholar
  232. Kubota, K., and Komatsu, H., 1985, Neuron activities of monkey prefrontal cortex during the learning of visual discrimination tasks with GO/NO-GO performances, Neurosci. Res. 3: 106–129.CrossRefPubMedGoogle Scholar
  233. Kubota, K., and Niki, H., 1971, Prefrontal cortical unit activity and delayed alternation performance in monkeys, J. Neurophysiol. 34: 337–347.PubMedGoogle Scholar
  234. Kubota, K., Iwamoto, T., and Suzuki, H., 1974, Visuokinetic activities of primate prefrontal neurons during delayed-response performance, J. Neurophysiol. 37: 1197–1212.PubMedGoogle Scholar
  235. Kubota, K., Tonoike, M., and Mikami, A., 1980, Neuronal activity in the monkey dorsolateral prefrontal cortex during a discrimination task with delay, Brain Res. 183: 29–42.CrossRefPubMedGoogle Scholar
  236. Kurata, K., 1989, Distribution of neurons with set and movement related activity before hand and foot movements in the premotor cortex of rhesus monkeys, Exp. Brain Res. 77: 245–256.CrossRefPubMedGoogle Scholar
  237. Kurata, K., 1991, Corticocortical inputs to the dorsal and ventral aspects of the premotor cortex of macaque monkeys, Neurosci. Res. 12: 263–280.CrossRefPubMedGoogle Scholar
  238. Kurata, K., 1994, Information processing for motor control in primate premotor cortex, Behay. Brain Res. 61: 135–142.CrossRefGoogle Scholar
  239. Kurata, K., and Hoffman, D. S., 1994, Differential effects of muscimol microinjection into dorsal and ventral aspects of the premotor cortex of monkeys, J. Neurophysiol. 71: 1151–1164.PubMedGoogle Scholar
  240. Kurata, K., and Tanji, J., 1985, Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys. II. Responses to movement triggering vs. nontriggering sensory signals, /. Neurophysiol. 53: 142–152.Google Scholar
  241. Kurata, K., and Wise, S. P., 1988, Premotor cortex of rhesus monkeys: Set-related activity during two conditional motor tasks, Exp. Brain Res. 69: 327–343.CrossRefPubMedGoogle Scholar
  242. Kurata, K., Okano, K., and Tanji, J., 1985, Distribution of neurons related to a hindlimb as opposed to forelimb movement in the monkey premotor cortex, Exp. Brain Res. 60: 188–191.CrossRefPubMedGoogle Scholar
  243. Kurtzberg, D., and Vaughan, H. G., 1982, Topographic analysis of human cortical potentials preceding self-initiated and visually triggered saccades, Brain Res. 243: 1–9.CrossRefPubMedGoogle Scholar
  244. Kustov, A. A., and Robinson, D. A., 1995, Modified saccades evoked by stimulation of macaque superior colliculus account for properties of resettable integrator, J. Neurophysiol. 73: 1724–1728.PubMedGoogle Scholar
  245. Kwan, H. C., Mackay, W. A., Murphy, J. T., and Wong, Y. C., 1985, Properties of visual cue responses in primate precentral cortex, Brain Res. 343: 24–35.CrossRefPubMedGoogle Scholar
  246. Lang, W., Zilch, O., Koska, C., Lindinger, G., and Deecke, L., 1989, Negative cortical dc shifts preceding and accompanying simple and complex sequential movements, Exp. Brain Res. 74: 99–104.CrossRefPubMedGoogle Scholar
  247. Lang, W., Obrig, H., Lindinger, G., Cheyne, D., and Deecke, L., 1990, Supplementary motor area activation while tapping bimanually different rhythms in musicians, Exp. Brain Res. 79: 504–514.CrossRefPubMedGoogle Scholar
  248. Lang, W., Cheyne, 1)., Kristeva, R., Beisteiner, R., Lindinger, G., and Deecke, L., 1991, Three-dimensional localization of SMA activity preceding voluntary movement. A study of electric and magnetic fields in a patient with infarction of the right supplementary motor area, Exp. Brain Res. 87: 688–695.Google Scholar
  249. Lang, W., Petit, L., Hölander, P., Pietrzyk, U., Tzourio, N., Mazoyer, B., and Berthoz, A., 1994, A positron emission tomography study of oculomotor imagery, NeuroReport 5: 921–924.CrossRefPubMedGoogle Scholar
  250. Latto, R., 1978a, The effects of bilateral frontal eye-field lesions on the learning of visual search task by rhesus monkeys, Brain Res. 147: 370–376.CrossRefPubMedGoogle Scholar
  251. Latto, R., 1978b, The effects of bilateral frontal eye-field, posterior parietal or superior collicular lesions on visual search in the rhesus monkey, Brain Res. 146: 35–50.CrossRefPubMedGoogle Scholar
  252. Lee, K., and Tehovnik, E., 1995, Topographic distribution of fixation-related units in the dorsomedial frontal cortex of the rhesus monkey, Eur. J. Neurosci. 7: 1005–1011.CrossRefPubMedGoogle Scholar
  253. Leichnetz, G. R., Spencer, R. F., Hardy, S. G. P., and Astruc, J., 1981, The prefrontal corticotectal projection in the monkey: An antérograde and retrograde horseradish peroxidase study, Neuroscience 6: 1023–1041.CrossRefPubMedGoogle Scholar
  254. Leichnetz, G. R., Spencer, R. F., and Smith, D.J., 1984a, Cortical projections to nuclei adjacent to the oculomotor complex in the medial dien-mesencephalic tegmentum in the monkey, J. Comp. Neurol. 228: 359–387.CrossRefPubMedGoogle Scholar
  255. Leichnetz, G. R., Smith, D. J., and Spencer, R. F., 1984b, Cortical projections to the paramedian tegmental and basilar pons in the monkey, J. Comp. Neurol. 228: 388–408.CrossRefPubMedGoogle Scholar
  256. Levin, S., 1984, Frontal lobe dysfunctions in schizophrenia—I. Eye movement impairments, J. Psychiatr. Res. 18: 27–55.CrossRefPubMedGoogle Scholar
  257. Levin, H. S., Eisenberg, H. M., and Benton, A. L., 1991, Frontal Lobe Function and Dysfunction, Oxford University Press, Oxford.Google Scholar
  258. Levinsohn, G., 1909, Uber die Beziehungen der Grosshirnrinde beim Affen zu den Bewegungen des Auges, Graefe Arch. Ophthalmol. 71: 313–378.CrossRefGoogle Scholar
  259. Leyton, A. S. F., and Sherrington, C. S., 1917, Observations on the excitable cortex of the chimpanzee, orang-utan and gorilla, Q. J. Exp. Physiol. 11: 135–222.Google Scholar
  260. Libet, B., 1985, Unconscious cerebral initiative and the role of conscious will in voluntary action, Behan. Brain Sci. 8: 529–566.CrossRefGoogle Scholar
  261. Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., and Rakic, P., 1991, Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3HJSCH23390, Neuroscience 40: 657–71.CrossRefPubMedGoogle Scholar
  262. Lim, S. H., Dinner, D. S., Pillay, P. K., Luders, H., Morris, H. H., Klem, G., Wyllie, E., and Awad, I. A., 1994, Functional anatomy of the human supplementary sensorimotor area: Results of extraoperative electrical stimulation, Electroenceph. Clin. Neurophysiol. 91: 179–193.CrossRefPubMedGoogle Scholar
  263. Ljungberg, T., Apicella, 1’., and Schultz, W., 1992, Responses of monkey dopamine neurons during learning of behavioral reactions, J. Neurophysiol. 67: 145–163.Google Scholar
  264. Lu, M.-’F., Preston, J. B., and Strick, P. L., 1994, Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe, J. Comp. Neural. 341: 375–392.Google Scholar
  265. Luppino, G., Matelli, M., and Rizzolatti, G., 1990, Cortico-cortical connections of two electrophysiologically identified arm representations in the mesial agranular frontal cortex, Exp. Brain Res. 82: 214–218.CrossRefPubMedGoogle Scholar
  266. Luppino, G., Matelli, M., Camarda, R. M., Gallese, V., and Rizzolatti, G., 1991, Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey, J. Comp. Neurol. 311: 463–482.CrossRefPubMedGoogle Scholar
  267. Luppino, G., Matelli, M., Camarda, R. M., and Rizzolatti, G., 1993, Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey, J. Comp. Neural. 338: 114–140.CrossRefGoogle Scholar
  268. Luria, A. R., Karpov, B. A., and Yarbus, A. L., 1966, Disturbances of active visual perception with lesions of frontal lobes, Cortex 2: 202–212.CrossRefGoogle Scholar
  269. Lynch, J. C., 1987, Frontal eye field lesions in monkeys disrupt visual pursuit, Exp. Brain Res. 68: 437–441.CrossRefPubMedGoogle Scholar
  270. Lynch, J. C., Mountcastle, V. B., Talbot, W. H., and Yin, T. C. T., 1977, Parietal lobe mechanisms for directed visual attention, J. Nearophysiol. 40: 362–389.Google Scholar
