Columnar Organization in the Inferotemporal Cortex

  • Keiji Tanaka
Part of the Cerebral Cortex book series (CECO, volume 12)


A key function of the primate brain is recognition of objects from their visual images. The recognition process is flexible, tolerating marked changes in images due to changes in illumination, viewing angle, and pose of the object. Moreover, the primate visual system processes images of novel objects based on previous visual experience of similar objects. Generalization may be an intrinsic property of the primate visual system. In this review the neural organization essential for these flexible aspects of visual object recognition in TE of the inferotemporal cortex is discussed.


Receptive Field Critical Feature Superior Temporal Sulcus Perirhinal Cortex Simple Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baylis, G. C., Rolls, E. T., and Leonard, C. M., 1985, Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey, Brain Res. 342: 91–102.PubMedCrossRefGoogle Scholar
  2. Baylis, G. C., Rolls, E. T., and Leonard, C. M., 1987, Functional subdivisions of the temporal lobe neocortex, J. Neurosci. 7: 330–342.PubMedGoogle Scholar
  3. Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1991, Visual topography of area TEO in the macaque, J. Comp. Neural. 306: 554–575.CrossRefGoogle Scholar
  4. Bruce, C., Desimone, R., and Gross, C. G., 1981, Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque, J. Neurophysiol. 46: 369–384.PubMedGoogle Scholar
  5. Chelazzi, L., Miller, E. K., Duncan, J., and Desimone, R., 1993, A neural basis for visual search in inferior temporal cortex, Nature 363: 345–347.PubMedCrossRefGoogle Scholar
  6. Cheng, K., Saleem, K. S., and ‘l’anaka, K., 1993, PHA-L study of the subcortical projections of the macaque inferotemporal cortex, Soc. Neurosci. Abstr. 19: 971.Google Scholar
  7. Crick, F., 1984, Function of the thalamic reticular complex: The searchlight hypothesis, Proc. Natl. Acad. Sci. USA 81: 4586–4590.PubMedCrossRefGoogle Scholar
  8. Dean, P., 1976, Effects of inferotemporal lesions on the behavior of monkeys, Psychol. Bull. 83: 4171.CrossRefGoogle Scholar
  9. Desimone, R., Fleming, J., and Gross, C. D., 1980, Prestriate afferents to inferior temporal cortex: An HRP study, Brain Res. 184: 41–55.PubMedCrossRefGoogle Scholar
  10. Edelman, S., 1995, Representation, similarity and the chorus of prototypes, Minds Machines 5: 45–68.CrossRefGoogle Scholar
  11. Engel, A. K., Konig, P., Kreiter, A. K., Schillen, T. B., and Singer, W., 1992, Temporal coding in the visual cortex: New vistas on integration in the nervous system, Trends Neurosci. 15: 218–226.PubMedCrossRefGoogle Scholar
  12. Erickson, R. P., 1968, Stimulus coding in topographic and nontopographic afferent modalities: On the significance of the activity of individual neurons, Psychol. Rev. 75: 447–465.PubMedCrossRefGoogle Scholar
  13. Foldiak, P., 1991, Learning invariance from transformation sequences, Neural Comput. 3: 194–200.CrossRefGoogle Scholar
  14. Frostig, R. D., Lieke, D. E., Ts’o, D. Y., and Grinvald, A., 1990, Cortical functional architecture and local coupling between neuronal activity and the microstimulation revealed in in vivo high-resolution optical imaging of intrinsic signals, Proc. Natl. Acad. Sci. USA 87: 6082–6086.PubMedCrossRefGoogle Scholar
  15. Fujita, I., Tanaka, K., Ito, M., and Cheng, K., 1992, Columns for visual features of objects in monkey inferotemporal cortex, Nature 360: 343–346.PubMedCrossRefGoogle Scholar
  16. Goodale, M. A., and Milner, A. D., 1992, Separate visual pathways for perception and action, Trends Neurosci. 15: 20–25.PubMedCrossRefGoogle Scholar
  17. Goodale, M. A., Milner, A. D., Jakobson, L. S., and Carey, D. P., 1991, A neurological dissociation between perceiving objects and grasping them, Nature 349: 154–156.PubMedCrossRefGoogle Scholar
  18. Gross, C. G., 1973, Visual functions of inferotemporal cortex, in: Handbook of Sensory Physiology, Vol. 7, Part 3B ( R. Jung, ed.), Springer-Verlag, Berlin, pp. 451–482.Google Scholar