  271. Lynch, J. C., Hoover, J. E., and Strick, P. L., 1994, Input to the primate frontal eye field from the substantia nigra, superior colliculus and dentate nucleus demonstrated by transneuronal transport, Exp. Brain Res. 100: 181–186.CrossRefPubMedGoogle Scholar
  272. MacAvoy, M. G., and Bruce, C. J., 1995, Comparison of the smooth eye tracking disorder of schizophrenics with that of nonhuman primates with specific brain lesions, Int. J. Neurosci. 80: 117–151.CrossRefPubMedGoogle Scholar
  273. MacAvoy, M. G., Gottlieb, J. P., and Bruce, C. J., 1991, Smooth-pursuit eye movement representation in the primate frontal eye field, Cerebral Cortex 1: 95–102.CrossRefPubMedGoogle Scholar
  274. Mann, S. E., Thau, R., and Schiller, P. H., 1988, Conditional task-related responses in monkey dorsomedial frontal cortex, Exp. Brain Res. 69: 460–468.CrossRefPubMedGoogle Scholar
  275. Marrocco, R. T., 1978, Saccades induced by stimulation of the frontal eye fields: Interaction with voluntary and reflexive eye movements, Brain Res. 146: 23–34.CrossRefPubMedGoogle Scholar
  276. Massion, J., Viallet, F., Massarino, R., and Khalil, R., 1989, “Fhe supplementary motor area region is involved in the coordination between movement and posture, C. R. Acad. Paris 308: 417–423.Google Scholar
  277. Matelli, M., Luppino, G., and Rizzolatti, G., 1985, Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey, Behay. Brain Res. 18: 125–136.CrossRefGoogle Scholar
  278. Matelli, M., Camarda, R., Glickstein, M., and Rizzolatti, G., 1986, Afferent and efferent projections of the inferior area 6 in the macaque monkey,/ Comp. Neurol. 251: 281–298.CrossRefGoogle Scholar
  279. Matelli, M., Luppino, G., and Rizzolatti, G., 1991, Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey, J. Comp. Neurol. 311: 445–462.CrossRefPubMedGoogle Scholar
  280. Matelli, M., Rizzolatti, G., Bettinardi, V., Gilardi, M. C., Perani, D., Rizzo, G., and Fazio, F., 1993, Activation of precentral and mesial motor areas during the execution of elementary proximal and distal arm movements: A PET study, NeuroReport 4: 1295–1298.CrossRefPubMedGoogle Scholar
  281. Matin, I.., 1985, Visual localization and eye movements, in: Handbook of Perception and Human PerJòrmance (K. R. Boff, L. Kaufman, and J. P. “Thomas, eds.), Wiley, New York.Google Scholar
  282. Matsuzaka, Y., Aizawa, H., and Tanji, J., 1992, A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: Neuronal activity during a learned motor task,/ Neurophysiol. 68: 653–662.Google Scholar
  283. Maunsell, J. H. R., and Gibson, J. R., 1992, Visual response latencies in striate cortex of the macaque monkey, J. Neurophysiol. 68, 1332–1344.PubMedGoogle Scholar
  284. Mays, L. E., and Sparks, D. L., 1980, Dissociation of visual and saccade-related responses in superior colliculus neurons, J. Neurophysiol. 43: 207–232.PubMedGoogle Scholar
  285. Melamed, E., and Larsen, B., 1979, Cortical activation pattern during saccadic eye movements in humans: Localization by focal cerebral blood flow increases, Ann. Neurol. 5: 79–88.CrossRefPubMedGoogle Scholar
  286. Merigan, W. H., and Maunsell, J. H. R., 1993, How parallel are the primate visual pathways ? Ann. Rev. Neurosci. 16: 369–402.CrossRefPubMedGoogle Scholar
  287. Mikami, A., Ito, S., and Kubota, K., 1982, Visual response properties of dorsolateral prefrontal neurons during visual fixation task, J. Neurophysiol. 47: 593–605.PubMedGoogle Scholar
  288. Miller, E. K., Li, L., and Desimone, R., 1993, Activity of neurons in anterior inferior temporal cortex during a short-term memory task, j. Neurosci. 13: 1460–1478.PubMedGoogle Scholar
  289. Miller, J., 1988, Discrete and continuous models of human information processing: ‘Theoretical distinctions and empirical results, Acta Psychol. 67: 191–257.CrossRefGoogle Scholar
  290. Milner, B., Petrides, M., and Smitt, M. L., 1985, Frontal lobes and the temporal organization of memory, Hum. Neurobiol. 4: 137–142.PubMedGoogle Scholar
  291. Mishkin, M., and Manning, F. J., 1978, Non-spatial memory after selective prefrontal lesions in monkeys, Brain Res. 143: 313–324.CrossRefPubMedGoogle Scholar
  292. Mitz, A. R., and Godschalk, M., 1989, Eye-movement representation in the frontal lobe of rhesus monkeys, Neurosci. Lett. 106: 157–162.CrossRefPubMedGoogle Scholar
  293. Mitz, A. R., Godschalk, M., and Wise, S. P., 1991, Learning-dependent neuronal activity in the premotor cortex: Activity during the acquisition of conditional motor associations, J. Neurosci. 11: 1855–1872.PubMedGoogle Scholar
  294. Miyashita, Y., and Chang, H. S., 1988, Neuronal correlate of pictorial short-term memory in the primate temporal cortex, Nature 331: 68–70.CrossRefPubMedGoogle Scholar
  295. Mohler, C. W., Goldberg, M. E., and Wurtz, R. H., 1973, Visual receptive fields of frontal eye field neurons, Brain Res. 61: 385–389.CrossRefPubMedGoogle Scholar
  296. Moran, M. A., Mufson, E. J., and Mesulam, M.-M., 1987, Neural inputs into the temporopolar cortex of the rhesus monkey, J. Comp. Neurol. 256: 88–103.CrossRefPubMedGoogle Scholar
  297. Morecraft, R. J., and Van Hoesen, G. W., 1992, Cingulate input to the primary and supplementary motor cortices in the rhesus monkey: Evidence for somatotopy in areas 24c and 23c, J. Comp. Neural. 322: 471–489.CrossRefGoogle Scholar
  298. Morel, A., and Bullier, J., 1990, Anatomical segregation of two cortical visual pathways in the macaque monkey, Vis. Neurosci. 4: 555–578.CrossRefPubMedGoogle Scholar
  299. Moser, A., and Kömpf, D., 1990, Unilateral visual exploration deficit in a frontal lobe lesion, Neuro-ophthalmology 10: 39–44.CrossRefGoogle Scholar
  300. Moster, M. L., and Goldberg, G., 1990, Topography of scalp potentials preceding self-initiated saccades, Neurology 40: 644–648.CrossRefPubMedGoogle Scholar
  301. Mott, F. W., and Schäfer, E. A., 1890, On associated eye-movements produced by cortical faradization of the monkey’s brain, Brain 13: 165–173.CrossRefGoogle Scholar
  302. Muakkasa, K. F., and Strick, P. L.., 1979, Frontal lobe inputs to primate motor cortex: Evidence for four somatotypically organized “premotor” areas, Brain Res. 177: 176–182.CrossRefGoogle Scholar
  303. Munoz, D. P., and Wurtz, R. H., 1993, Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge, J. Neurophysiol. 70: 559–575.PubMedGoogle Scholar
  304. Mari, R. M., Roster, K. M., and Hess, C. W., 1994, Influence of transcranial magnetic stimulation on the execution of memorized sequences of saccades, Exp. Brain Res. 101: 521–524.Google Scholar
  305. Müri, R. M., Rivand, S., Vermersch, A. L, Leger, J. M., and Pierrot-Deseilligny, C., 1995, Effects of transcranial magnetic stimulation over the region of the supplementary motor area during sequences of memory-guided saccades, Exp. Brain Res. 104: 163–166.CrossRefPubMedGoogle Scholar
  306. Mushiake, H.,]vase, M., and’Fanji, J., 1991, Neuronal activity in the primate premotor supplementary and precentral motor cortex during visually guided and internally determined sequential movements, J. Neurophysiol. 66: 705–718.Google Scholar
  307. Mushiake, H., Fuji’, N., and Tanji, J., 1996, Visually guided saccade versus eye-hand reach: Contrasting neuronal activity in the cortical supplementary and frontal eye fields, J. Neurophysiol. 75: 2187–2191.PubMedGoogle Scholar
  308. Nakashima, Y., Momose, T., Sano, I., Katayama, S., Nakajima,’E, Niwa, S., and Matsushita, M., 1994, Cortical control of saccade in normal and schizophrenic subjects: A PET study using a task-evoked rCBF paradigm, Schizophrenia Res. 12: 259–64.Google Scholar
  309. Neumann, O., and Prinz, W., 1990, Prologue: Historical approaches to perception and action, in Relationships Between Perception and Action ( O. Neumann and W. Prinz, eds.), Springer-Verlag, Berlin, pp. 4–19.CrossRefGoogle Scholar
  310. Nichols, M. J., and Sparks, 1). L., 1995, Nonstationary properties of the saccade system: New constraints on models of saccadic control, J. Neurophysiol. 73: 431–435.PubMedGoogle Scholar
  311. Niki, H., 1974a, Differential activity of prefrontal units during right and left delayed response trials, Brain Res. 70: 346–349.CrossRefPubMedGoogle Scholar
  312. Niki, H., 19746, Prefrontal unit activity during delayed alternation in the monkey. I. Relation to direction of response, Brain Res. 68: 185–196.Google Scholar
  313. Niki, H., t 974e, Prefrontal unit activity (luring delayed alternation in the monkey. II. Relation to absolute versus relative direction of response, Brain Res. 68: 197–204.Google Scholar
  314. Niki, H., and Watanabe, M., 1976, Cingulate unit activity and delayed response, Brain Res. 110: 381–386.CrossRefPubMedGoogle Scholar
  315. Niki, H., and Watanabe, M., 1979, Prefrontal and cingulate unit activity during timing behavior in the monkey, Brain Res. 171: 213–224.CrossRefPubMedGoogle Scholar
  316. Niki, H., Sakai, M., and Kubota, K., 1972, Delayed alternation performance and unit activity of the caudate head and medial orbitofrontal gyrus in the monkey, Brain Res. 38: 343–353.CrossRefPubMedGoogle Scholar
  317. Noton, D., and Stark, L., 1971, Scanpaths in saccadic eye movements while viewing and recognizing patterns, Vision Res. 11: 929–942.CrossRefPubMedGoogle Scholar
  318. Nowak, L. G., Munk, M. H. J., Girard, P., and Bullier, J., 1995, Visual latencies in areas V1 and V2 of the macaque monkey, Visual Neuroses. 12: 371–384.CrossRefGoogle Scholar
  319. O’Driscoll, G. A., Alpert, N. M., Matthysse, S. W., Levy, D. L., Rauch, S. L., and Holzman, P. S., 1995, Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography, Proc. Nall. Acad. Sci. USA 92: 925–929.CrossRefGoogle Scholar
  320. O’Sullivan, E. P., Jenkins, I. H., Henderson, L., Kennard, C., and Brooks, D. J., 1995, The functional anatomy of remembered saccades: A PET study, NeuroReport 6: 2141–2144.CrossRefPubMedGoogle Scholar
  321. Okano, K., 1992, Temporal priority of premotor cortex over nearby areas in receiving visual cues in primates, NeuroReport 3: 389–392.CrossRefPubMedGoogle Scholar
  322. Okano, K., and ‘Fanji, J., 1987, Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement, Exp. Brain Res. 66: 155–166.CrossRefPubMedGoogle Scholar
  323. Olson, C. R., and Gettner, S. N., 1995, Object-centered direction selectivity in the macaque supplementary eye field, Science 269: 985–988.Google Scholar
  324. Orgogozo, J. M., and Larsen, B., 1979, Activation of the supplementary motor area during voluntary movement in man suggests it works as a supramotor area, Science 206: 847–850.CrossRefPubMedGoogle Scholar
  325. Ottes, F. P., Van Gisbergen, J. A. M., and Eggermont, J. J., 1986, Visuomotor fields of the superior colliculus: A quantitative model, Vision Res. 26: 857–873.CrossRefPubMedGoogle Scholar
  326. Pardo, J. V., Pardo, P.,J., Jailer, K. W., and Raichle, M. E., 1990, The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm, Proc. Nati. Acad. Sci. USA 87: 256–259.CrossRefGoogle Scholar
  327. Parthasarathy, H. B., Schall, J. I)., and Graybiel, A. M., 1992, Distributed but convergent ordering of corticostriatal projections: Analysis of the frontal eye field and the supplementary eye field in the macaque monkey,/ Neurosci. 12: 4468–4488.Google Scholar
  328. Passingham, R. E., 1985, Prefrontal cortex and the sequencing of movement in monkeys (Macaca mulatta), Neuropsychologia 23: 453–462.CrossRefPubMedGoogle Scholar
  329. Passingham, R. E., 1988, Premotor cortex and preparation for movement, Exp. Brain. Res. 70: 590–596.CrossRefPubMedGoogle Scholar
  330. Passingham, R. E., 1989, Premotor cortex and the retrieval of movement, Brain Beluev. Evol. 33: 189–192.CrossRefGoogle Scholar
  331. Passingham, R. E., 1993, The Frontal Lobes and Voluntary Action, Oxford University Press, Oxford.Google Scholar
  332. Passingham, R. E., Chen, Y. C., and Thaler, D., 1989, Supplementary motor cortex and self-initiated movement, in: Neural Programming ( M. Ito, ed.), Karger, Basel, pp. 13–24.Google Scholar
  333. Paulescu, E., Frith, C. D., and Frackowiak, R. S. J., 1993, ‘Ile neural correlates of the verbal component of working memory, Nature 362: 342–344.Google Scholar
  334. Paus, T., 1996, Location and function of the human frontal eye field: A selective review, Neuropsychologia 34: 475–483.CrossRefPubMedGoogle Scholar
  335. Paus, T., Petrides, M., Evans, A. C., and Meyer, E., 1993, Role of human anterior cingulate cortex in the control of oculomotor, manual and speech responses: A positron emission tomography study, J. Neurophysiol. 70: 453–469.PubMedGoogle Scholar
  336. Paus, T., Marrett, S., Worsley, K. J., and Evans, A. C., 1995, Extra-retinal modulation of cerebral blood-flow in the human visual cortex: Implications for saccadic suppression, J. Neurophysiol. 74: 2179–2183.PubMedGoogle Scholar
  337. Penfield, W., and Boldrey, E., 1937, Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation, Brain 60: 389–443.CrossRefGoogle Scholar
  338. Penfield, W., and Welch, K., 1949, The supplementary motor area in the cerebral cortex of man, Trans. Ant. Neurol. Assoc. 74: 179–184.Google Scholar
  339. Penfield, W., and Welch, K., 1951, The supplementary motor area of the cerebral cortex: A clinical and experimental study, Arch. Neurol. Psychiat. 66: 289–317.CrossRefGoogle Scholar
  340. Perecman, E., ed., 1987, The Frontal Lobes Revisited, IRBN Press, New York.Google Scholar
  341. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., and Raichle, M. E., 1988, Positron emission tomographic studies of the cortical anatomy of single-word processing, Nature 331: 585–589.CrossRefPubMedGoogle Scholar
  342. Petit, L., Orssaud, C., ‘Fzourio, N., Salamon, G., Mazoyer, B., and Berthoz, A., 1993, PET study of voluntary saccadic eye movements in humans: Basal ganglia-thalamocortical system and cingulate cortex involvement, J. Neurophysiol. 69: 1009–1017.Google Scholar
  343. Petit, L., Tzourio, N., Orssaud, C., Pietrzyk, U., Berthoz, A., and Mazoyer, B., 1995, Functional neuroanatomy of the human visual fixation system, Eur. J. Neurosci. 7: 169–174.CrossRefPubMedGoogle Scholar
  344. Petit, L., Orssaud, C., Tzourio, N., Crivello, F., Berthoz, A., and Mazoyer, B., 1996, Functional anatomy of a prelearned sequence of horizontal saccades in humans,/ Neurosci. 16: 3714–3726.Google Scholar
  345. Petrides, M., 1985, Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey, Behay. Brain Res. 16: 95–101.CrossRefGoogle Scholar
  346. Petrides, M., 1987, Conditional learning and the primate frontal cortex, in: The Frontal Lobes Revisited ( E. Perecman, ed.), IRBN Press, New York, pp. 91–108.Google Scholar
  347. Petrides, M., 1991, Monitoring of selections of visual stimuli and the primate frontal cortex, Proc. R. Soc. Land. B 246: 293–298.CrossRefGoogle Scholar
  348. Petrides, M., 1994a, Frontal lobes and behavior, Curr. Opin. Neurohiol. 4: 207–211.CrossRefGoogle Scholar
  349. Petrides, M., 19941), Frontal lobes and working memory: Evidence from investigations of the effects of cortical excisions in nonhuman primates, in: Handbook of Neuropsychology, Volume 9. (F. Boller and J. Grafman, eds.), Elsevier, New York, pp. 59–82.Google Scholar
  350. Petrides, M., 1995, Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey, J. Neurosci. 15: 359–375.PubMedGoogle Scholar
  351. Petrides, M., and Pandya, D. N., 1984, Projections to the frontal cortex from the posterior parietal region in the rhesus monkey, J. Comp. Neural. 228: 105–116.CrossRefGoogle Scholar
  352. Petrides, M., and Pandya, D. N., 1994, Comparative architectonic analysis of the human and the macaque frontal cortex, in: Handbook of Neuropsychology, Volume 9 ( F. Boller and J. Grafman, eds.), Elsevier, New York, pp. 17–58.Google Scholar
  353. Petrides, M., Alivisatos, B., Evans, A. C., and Meyer, E., 1993, Dissociation of human mid-dor solateral from posterior dorsolateral frontal cortex in memory processing, Proc. Natl. Acad. Sci. USA 90: 873–877.CrossRefPubMedGoogle Scholar