  19. Gross, C. G., Rocha-Miranda, C. E., and Bender, D. B., 1972, Visual properties of neurons in inferotemporal cortex of the macaque, J. Neurophysiol. 35: 96–111.PubMedGoogle Scholar
  20. Ito, M., Fujita, I., Tamura, H., and Tanaka, K., 1994, Processing of contrast polarity of visual images in inferotemporal cortex of the macaque monkey, Cerebral Cortex 5: 499–508.Google Scholar
  21. Ito, M., ‘l’amura, H., Fujita, I., and Tanaka, K., 1995, Size and position invariance of neuronal responses in monkey inferotemporal cortex, J. Neurophysiol. 73: 218–226.Google Scholar
  22. Iwai, E., and Yukie, M., 1987, Amygdalofugal and amygdalopetal connections with modality-specific visual cortical areas in macaques (Macaca fuscata, M. mulatta, and M. fascicular is), J. Comp. Neurol. 261: 362–387.PubMedCrossRefGoogle Scholar
  23. Iwai, E., Yukie, M., Suyama, H., and Shirakawa, S., 1987, Amygdalar connections with middle and inferior temporal gyri of the monkey, Neurosci. Lett. 83: 25–29.PubMedCrossRefGoogle Scholar
  24. Kawato, M., Inui, T., Hongo, S., and Hayakawa, H., 1991, Computational theory and neural network models of interaction between visual cortical areas, AIR Technical Report, TR-A-0105 ( Kyoto, ATR).Google Scholar
  25. Kawato, M., Hayakawa, H., and Inui, T., 1993, A forward-inverse optics model of reciprocal connections between visual cortical areas, Network 4: 415–422.CrossRefGoogle Scholar
  26. Kobatake, E., and Tanaka, K., 1994, Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex, J. Neurophysiol. 71: 856–867.PubMedGoogle Scholar
  27. Kobatake, E., Tanaka, K., and Tamori, Y., 1992, Long-term learning changes the stimulus selectivity of cells in the inferotemporal cortex of adult monkeys, Neurosci. Res. 917: S237.Google Scholar
  28. Kobatake, E., Tanaka, K., Wang, G., and Tamori, Y., 1993, Effects of adult learning on the stimulus selectivity of cells in the inferotemporal cortex, Soc. Neurosci. Abstr. 19: 975.Google Scholar
  29. Kusunoki, M., Tanaka, Y., Ohtsuka, H., Ishiyama, K., and Sakata, H., 1993, Selectivity of the parietalGoogle Scholar
  30. visual neurons in the axis orientation of objects in space Soc. Neurosci. Abstr. 19:770.Google Scholar
  31. Lehky, S. R., Sejnowski, T. J., and Desimone, R., 1992, Predicting responses of nonlinear neurons inGoogle Scholar
  32. monkey striate cortex to complex patterns J. Neurosci. 12:3568–3581.Google Scholar
  33. Leonard, C. M., Rolls, E. T., Wilson, F. A. W., and Baylis, G. C., 1985, Neurons in the amygdala of the monkey with responses selective for faces, Behay. Brain Res. 15: 159–176.CrossRefGoogle Scholar
  34. Li, L., Miller, E. K., and Desimone, R., 1993, The representation of stimulus familiarity in anterior inferior temporal cortex, J. Neurophysiol. 69: 1918–1929.PubMedGoogle Scholar
  35. Malach, R., 1994, Cortical columns as devices for maximizing neuronal diversity, Trends Neurosci. 17: 101–104.PubMedCrossRefGoogle Scholar
  36. Martin-Elkins, C. L., and Horel, J. A., 1992, Cortical afferents to behaviorally defined regions of the inferior temporal and parahippocampal gyri as demonstrated by WGA-HRP, J. Comp. Neurol. 321: 177–192.PubMedCrossRefGoogle Scholar
  37. Miller, E. K., Li, L., and Desimone, R., 1991, A neural mechanism for working and recognition memory in inferior temporal cortex, Science 254: 1377–1379.PubMedCrossRefGoogle Scholar
  38. Mishkin, M., Ungerleider, L. G., and Macko, K. A., 1983, Object vision and spatial vision: Two cortical pathways, Trends Neurosci. 6: 414–417.CrossRefGoogle Scholar
  39. Moran, J., and Desimone, R., 1985, Selective attention gates visual processing in the extrastriate cortex, Science 229: 782–784.PubMedCrossRefGoogle Scholar
  40. Mountcastle, V. B., 1978, An organizing principle for cerebral function: The unit module and the distributed system, in: The Mindful Brain ( V. B. Mountcastle and G. M. Edelman, eds.), MIT Press, Cambridge, MA, pp. 7–50.Google Scholar
  41. Nakamura, H., Gattass, R., Desimone, R., and Ungerleider, L. G., 1993, ‘The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques, J. Neurosci. 13: 3681–3691.Google Scholar