  354. Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., and Agid, Y., 1991a, Cortical control of reflexive visually-guided saccades, Brain 114: 1473–1485.CrossRefPubMedGoogle Scholar
  355. Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., and Agid, Y., 1991b, Cortical control of memory-guided saccades in man, Exp. Brain Res. 83: 607–617.CrossRefPubMedGoogle Scholar
  356. Pierrot-Deseilligny, C., Israël, I., Berthoz, A., Rivaud, S., and Gaymard, B., 1993, Role of different frontal lobe areas in the control of horizontal component of memory-guided saccades in man, Exp. Brain Res. 95: 166–17 1.Google Scholar
  357. Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., Mûri, R., Vermersch, A.-I., 1995, Cortical control of saccades, Ann. Neurol. 37: 557–567.CrossRefPubMedGoogle Scholar
  358. Pigarev, I. N., Rizzolatti, G., and Scandolara, C., 1979, Neurons responding to visual stimuli in the frontal lobe of macaque monkeys, Neurosci. Lett. 12: 207–212.CrossRefPubMedGoogle Scholar
  359. Pola, J., and Wyatt, H. J., 1991, Smooth pursuit: Response characteristics, stimuli and mechanisms, in: Eye Movements ( R. H. S. Carpenter, ed.), CRC Press, Boca Raton, FL, pp. 138–156.Google Scholar
  360. Porrino, L. J., Crane, A. M., and Goldman-Rakic, P. S., 1981, Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkey, J. Comp. Neural. 198: 121–136.CrossRefGoogle Scholar
  361. Posner, M. I., and Petersen, S. E., 1990, The attention system of the human brain, Annu. Rev. Neurosci. 13: 25–42.CrossRefPubMedGoogle Scholar
  362. Postier, M. I., Petersen, S. I., Fox, P. T., and Raichle, M. E., 1988, Localization of cognitive operations in the human brain, Science 240: 1627–163I.CrossRefGoogle Scholar
  363. Praamstra, P., Stegeman, 1). F., Horstink, M. W., Brunia, C. H., and Cools, A. R., 1995, Movement-related potentials preceding voluntary movement are modulated by the mode of movement selection, Exp. Brain Res. 103: 429–439.Google Scholar
  364. Preuss, T. M., 1995, The argument from animals to humans in cognitive neuroscience, in: The Cognitive Neurosciences ( M. S. Gazzaniga, ed.), MIT Press, Cambridge, MA, pp. 1227–1241.Google Scholar
  365. Preuss, ‘l’. M., and Goldman-Rakic, P. S., 1989, Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: Anatomical evidence for somatic representation in primate frontal association cortex, J. Comp. Neural. 282: 293–316.CrossRefGoogle Scholar
  366. Preuss, T. M., and Goldman-Rakic, P. S., 1991, Myelo-and cytoarchitecture of the granular frontal cortex and surrounding regions of the strepsirhine primate Galago and the anthropoid primate Macaca, J. Comp. Neural. 310: 429–474.CrossRefGoogle Scholar
  367. Preuss, T. M., Stepniewska, I., and Kaas, J. H., 1995, Movement representation in the dorsal and ventral premotor areas of owl monkeys: A microstimulation study, J. Comp. Neural. 371: 649–676.CrossRefGoogle Scholar
  368. Quintana, J., and Fuster, F. M., 1993, Spatial and temporal factors in the role of prefrontal and parietal cortex in visuomotor integration, Cerebral Cortex 3: 122–132.CrossRefPubMedGoogle Scholar
  369. Quintana, J., Yajeya, J., and Fuster, J. M., 1988, Prefrontal representation of stimulus attributes during delay tasks. I. Unit activity in cross-temporal integration of sensory and sensory-motor informat ion, Brain Res. 474: 211–221.CrossRefPubMedGoogle Scholar
  370. Rao, S. M., Binder, J. R., Bandettini, P. A., Hammeke, T. A., Yetkin, F. Z., Jesmanowicz, A., Lisk, L. M., Morris, G. I.., Mueller, W. M., and Estkowski, 1.. D., 1993, Functional magnetic resonance imaging of complex human movements, Neurology 43: 2311–2318.CrossRefPubMedGoogle Scholar
  371. Rasmussen, ‘1., and Penfield, W., 1948, Movement of head and eyes from stimulation of human frontal cortex, Re.c. Publ. Assoc. Nerv. Ment. Dis. 27: 346–361.Google Scholar
  372. Ray, J. P., and Price, J. 1.., 1993, The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys, J. Comp. Neural. 337: 131Google Scholar
  373. Remy, P., Zilbovicius, M., Leroy-Willig, A., Syrota, A., and Samson, Y., 1994, Movement-and task-related activations of motor cortical areas: A positron emission tomographie study, Ann. Neurol. 36: 19–26.CrossRefPubMedGoogle Scholar
  374. Riehle, A., and Requin, J., 1989, Monkey primary motor and premotor cortex: Single-cell activity related to prior information about direction and extent of an intended movement, J. Neurophysial. 61: 534–549.Google Scholar
  375. Risien Russell, J. S., 1894, An experimental investigation of eye movements, J. Physiol. (Lond.) 17: 1–26.Google Scholar
  376. Rivaud, S., Müri, R. M., Gaymard, B., Vermersch, A. I., and Pierrot-Deseilligny, C., 1994, Eye movement disorders after frontal eye field lesions in humans, Exp. Brain Res. 102: 110–120.CrossRefPubMedGoogle Scholar
  377. Rizzolatti, G., Scandolara, C., Matelli, M., and Gentilucci, M., 1981, Afferent properties of periaraaate neurons in macaque monkeys. I1. Visual responses, Behay. Brain Res. 2: 147–163.CrossRefGoogle Scholar
  378. Rizzolatti, G., Camarda, R., Fugassi, L., Gentilucci, M., Luppino, G., and Matelli, M., 1988, Functional organization of inferior area 6 in the macaque monkey. 11. Area F5 and the control of distal movements, Exp. Brain Res. 71: 491–507.CrossRefPubMedGoogle Scholar
  379. Rizzolatti, G., Gentilucci, M., Camarda, R., Gallese, V., Luppino, G., Matelli, M., and Fogassi, 1990, Neurons related to reaching-grasping arm movements in the rostral part of area 6 (area 6a(3), Exp. Brain Res. 82: 337–350.CrossRefPubMedGoogle Scholar
  380. Robinson, D. A., 1972, Eye movements evoked by collicular stimulation in the alert monkey, Vision Res. 12: 1795–1808.CrossRefPubMedGoogle Scholar
  381. Robinson, D. A., 1973, Models of the saccadic eye movement control system, Kybernetik 14: 71–83.CrossRefPubMedGoogle Scholar
  382. Robinson, D. A., 1986, The systems approach to the oculomotor system, Vision Res. 26: 91–99.CrossRefPubMedGoogle Scholar
  383. Robinson, D. A., 1991, Overview, in: Eye Movements ( R. H. S. Carpenter, ed.), CRC Press, Boca Raton, FL, pp. 320–331.Google Scholar
  384. Robinson, D. A., and Fuchs, A. F., 1969, Eye movements evoked by stimulation of frontal eye fields, J. Neurophysiol. 32: 637–648.PubMedGoogle Scholar
  385. Robinson, D. I.., Goldberg, M. E., and Stanton, G. B., 1978, Parietal association cortex in the primate: Sensory mechanisms and behavioral modulations, J. Neurophysiol. 41:9I0–932.Google Scholar
  386. Roland, P. E., Larsen, B., Lassen, N. A., and Skinhoj, E., 1980, Supplementary motor area and other cortical areas in organization of voluntary movements in man, J. Neurophysiol. 43: 118–136.PubMedGoogle Scholar
  387. Rolls, E. T., Sanghera, M. K., and Roper-Hall, A., 1979, The latency of activation of neurons in the lateral hypothalamus and substantia innominata during feeding in the monkey, Brain Res. 164: 121–135.CrossRefPubMedGoogle Scholar
  388. Rolls, E. T., Critchley, H. D., Mason, R., and Wakeman, E. A., 1996a, Orbitofrontal cortex neurons:Google Scholar
  389. Role in olfactory and visual association learning,. Neurophysiol. 75:1970—I981.Google Scholar
  390. Rolls, E. T., Critchley, H. D., Mason, R., and Wakeman, E. A., 1996b, Representation of olfactory information in the primate orbitofrontal cortex, J. Neurophysiol. 75: 1982–1996.PubMedGoogle Scholar
  391. Romo, R., and Schultz, W., 1987, Neuronal activity preceding self-initiated or externally timed arm movements in area 6 of monkey cortex, Exp. Brain Res. 67: 656–662.CrossRefPubMedGoogle Scholar
  392. Romo, R., and Schultz, W., 1992, Role of primate basal ganglia and frontal cortex in the internal generation of movements. Ill. Neuronal activity in the supplementary motor area, Exp. Brain Res. 91: 396–407.CrossRefPubMedGoogle Scholar
  393. Rosenkilde, C. E., Bauer, R. H., and Fuster, J. M., 1981, Single cell activity in ventral prefrontal cortex of behaving monkeys, Brain Res. 209: 375–394.CrossRefPubMedGoogle Scholar
  394. Rossetti, Y., Tadary, B., and Prablanc, C., 1994, Optimal contributions of head and eye positions to spatial accuracy in man tested by visually directed pointing, Exp. Brain Res. 97: 487–496.CrossRefPubMedGoogle Scholar
  395. Russchen, F. T., Amaral, D. G., and Price, J. L., 1987, The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca jitscicularis, J. Comp. Neural. 256: 175–210.CrossRefGoogle Scholar
  396. Russo, G. S., and Bruce, C. J., 1989, Auditory receptive fields of neurons in frontal cortex of rhesus monkey shift with direction of gaze, Soc. Neurosci. Absir. 15: 1204.Google Scholar
  397. Russo, G. S., and Bruce, C.,J., 1993, Effect of eye position with the orbit on electrically elicited saccadic eye movements: A comparison of the macaque monkey’s frontal and supplementary eye field, J. Neurophysiol. 69: 800–818.PubMedGoogle Scholar
  398. Russo, G. S., and Bruce, C. J., 1994, Frontal eye field activity preceding aurally guided saccades, J. Neurophysiol. 71: 1250–1253.PubMedGoogle Scholar
  399. Russo, G. S., and Bruce, C. J., 1996, Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system, J. Neurophysiol. 76: 825–848.PubMedGoogle Scholar
  400. Sakagami, M., and Niki, H., 1994a, Encoding of behavioral significance of visual stimuli by primate prefrontal neurons: Relation to relevant task conditions, Exp. Brain Res. 97: 423–436.CrossRefPubMedGoogle Scholar
  401. Sakagami, M., and Niki, H., 199413, Spatial selectivity of go/no-go neurons in monkey prefrontal cortex, Exp. Brain Res. 100: 165–169.Google Scholar
  402. Sakai, M., 1978, Single unit activity in a border area between the dorsal prefrontal and premotor regions in the visually conditioned motor task of monkeys, Brain Res. 147: 377–383.CrossRefPubMedGoogle Scholar
  403. Sakata, H., Shibutani, H., and Kawano, K., 1980, Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey, J. Neurophysiol. 43: 1654–1672.PubMedGoogle Scholar
  404. Sakata, H., Shibutani, H., and Kawano, K., 1983, Functional properties of visual tracking neurons in posterior parietal association cortex of the monkey,, J. Neurophysiol. 49: I364–1380.Google Scholar
  405. Sanghera, M. K., Rolls, E. T., and Roper-Hall, A., 1979, Visual responses of neurons in the dorsolateral amygdala of the alert monkey, Exp. Neurol. 63: 610–626.CrossRefPubMedGoogle Scholar
  406. Sasaki, K., and Gemba, H., 1986, Electrical activity in the prefrontal cortex specific to no-go reaction of conditioned hand movement with colour discrimination in the monkey, Exp. Brain Res. 64: 603–606.CrossRefPubMedGoogle Scholar
  407. Sawaguchi, T., I987a, Properties of neuronal activity related to a visual reaction time task in the monkey prefrontal cortex, J. Neurophysiol. 58: 1080–1099.Google Scholar
  408. Sawaguchi, “1’., 19876, Catecholamine sensitivities of neurons related to a visual reaction time task in the monkey prefrontal cortex, J. Neurophysiol. 58:1100–1122.Google Scholar
  409. Sawaguchi, T., and Goldman-Rakic, P. S., 1991, D1 dopamine receptors in prefrontal cortex: Involvement in working memory, Science 251: 947–950.CrossRefPubMedGoogle Scholar
  410. Sawaguchi, T., Matsumura, M., and Kubot, K., 1990, Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex,/ Neurophysiol. 63: 1401–1412.Google Scholar
  411. Schall, J. D., 199Ia, Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of rhesus monkeys, Neurophysiol. 66: 530–558.Google Scholar
  412. Schall, J. D., 19916, Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: Comparison with supplementary eye fields, J. Neurophysiol. 66: 559–579.Google Scholar
  413. Schall, J. D., 1991c, Neuronal basis of saccadic eye movements, in: The Neural Basis of Visual Function ( A. G. Leventhal, ed.), Macmillan, London, pp. 388–442.Google Scholar
  414. Schall, J. D., 1995, Neural basis of saccade target selection, Rev. Neurosci. 6: 63–85.PubMedGoogle Scholar
  415. Schall, J. D., and Hanes, D. P., 1993, Neural basis of saccade target selection in frontal eye field during visual search, Nature 366: 467–469.CrossRefPubMedGoogle Scholar
  416. Schall, J. D., and Hanes, D. P., 1996, Neural control of saccade initiation studied with the countermanding paradigm: Frontal eye field, Soc. Neurosci. Absir. 22: 418.Google Scholar
  417. Schall, J. D., Morel, A., and Kaas. J. FI., 1993, Topography of supplementary eye field afferents to frontal eye field in macaque: Implications for mapping between saccade coordinate systems, Visual Neurosci. 10: 385–393.CrossRefGoogle Scholar
  418. Schall, J. D., Hanes, D. P., Thompson, K. G., and King, D. J., 1995a, Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation, J. Neurosci. 15: 6905–6918.PubMedGoogle Scholar
  419. Schall, J. D., Morel, A., King, D.1., and Bullier, J., 19956, Topography of visual cortical afferents to frontal eye field in macaque: Functional convergence and segregation of processing streams,/ Neurosci. 15: 4464–4487.Google Scholar
  420. Schiller, P. H., and Koerner, F., 1971, Discharge characteristics of single units in superior colliculus of the alert rhesus monkey, J. Neurophysiol. 34: 920–936.PubMedGoogle Scholar
  421. Schiller, P. H., and Sandell, J. H., 1983, Interactions between visually and electrically elicited saccades before and after superior colliculus and frontal eye field ablation in the rhesus monkey, Exp. Brain Res. 49: 381–392.CrossRefPubMedGoogle Scholar
  422. Schiller, P. H., and Stryker, M., 1972, Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey, J. Neurophysiol. 35: 915–924.PubMedGoogle Scholar
  423. Schiller, P. H., True, S. D., and Conway, J. 1.., 1979, Paired stimulation of the frontal eye field and the superior colliculus of the rhesus monkey, Brain Res. 179: 162–164.Google Scholar
  424. Schiller, P. H., True, S. D., and Conway, J. D., 1980, Deficits in eye movements following frontal eye field and superior colliculus ablations, J. Neurophysiol. 44: 1175–1189.PubMedGoogle Scholar
  425. Schiller, P. H., Sandell, J. H., and Maunsell, J. H. R., 1987, The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey, J. Neurophysiol. 57: 1033–1049.PubMedGoogle Scholar
  426. Schlag, J., and Schlag-Rey, M., 1985, Unit activity related to spontaneous saccades in frontal dorsomedial cortex of monkey, Exp. Brain Res. 58: 208–211.CrossRefPubMedGoogle Scholar
  427. Schlag, J., and Schlag-Rey, M., 1987, Evidence for a supplementary eye field, J. Neurophysiol. 57: 179–200.PubMedGoogle Scholar
  428. Schlag, J., and Schlag-Rey, M., 1990, Colliding saccades may reveal the secret of their marching orders, TINS 13: 410–415.PubMedGoogle Scholar
  429. Schlag, J., and Schlag-Rey, M., 1992, Neurophysiology of eye movements, Adv. Neurol. 57: 135–147.PubMedGoogle Scholar
  430. Schlag, J., and Schlag-Rey, M., 1995, Illusory localization of stimuli flashed in the dark before saccades, Vision Res. 35: 2347–2357.CrossRefPubMedGoogle Scholar
  431. Schlag, J., Schlag-Rey, M., and Pigarev, I., 1992, Supplementary eye field: Influence of eye position on neural signals of fixation, Exp. Brain Res. 90: 302–306.CrossRefPubMedGoogle Scholar
  432. Schlag-Rey, M., and Schlag, J., 1984, Visuomotor functions of central thalamus in monkey. L Unit activity related to spontaneous eye movements, J. Neurophysiol. 51: 1149–1174.PubMedGoogle Scholar
  433. Schlag-Rey, M., Schlag, J., and Shook, B., 1989, Interactions between natural and electrically evoked saccades: I. Differences between sites carrying retinal error and motor command signals in monkey superior colliculus, Exp. Brain Res. 76: 537–547.CrossRefPubMedGoogle Scholar
  434. Schlag-Rey, M., Schlag, J., and Dassonville, P., 1992, How the frontal eye field can impose a saccade goal on superior colliculus neurons,./. Neurophysiol. 67: 1003–1005.Google Scholar