  42. Nakamura, K., Matsumoto, K., Mikami, A., and Kubota, K., 1994, Visual response properties of single neurons in the temporal pole of behaving monkeys, J. Neurophysiol. 71: 1206–1221.PubMedGoogle Scholar
  43. Nakamura, K., Mikami, A., and Kubota, K., 1992, Activity of single neurons in the monkey amyg dala during performance of a visual discrimination task, J. Neurophysiol. 67: 1447–1463.PubMedGoogle Scholar
  44. Oram, M. W., and Perrett, D. I., 1994, Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli, J. Cognitive Neurosci. 6: 99–116.CrossRefGoogle Scholar
  45. Perrett, D. I., Rolls, E. T., and Caan, W., 1982, Visual neurones responsive to faces in the monkey temporal cortex, Exp. Brain Res. 47: 329–342.PubMedCrossRefGoogle Scholar
  46. Perrett, D. I., Smith, P. A. J., Mistlin, A. J., Chitty, A. J., Head, A. S., Potter, D. D., Broennimann, R., Milner, A. D., and Jeeves, M. A., 1985, Visual analysis of body movements by neurons in the temporal cortex of the macaque monkey: A preliminary report, Behay. Brain Res. 16: 153170.Google Scholar
  47. Perrett, D. I., Harries, M. H., Bevan, R., Thomas, S., Benson, P. J., Mistlin, A. J., Chitty, J. K., Hietanen, J. K., and Ortega, J. E., 1989, Frameworks of analysis for the neural representation of animate objects and actions, J. Exp. Biol. 146: 87–113.PubMedGoogle Scholar
  48. Perrett, D. I., Hietanen, J. K., Oram, M. W., and Benson, P. J., 1992, Organization and functions of cells responsive to faces in the temporal cortex, Phil. Trans. R. Soc. Lund. B 335: 23–30.CrossRefGoogle Scholar
  49. Peters, A., and Yilmaz, E., 1993, Neuronal organization in area 17 of cat visual cortex, Cerebral Cortex 3: 49–68.PubMedCrossRefGoogle Scholar
  50. Purves, D., Riddle, D. R., and LaMantia, A.-S., 1992, Iterated patterns of brain circuitry (or how the cortex gets its spots), Trends Neurosci. 15: 362–368.PubMedCrossRefGoogle Scholar
  51. Richmond, B. J., and Sato, T., 1987, Enhancement of inferior temporal neurons during visual discrimination, J. Neurophysiol. 58: 1292–1306.PubMedGoogle Scholar
  52. Rockland, K. S., and Van Hoesen, G. W., 1994, Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey, Cerebral Cortex 4: 300–313.PubMedCrossRefGoogle Scholar
  53. Rockland, K. S., Saleem, K. S., and Tanaka, K., 1994, Divergent feedback connections from areas V4 and TE() in the macaque, Visual Neurosci. 11: 579–600.CrossRefGoogle Scholar
  54. Rolls, E. T., and Tovee, M. J., 1995, Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex, J. Neurophysiol. 73: 713–726.Google Scholar
  55. Rolls, E. T, Baylis, G. C., and Leonard, C. M., 1985, Role of low and high spatial frequencies in the face-selective responses of neurons in the cortex in the superior temporal sulcus in the monkey, Vision Res. 25: 1021–1035.PubMedCrossRefGoogle Scholar
  56. Rolls, E. T., Baylis, G. C., Hasselmo, M. E., and Nalwa, V., 1989, The effect of learning on the face-selective responses of neurons in the cortex in the superior temporal sulcus of the monkey, Exp. Brain Res. 76: 153–164.PubMedCrossRefGoogle Scholar
  57. Sakata, H., and Kusunoki, M., 1992, Organization of space perception: Neural representation of three-dimensional space in the posterior parietal cortex. Curr. Opin. Neurobiol. 2: 170–174.PubMedCrossRefGoogle Scholar
  58. Saleem, K. S., Tanaka, K., and Rockland, K. S., 1992, PHA-L study of connections from TEO and V4 to TE in the monkey visual cortex, Soc. Neurosci. Abstr. 18: 294.Google Scholar
  59. Saleem, K. S., Tanaka, K., and Rockland, K. S., 1993, Specific and columnar projection from area TEO to TE in the macaque inferotemporal cortex, Cerebral Cortex 3: 454–464.PubMedCrossRefGoogle Scholar
  60. Saleem, K. S., Cheng, K., and Tanaka, K., 1994, Differential projection from ventral and dorsal parts of the anterior TE to perirhinal cortex in the macaque monkey, Neurosci. Res. 19: S201.CrossRefGoogle Scholar