  435. Schnyder, H., Reisine, H., Hepp, K., and Henn, V., 1985, Frontal eye field projection to the paramedian puntine reticular formation traced with wheat germ agglutinin in the monkey, Brain Res. 329: 151–160.CrossRefPubMedGoogle Scholar
  436. Schultz, W., Apicella, P., and Ljungberg, T., 1993, Responses of monkey dopamine neurons 0) reward and conditioned stimuli during successive steps of learning a delayed response task, J. Neurosci. 13: 900–913.PubMedGoogle Scholar
  437. Scudder, C. A., 1988, A new local feedback model of the saccadic burst generator, J. Neurophysiol. 59: 1455–1475.PubMedGoogle Scholar
  438. Segraves, M. A., 1992, Activity of monkey frontal eye field neurons projecting to oculomotor regions of the puns, J. Neurophysiol. 68: 1967–1985.PubMedGoogle Scholar
  439. Segraves, M. A., and Goldberg, M. E., 1987, Functional properties of corticotectal neurons in the monkey’s frontal eye fields, J. Neurophysiol. 58: 1387–1419.PubMedGoogle Scholar
  440. Segraves, M. A., and Park, K., 1993, The relationship of monkey frontal eye field activity to saccade dynamics, J. Neurophysiol. 69: 1880–1889.PubMedGoogle Scholar
  441. Seitz, R. J., and Roland, P. D., 1992, Learning of sequential finger movements in man: A combined kinematic and positron emission tomography (PET) study, Eur. J. Neurosci. 4: 154–165.CrossRefPubMedGoogle Scholar
  442. Selemon, L. D., and Goldman-Rakic, P. S., 1985, Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey, J. Neurosci. 5: 776–794.PubMedGoogle Scholar
  443. Selemon, L. D., and Goldman-Rakic, P. S., 1988, Common cortical/subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: Evidence for a distributed neural network subserving spatially guided behavior, J. Neurosci. 8: 4049–4068.PubMedGoogle Scholar
  444. Sereno, A. B., and Holzman, P. S., 1993, Express saccades and smooth pursuit eye movement function in schizophrenic, affective disorder and normal subjects, J. Cognitive Neurosci. 5: 303–316.CrossRefGoogle Scholar
  445. Sharpe, J. A., 1986, Adaptation to frontal lobe lesions, in: Adaptive Processes in Visual and Oculomotor Systems (E. L. Keller and I). S. Zee, eds.), Pergamon Press, New York, pp. 239–246.Google Scholar
  446. Sherrington, C. S., 1893, Further experimental note on the correlation of action of antagonistic muscles, Proc. R. Soc. Land. 53: 407–420.CrossRefGoogle Scholar
  447. Shibasaki, H., Sadato, N., Lyshkow, H., Yonekura, Y., Honda, M., Nagamine, T., Suwazono, S., Magata, Y., Ikeda, A., and Miyazaki, M., 1993, Both primary motor cortex and supplementary motor area play an important role in complex finger movement, Brain 116: 1387–1398.CrossRefPubMedGoogle Scholar
  448. Shima, K., Aya, K., Mushiake, H., Inase, M., Aisawa, H., and lanji, J., 1990, Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements,/ Neurophysiol. (Paris) 65: 188–202.Google Scholar
  449. Shook, B. L., Schlag-Ray, M., and Schlag, J., 1990, Primate supplementary eye field. I. Comparative aspects of mesencephalic and pontine connections, J. Comp. Neural. 301: 618–642.CrossRefGoogle Scholar
  450. Shook, B. L., Schlag-Ray, M., and Schlag, J., 1991, Primate supplementary eye field. 11. Comparative aspects of connections with the thalamus, corpus striatum and related forebrain nuclei,./. Comp. Neural. 307: 562–583.CrossRefGoogle Scholar
  451. Siegel, B. V., Buchsbaum, M. S., Bunney, W. E., Jr., Gottschalk, L. A., Haler, R. J., Lohr, J. B., Lattenberg, S., Najafi, A., Neuchterlein, K. H., and Potkin, S. G., 1993, Cortical-striatal-thalamic circuits and brain glucose metabolic activity in 70 unmedicated male schizophrenic patients, Am. J. Psychiatry 150: 1325–1336.PubMedGoogle Scholar
  452. Smith, W. K., 1936, Ocular responses elicited by electrical stimulation of the cerebral cortex, Anal. Rec. 64: 45.Google Scholar
  453. Smith, W. K., 1940, Electrically responsive cortex within the sulci of the frontal lobe, Anal. Rec. 76: 75–76.Google Scholar
  454. Soechting, J. F., and Flanders, M., 1992, Moving in three-dimensional space: frames of reference, vectors and coordinate systems, Annu. Rev. Neurosci. 15: 167–191.CrossRefGoogle Scholar
  455. Sparks, D. L., and Hartwich-Young, R., 1989, The deep layers of the superior colliculus, in: The Neurobiology of Saccadic Eye Movements ( R. H. Wurtz and M. E. Goldberg, eds.), Elsevier, Amsterdam, pp. 213–255.Google Scholar
  456. Sparks, D. L., and Mays, L. E., 1983, Spatial localization of saccade targets. I. Compensation for stimulation-induced perturbations in eye position,/ Neurophysiol. 49: 45–63.Google Scholar
  457. Sparks, I). L., Mays, L. E., and Porter, J. D., 1987, Eye movements induced by pontine stimulation: Interaction with visually triggered saccades,/ Neurophysiol. 58: 300–318.Google Scholar
  458. Sperry, R. W., 1950, Neural basis of the spontaneous optokinetic response produced by visual inversion, f. Comp. Physiol. Psychol. 43: 482–489.CrossRefGoogle Scholar
  459. Stanford, T. R., Carney, L. H., and Sparks, I). L., 1990, The amplitude of visually guided saccades is specified gradually in humans, Soc. Neurosci. Abstr. 16: 901.Google Scholar
  460. Stanton, G. B., Goldberg, M. E., and Bruce, C. J., 1988a, Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields, j. Comp. Neural. 271: 473–492.CrossRefGoogle Scholar
  461. Stanton, G. B., Goldberg, M. E., and Bruce, C. J., 1988b, Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons, f. Comp. Neurol. 271: 493–506.CrossRefGoogle Scholar
  462. Stanton, G. B., Deng, S.-Y., Goldberg, M. E., and McMullen, N. T., 1989, Cytoarchitectural characteristics of the frontal eye fields in macaque monkeys,/ Comp. Neurol. 282: 415–427.CrossRefGoogle Scholar
  463. Stanton, G. B., Bruce, C. J., and Goldberg, M. E., 1993, Topography of projections to the frontal lobe from the macaque frontal eye fields,/ Comp. Neural. 330: 286–301.CrossRefGoogle Scholar
  464. Stanton, G. B., Bruce, C. J., and Goldberg, M. E., 1995, Topography of projections to posterior cortical areas from the macaque frontal eye fields, J. Comp. Neurol. 353: 291–305.CrossRefPubMedGoogle Scholar
  465. Steinbach, M. J., 1987, Proprioceptive knowledge of eye position, Vision Res. 27: 1737–1744.CrossRefPubMedGoogle Scholar
  466. Steinman, R. M., 1986, ‘Fhe need for an eclectic, rather than systems, approach to the study of the primate oculonotor system, Vision Res. 26: 101–112.Google Scholar
  467. Stephan, K. M., Fink, G. R., Passingham, R. E., Silbersweig, D., Ceballos-Baumann, A. O., Frith, C. D., Frackowiak, R. S., 1995, Functional anatomy of the mental representation of upper extremity movements in healthy subjects,/ Neurophysiol. 73: 373–386.Google Scholar
  468. Stepniewska, I., Preuss, ‘F. M., and Kaas, J. H., 1993, Architectonics, somatotopic organization and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys,/ Comp. Neural. 330: 238–271.Google Scholar
  469. Sternberg, S., 1969, ‘Fhe discovery of processing stages: Extensions of Donders’ method, in W. G. Koster, ed., Attention and Performance 11, Acta Psychol. 30:276–315.Google Scholar
  470. Stone, J., 1983, Parallel Processing in the Visual System, Plenum Press, New York.CrossRefGoogle Scholar
  471. Stuss, D. ‘F., and Benson, D. F., 1986, The Frontal Lobes, Raven Press, New York.Google Scholar
  472. Suzuki, H., 1985, Distribution and organization of visual and auditory neurons in the monkey prefrontal cortex, Vision Res. 25: 465–469.CrossRefPubMedGoogle Scholar
  473. Suzuki, H., and Azuma, M., 1977, Prefrontal neuronal activity during gazing at a light spot in the monkey, Brain Res. 126: 497–508.CrossRefPubMedGoogle Scholar
  474. Suzuki, H., and Azuma, M., 1983, Topographic studies on visual neurons in the dorsolateral prefrontal cortex of the monkey, Exp. Brain Res. 53: 47–58.CrossRefPubMedGoogle Scholar
  475. Suzuki, H., Azuma, M., and Yumiya, H., 1979, Stimulus and behavioral factors contributing to the activation of monkey prefrontal neurons during gazing, Jpn. J. Physiol. 29: 471–490.CrossRefPubMedGoogle Scholar
  476. Sweeney, J. A., Miutun, M. A., Kwee, S., Wiseman, M. B., Brown, D. L., Rosenberg, D. R., and Carl, J. R., 1995, A positron emission tomography study of voluntary saccadic eye movements and spatial working memory, J. Neurophysiol. 75: 454–468.Google Scholar
  477. Tanabe, ‘F., Yarita, 1 f., lino, M., Ooshima, Y., and Takagi, S. R., 1975, An olfactory projection area in the orbitofrontal cortex of the monkey, J. Neurophysiol. 38: 1269–1283.Google Scholar
  478. Tanji, J., 1994, The supplementary motor area in the cerebral cortex, Neurosci. Res. 19: 251–268.CrossRefPubMedGoogle Scholar
  479. Tanji, J., and Evarts, E. V., 1976, Anticipatory activity of motor cortex neurons in relation to direction of an intended movement,/ Neurophysiol. 39: 1062–1068.Google Scholar
  480. Tanji, J., and Kurata, K., 1979, Neuronal activity in the cortical supplementary motor area related with distal and proximal forelimb movements, Neurosci. Lett. 12: 201–206.CrossRefPubMedGoogle Scholar
  481. Tanji, J., and Kurata, K., 1981, Contrasting neuronal activity in the ipsilateral and contralateral supplementary motor areas in relation to a movement of monkey’s distal hindlimb, Brain Res. 222: 155–158.CrossRefPubMedGoogle Scholar
  482. Tanji, J., and Kurata, K., 1982, Comparison of movement-related activity in two cortical motor areas of primates, J. Neurophysiol. 48: 633–653.PubMedGoogle Scholar
  483. Tanji, J., and Kurata, K., 1985, Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys. I. Responses to instructions determining motor responses to Iòrthcoming signals of different modalities, J. Neurophysiol. 53: 129–141.PubMedGoogle Scholar
  484. Tanji, J., and Shima, K., 1994, Role for supplementary motor area cells in planning several movements ahead, Nature 371: 413–416.CrossRefPubMedGoogle Scholar
  485. Tanji, J., Okano, K., and Sato, K. C., 1988, Neuronal activity in cortical motor areas related to ipsilateral, contralateral and bilateral digit movements of the monkey, J. Neurosphysiol. 60: 325–343.Google Scholar
  486. Tanji, J., Taniguchi, K., and Saga, T., 1980, Supplementary motor area: Neuronal response to motor instructions, J. Neurophysiol. 43: 60–68.PubMedGoogle Scholar
  487. Taylor, D. A., 1976, Stage analysis of reaction time, Psychol. Bull. 83: 161–191.CrossRefPubMedGoogle Scholar
  488. Tehovnik, E. J., 1995, The dorsomedial frontal cortex: Eye and forelimb fields, Behay. Brain Res. 67: 147–163.CrossRefGoogle Scholar
  489. Tehovnik, E. J., and Lee, K., 1993, The dorsomedial frontal cortex of the rhesus monkey: “Topographic representation of saccades evoked by electrical stimulation, Exp. Brain Res. 96: 430–442.Google Scholar
  490. Tehovnik, E.J., Lee, K., and Schiller, P. H., 1994, Stimulation-evoked saccades from the dorsomedial frontal cortex of the rhesus monkey following lesions of the frontal eye fields and superior colliculus, Exp. Brain Res. 98: 179–190.CrossRefPubMedGoogle Scholar
  491. Teuber, H.-L., Battersby, W. S., and Bender, M. B., 1949, Changes in visual searching performance following cerebral lesions, Am. J. Physiol. 159: 592.Google Scholar
  492. Thaler, D. E., Rolls, E. T., and Passingham, R. E., 1988, Neuronal activity of the supplementary motor area (SMA) during internally and externally triggered wrist movements, Neurosci. Lett. 93: 264–269.CrossRefPubMedGoogle Scholar
  493. Thaler, D. E., (:hen, Y.-C., Nixon, P. D., Stern, C. E., and Passingham, R. E., 1995, The functions of the medial premotor cortex I. Simple learned movements, Exp. Brain Res. 102: 445–460.Google Scholar
  494. Thickbroom, G. W., and Mastaglia, F. L., 1990, Premotor negativity associated with saccadic eye movement and finger movement: A comparative study, Brain Res. 506: 223–226.CrossRefPubMedGoogle Scholar
  495. Thompson, K. G., Hanes, D. P., and Schall, J. D., 1995, Time-course of target selection in macaque frontal eye field during visual search, Soc. Neurosci. Abstr. 21: 1270.Google Scholar
  496. Thompson, K. G., Hanes, D. P., Bichot, N. P., and Schall, J. D., 1996, Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search, J. Neurophysiol. 76: 4040–4055.Google Scholar
  497. Thorpe, S. J., Rolls, E. “F., and Maddison, S., 1983, ”The orbitofrontal cortex: Neuronal activity in the behaving monkey, Exp. Brain Res. 49: 93–115.Google Scholar
  498. Tomlinson, R. D., and Bahra, P. S., 1986, Combined eye—head gaze shifts in the primate. I. Metrics, J. Neurophysiol. 56: 1542–1557.PubMedGoogle Scholar
  499. Umeno, M. M., and Goldberg, M. E., 1994, Predictive visual responses in monkey frontal eye field, Soc. Neurosci. Abstr. 20: 144.Google Scholar
  500. Ungerleider, L. G., and Mishkin, M., 1982, Two cortical visual systems, in Analysis of Visual Behavior (D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield, eds.), MIT Press, Cambridge, pp. 549–586.Google Scholar
  501. Ungerleider, L. G., Gaffan, D., and Pelak, V. S., 1989, Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys, Exp. Brain Res. 76: 473–484.CrossRefPubMedGoogle Scholar
  502. Vaadia, E., 1989, Single-unit activity related to active localization of acoustic and visual stimuli in the frontal cortex of the rhesus monkey, Brain Behay. Evol. 33: 127–131.CrossRefGoogle Scholar
  503. Vaadia, E., Benson, D. A., Heinz, R. D., and Goldstein, M. H., 1986, Unit activity of monkey frontal cortex: Active localization of auditory and visual cues, J. Neurophysiol. 56: 934–957.PubMedGoogle Scholar
  504. Van Gisbergen, J. A. M., Van Opstal, A. J., and Tax, A. A. M., 1987, Collicular ensemble coding of saccades based on vector summation, Neuroscience 21: 541–555.CrossRefPubMedGoogle Scholar
  505. Van Opstal, A. J., and Van Gisbergen, J. A. M., 1989, A nonlinear model for collicular spatial interactions underlying the metrical properties of electrically elicited saccades, Biol. Cybernet. 60: 171–183.CrossRefGoogle Scholar
  506. Vercher, J.-L., and Gauthier, G. M., 1992, Oculo-manual coordination control: Ocular and manual tracking of visual targets with delayed visual feedback of the hand motion, Exp. Brain Res. 90: 599–609.CrossRefPubMedGoogle Scholar
  507. Viviani, P., 1990, Eye movements in visual search: Cognitive, perceptual and motor control aspects, in: Eye Movements and Their Role in Visual and Cognitive Processes ( E. Kowler, ed.), Elsevier, Amsterdam, pp. 353–393.Google Scholar
  508. Vogels, R., and Urban, G. A., 1990, How well do response changes of striate neurons signal differences in orientation: A study in the discriminating monkey, J. Neurosci. 10: 3543–3558.PubMedGoogle Scholar
  509. Vogt, B. A., 1985, Cingulate Cortex, in: Cerebral Cortex, Volume 4, Association and Auditory Cortices ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 89–149.Google Scholar
  510. Vogt, B. A., and Pandya, D. N., 1987, Cingulate cortex of the rhesus monkey. II. Cortical afferents, /. Comp. Neurol. 262: 271–289.CrossRefGoogle Scholar
  511. Vogt, B. A., Pandya, D. N., and Rosene, D. C., 1987, Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents, J. Comp. Neurol. 262: 256–270.CrossRefPubMedGoogle Scholar
  512. Vogt, B. A., Finch, D. M., and Olson, C. R., 1992, Functional heterogeneity in cingulate cortex: The anterior executive and posterior evaluative regions, Cerebral Cortex 2: 435–443.PubMedGoogle Scholar
  513. Vogt, C., and Vogt, O., 1907, Zur Kenntnis der elektrisch erregbaren Hirnrinden-Gebiete bei den Säugetieren,J. Psychol. Neurol. (Lpz.) 8: 277–456.Google Scholar
  514. Vogt, C., and Vogt, O., 1919, Allgemeine Ergebnisse unserer Hirnforschung. Vierte Mitteilung: Die physiologische Bedeutung der architektonischen Rindenfelderung auf Grund neuer Rindenreizungen, J. Psychol. Neural. (Lpz.) 25: 399–462.Google Scholar