  61. Saleem, K. S., Cheng, K., and Tanaka, K., 1995, Differential cortical projection of dorsal and ventral sub-regions of the area TE in the macaque inferotemporal cortex, IBRO Abstr. 4: 284.Google Scholar
  62. Sary, G., Vogels, R., and Orban, G. A., 1993, Cue-invariant shape selectivity of macaque inferior temporal neurons, Science 260: 995–997.PubMedCrossRefGoogle Scholar
  63. Seltzer, B., and Pandya, D. N., 1978, Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey, Brain Res. 149: 1–24.PubMedCrossRefGoogle Scholar
  64. Seltzer, B., and Pandya, D. N., 1984, Further observations on parieto-temporal connections in the rhesus monkey, Exp. Brain Res. 55: 301–312.PubMedCrossRefGoogle Scholar
  65. Seltzer, B., and Pandya, D. N., 1989, Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey, J. Comp. Neurol. 290: 451–471.PubMedCrossRefGoogle Scholar
  66. Seltzer, B., and Pandya, D. N., 1994, Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: A retrograde tracer study, J. Comp. Neural. 343: 445–463.CrossRefGoogle Scholar
  67. Singer, W., 1993, Synchronization of cortical activity and its putative role in information processing and learning, Annu. Rev. Physiol. 55: 349–374.PubMedCrossRefGoogle Scholar
  68. Snippe, H. P., and Koenderink, J. J., 1992, Discrimination thresholds for channel-coded systems, Biol. Cybernet. 66: 543–551.CrossRefGoogle Scholar
  69. Spitzer, H., Desimone, R., and Moran, J. 1988, Increased attention enhances both behavioral and neuronal performance, Science 240: 338–340.Google Scholar
  70. Suzuki, W. A., and Amaral, D. G., 1995, Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents, J. Comp. Neural. 349: 1–36.Google Scholar
  71. Taira, M., Mine, S., Georgopoulos, A. P., Murata, A., and Sakata, H., 1990, Parietal cortex neurons of the monkey related to the visual guidance of hand movement, Exp. Brain Res. 83: 29–36.PubMedCrossRefGoogle Scholar
  72. Tanaka, K., Saito, H., Fukada, Y., and Moriya, M., 1991, Coding visual images of objects in the inferotemporal cortex of the macaque monkey, J. Neurophysiol. 66: 170–189.PubMedGoogle Scholar
  73. Tanaka, Y., Kusunoki, M., Ohtsuka, H., Takiura, K., and Sakata, H., 1992, Analysis of three dimensional directional selectivity of the monkey parietal depth-movement-sensitive neurons using a stereoscopic computer display system, Neurosci. Res. S17: S238.Google Scholar
  74. Tanaka, Y., Murata, A., Taira, M., Shikata, E., and Sakata, H., 1994, Responses of the parietal visual neurons to stereoscopic stimuli on the computer graphic display in alert monkeys, Neurosci. Res. S19:S200.Thomson, A. M., and Deuchars, J., 1994, Temporal and spatial properties of local circuits in neo-cortex, Trends Neurosci. 17: 119–126.CrossRefGoogle Scholar
  75. Tovee, M. J., and Rolls, E. T., 1992, Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli, NeuroReport 3: 369–372.PubMedCrossRefGoogle Scholar
  76. Ungerleider, L. G., Gaffan, D., and Pelak, V. S., 1989, Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys, Exp. Brain Res. 76: 473–484.PubMedCrossRefGoogle Scholar
  77. Van Hoesen, G. W., 1982, The parahippocampal gyrus: New observations regarding its cortical connections in the monkey, Trends Neurosci. 5: 345–350.CrossRefGoogle Scholar
  78. Wang, G., ‘Tanaka, K., and Tanifuji, M., 1996, Optical imaging of functional organization in the monkey inferotemporal cortex, Science 272: 1665–1668.Google Scholar
  79. Young, M. P., and Yamane, S., 1992, Sparse population coding of faces in the inferotemporal cortex, Science 29: 1327–1331.CrossRefGoogle Scholar
  80. Young, M. P., Tanaka, K., and Yamane, S., 1992, On oscillating neuronal responses in the visual cortex of the monkey, J. Neurophysiol. 67: 1464–1474.PubMedGoogle Scholar
  81. Yukie, M., Hikosaka, K., and Iwai, E., 1992, Organization of cortical visual projections to the dot-sal and ventral parts of area TE of the inferotemporal cortex in macaques, Soc. Neurosci. Abstr. 18: 294Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Keiji Tanaka
    • 1
  1. 1.Brain Science InstituteRIKENWako-shi, SaitamaJapan

Personalised recommendations