  515. Volkmann, F. C., Schick, A. M. L., and Riggs, L. A., 1968, The time course of visual inhibition during voluntary saccades, /. Opt. Soc. Am. 58: 562–569.CrossRefGoogle Scholar
  516. Volkmann, F. C., Riggs, L. A., White, K. D., and Moore, R. K., 1978, Contrast sensitivity during saccadic eye movements, Vision Res. 18: 1193–1199.CrossRefPubMedGoogle Scholar
  517. von Bonin, G., and Bailey, P., 1947, The Neocortex of Macaca Mulatta, University of Illinois Press, Urbana, IL.Google Scholar
  518. Von Holst, E., and Mittelstaedt, FI., 1950, The principle of reafference: Interactions between the central nervous system and the peripheral organs, Die Naturwissenschaften 37:464–474 [English translation in: Dodwell, P. C., 1980, Perceptual Processing: Stimulus Equivalence and Pattern Recognition, Appleton-Century-Crofts, New York, pp. 41–71].Google Scholar
  519. Wagman, I. H., Krieger, H. P., and Bender, M. B., 1958, Eye movements elicited by surface and depth stimulation of the occipital lobe of Macaque mulatta, J. Comp. Neurol. 109: 169–193.CrossRefGoogle Scholar
  520. Wagman, I. H., Krieger, H. P., Papatheodoron, C. A., and Bender, M. B., 1961, Eye movements elicited by surface and depth stimulation of the frontal lobe, J. Comp. Neurol. 117: 179–188.CrossRefPubMedGoogle Scholar
  521. Walker, A. E., 1940, A cytoarchitectural study of prefrontal area of the macaque monkey, J. Comp. Neurol. 73: 59–86.CrossRefGoogle Scholar
  522. Walker, A. E., and Weaver, T. A., 1940, Ocular movements from the occipital lobe in the monkey,/ Neurophysiol. 3: 353–369.Google Scholar
  523. Watanabe, M., 1981, Prefrontal unit activity during delayed conditional discriminations in the monkey, Brain Res. 225: 51–65.CrossRefPubMedGoogle Scholar
  524. Watanabe, M., 1986a, Prefrontal unit activity during delayed conditional Go/No-Go discrimination in the monkey. I. Relation to the stimulus, Brain Res. 382: 1–14.CrossRefPubMedGoogle Scholar
  525. Watanabe, M., 1986b, Prefrontal unit activity during delayed conditional Go/No-Go discrimination in the monkey. II. Relation to Go and No-Go responses, Brain Res. 382: 15–27.CrossRefPubMedGoogle Scholar
  526. Watanabe, M., 1990, Prefrontal unit activity during associative learning in the monkey, Exp. Brain Res. 80: 296–309.CrossRefPubMedGoogle Scholar
  527. Watanabe, M., 1992, Frontal units of the monkey coding the associative significance of visual and auditory stimuli, Exp. Brain Res. 89: 233–247.CrossRefPubMedGoogle Scholar
  528. Watson, R. T., Fleet, W. S., Gonzalez-Rothi, L., Heilman, K. M., 1986, Apraxia and the supplementary motor area, Arch. Neurol. 43: 787–792.CrossRefPubMedGoogle Scholar
  529. Webster, M. J., Bachevalier, J., and Ungerleider, L. G., 1994, Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys, Cerebral Cortex 4: 470–483.CrossRefPubMedGoogle Scholar
  530. Weinberger, N. M., 1995, Dynamic regulation of receptive fields and maps in the adult sensory cortex, Ann. Rev. Neurosci. 18: 129–158.CrossRefPubMedGoogle Scholar
  531. Weinberger, D. R., Berman, K. F., and Zec, R. F., 1986, Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence, Arch. Gen. Psychiatry 43: 114–125.CrossRefPubMedGoogle Scholar
  532. Weinberger, D. R., and Berman, K. F., 1996, Prefrontal function in schizophrenia: Confounds and controversies, Phil. Trans. R. Soc. Loud. B 351: 1495–1503.CrossRefGoogle Scholar
  533. Weinrich, M., and Wise, S. P., 1982, The premotor cortex of the monkey, J. Neurosci. 2: 1329–1345.PubMedGoogle Scholar
  534. Weinrich, M., Wise, S. P., and Mauritz, K. H., 1984, A neurophysiological study of the premotor cortex in rhesus monkey, Brain 107: 385–414.CrossRefPubMedGoogle Scholar
  535. Weller, R. E., and Kaas, J. H., 1987, Subdivisions and connections of inferior temporal cortex in owl monkeys, J. Comp. Neural. 256: 137–172.CrossRefGoogle Scholar
  536. Wessel, K., Zeffiro, T., Lou, J. S., Toro, C., and Hallett, M., 1995, Regional cerebral blood flow during a self-paced sequential finger opposition task in patients with cerebellar degeneration, Brain 118: 379–393.CrossRefPubMedGoogle Scholar
  537. Wiesendanger, M., and Wise, S. P., 1992, Current issues concerning the functional organization of motor cortical areas in nonhuman primates, in: Frontal Lobe Seizures and Epilepsy ( P. Chauvel, A. V. Delgado-Escuerta, E. Halgren, and J. Bancaud, eds.), Raven Press, New York, pp. 117–134.Google Scholar
  538. Williams, S. M., and Goldman-Rakic, P. S., 1993, Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody, Cerebral Cortex 3: 199–222.CrossRefPubMedGoogle Scholar
  539. Williams, G. V., and Goldman-Rakic, P. S., 1995, Modulation of memory fields by dopamine D1 receptors in prefrontal cortex, Nature 376: 572–575.CrossRefPubMedGoogle Scholar
  540. Wilson, F. A. W., Ó Scalaidhe, S. P., and Goldman-Rakic, P. S., 1993, Dissociation of object and spatial processing domains in primate prefrontal cortex, Science 260: 1955–1958.CrossRefPubMedGoogle Scholar
  541. Wise, S. P., 1985, The primate premotor cortex: Past, present and preparatory, Annu. Rev. Neurosci. 8: 1–19.CrossRefPubMedGoogle Scholar
  542. Wise, S. P., and Kurata, K., 1989, Set-related activity in the premotor cortex of rhesus monkeys: Effect of triggering cues and relatively long delay intervals, Somatosens. Motor Res. 6: 455–476.Google Scholar
  543. Wise, S. P., and Mauritz, K.-H., 1985, Set-related neuronal activity in the premotor cortex of rhesus monkeys: Effects of changes in motor set, Proc. R. Soc. Gond. B 223: 331–354.CrossRefGoogle Scholar
  544. Wise, S. P., and Tanji, J., 1981, Supplementary and precentral motor cortex: Contrast in responsiveness to peripheral input in the hindlimb area of the unanesthetized monkey, J. Comp. Neural. 195: 433–451.CrossRefGoogle Scholar
  545. Wise, S. P., Weinrich, M., and Mauritz, K.-H., 1986, Movement-related activity in the premotor cortex of rhesus macaques, in: Progress in Brain Research, Volume 64 ( H.-J. Freund, U. Büttner, B. Cohen, and J. Noth, eds.), Elsevier, New York, pp. 117–131.Google Scholar
  546. Wolkin, A., Sanfilipo, M., Wolf, A. P., Angrist, B., Brodie, J. D., and Rotrosen,]., 1992, Negative symptoms and hypofrontality in chronic schizophrenia, Arch. Gen. Psychiatry 49: 959–965.CrossRefPubMedGoogle Scholar
  547. Wurtz, R. H., and Mohler, C. W., 1976, Enhancement of visual response in monkey striate cortex and frontal eye fields,/ Neurophysiol. 39: 766–772.Google Scholar
  548. Yajeya, J., Quintana, J., and Fuster, J. M., 1988, Prefrontal representation of stimulus attributes during delay tasks. 11. The role of behavioral significance, Brain Res. 474: 222–230.CrossRefPubMedGoogle Scholar
  549. Yarbus, A. L., 1967, Eye Movements and Vision, Plenum Press, New York.Google Scholar
  550. Yarita, H., lino, M., Tanabe, T., Kogure, S., and Takagi, S. F., 1980, A transthalamic olfactory pathway to orbitofrontal cortex in the monkey, f. Neurophysiol. 43: 69–85.Google Scholar
  551. Young, L., and Stark, L., 1963, A discrete model for eye tracking movements, IEEE Trans. Military Elect. MIL-7: 113–115.Google Scholar
  552. Zambarbieri, D., Schmid, R., Magenes, G., and Prablanc, C., 1982, Saccadic responses evoked by presentation of visual and auditory targets, Exp. Brain Res. 47: 417–427.CrossRefPubMedGoogle Scholar
  553. Zangemeister, W. M., and Stark, L., 1982, Gaze latency: Variable interactions of head and eye latency, Exp. Neural. 75: 389–406.CrossRefGoogle Scholar
  554. Zatorre, R. J., Evans, A. C., Meyer, E., and Gjedde, A., 1992, Lateralization of phonetic and pitch discrimination in speech processing, Science 256: 846–849.CrossRefPubMedGoogle Scholar
  555. Zingale, C. M., and Kowler, E., 1987, Planning sequences of saccades, Vision Res. 27: 1327–1341.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jeffrey D. Schall
    • 1
  1. 1.Department of Psychology, Vanderbilt UniversityVanderbilt Vision Research CenterNashvilleUSA

Personalised recommendations