Modulatory Events in the Development and Evolution of Primate Neocortex

  • Edward G. Jones
Part of the Cerebral Cortex book series (CECO, volume 8A)


The cerebral cortex of primates is one of the hallmarks of mammalian brain evolution. The large number and density of neurons in the cortex, their multiple patterns of connectivity, and the highly ordered patterns of cortical lamination and cytoarchitecture present an appearance of great complexity. Such complexity arises, however, from a sequence of orderly and predictable developmental events proceeding from a relatively simple pattern of cellular proliferation and migration. The early phases of neocortical development, during which proliferation and migration are the predominant events, have been the subjects of detailed investigation and a number of reviews (Rakic, 1974). The later events in neocortical ontogenesis, especially those associated with connection formation, the establishment of cytoarchitectonic boundaries, and the genesis of the definitive neuronal phenotypes, have been less thoroughly studied. There are several obvious reasons for this, not the least of which is the lack of ready access to significant numbers of fetal primates for experimental studies. Certain data are emerging, however, which when coupled with those derived from studies of nonprimates, enable what may be the critical events in later neocortical development in the primate to be identified and their implications for the evolution of the primate cortex to be considered. Inevitably, however, the following contains much that is conjectural.


Visual Cortex Cortical Plate Ocular Dominance Postnatal Development Monocular Deprivation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrien, J., Blanc, G., Buisseret, P., Fregnac, Y., Gary-Bobo, E., Imbert, M., Tassin, J. P., and Trotter, Y., 1985, Noradrenaline and functional plasticity in kitten visual cortex: A reexamination, J. Physiol. (London) 367:73–98.Google Scholar
  2. Akers, R. M., Moshier, D. F., and Lilien, J. E., 1981, Promotion of retinal neurite outgrowth by substratum-bound fibronectin, Dev. Biol. 86:179–188.PubMedGoogle Scholar
  3. Albus, K., and Wolf, W., 1984, Early post-natal development of neuronal function in the kitten’s visual cortex: A laminar analysis, J. Physiol. (London) 348:153–185.Google Scholar
  4. Allman, J., 1990, Evolution in the neocortex, in: Cerebral Cortex, Volume 8A (E. G. Jones and A. Peters, eds.), Plenum Press, New York, in press.Google Scholar
  5. Alloway, K. D., and Burton, H., 1986, Bicuculline-induced alterations in neuronal responses to controlled tactile stimuli in the second somatosensory cortex of the cat: A microiontophoretic study, Somatosens. Res. 3:197–211.PubMedGoogle Scholar
  6. Aoki, C., and Siekevitz, P., 1985, Ontogenetic changes in the cyclic adenosine 3′, 5′ monophosphate-stimulatable phosphorylation of cat visual cortex proteins, particularly of microtubule-associated protein 2 (MAP-2): effects of normal and dark rearing and of exposure to light, J. Neurosci. 5:2465–2483.PubMedGoogle Scholar
  7. Arimatsu, Y., Naegele, J. R., and Barnstable, C. J., 1987, Molecular markers of neuronal subpopulations in layers 4, 5, and 6 of cat primary visual cortex, J. Neurosci. 7:1250–1263.PubMedGoogle Scholar
  8. Baker, F. H., Grigg, P., and von Noorden, G. K., 1974, Effects of visual deprivation and strabismus on the response of neurons in the visual cortex of the monkey, including studies in the striate and prestriate cortex in the normal animal, Brain Res. 66:185–208.Google Scholar
  9. Bear, M. F., 1985, Postnatal changes in the distribution of acetylcholinesterase in kitten striate cortex, J. Comp. Neurol. 237:519–532.PubMedGoogle Scholar
  10. Bear, M. F., and Singer, W., 1986, Modulation of visual cortical plasticity by acetylcholine and noradrenaline, Nature 320:172–176.PubMedGoogle Scholar
  11. Bear, M. F., Paradiso, M. A., Schwartz, M., Nelson, S. B., Carnes, K. M., and Daniels, J. D., 1983, Two methods of catecholamine depletion in kitten visual cortex yield different effects on plasticity, Nature 302:245–257.PubMedGoogle Scholar
  12. Bear, M. F., Schmechel, D. E., and Ebner, F. F., 1985, Glutamic acid decarboxylase in the striate cortex of normal and monocularly deprived kittens, J. Neurosci. 5:1262–1275.PubMedGoogle Scholar
  13. Beaulieu, C., and Colonnier, M., 1983, The number of neurons in the different laminae of the binocular and monocular regions of area 17 in the cat, J. Comp. Neurol. 217:337–344.PubMedGoogle Scholar
  14. Beaulieu, C., and Colonnier, M., 1985, A comparison of the number of neurons in individual laminae of cortical areas 17, 18 and posteromedial suprasylvian (PMLS) area in the cat, Brain Res. 339:166–179.PubMedGoogle Scholar
  15. Beaulieu, C., and Colonnier, M., 1989, Number of neurons in individual laminae of areas 3B, 4gamma, and 6aalpha of the cat cerebral cortex: A comparison with major visual areas, J. Comp. Neurol. 279:228–234.PubMedGoogle Scholar
  16. Berbel, P., and Innocenti, G. M., 1988, The development of the corpus callosum in cats: A light-and electron-microscopic study, J. Comp. Neurol. 276:132–156.PubMedGoogle Scholar
  17. Blakemore, C., and Van Sluyters, R. C., 1975, Innate and environmental factors in the development of the kitten’s visual cortex, J. Physiol. (London) 248:663–716.Google Scholar
  18. Blakemore, C., Garey, L. J., and Vital-Durand, F., 1978, The physiological effects of monocular deprivation and their reversal in monkey’s visual cortex, J. Physiol. (London) 283:223–262.Google Scholar
  19. Blasdel, G. G., and Pettigrew, J. D., 1979, Degree of interocular synchrony required for maintenance of binocularity in kitten’s visual cortex, J. Neurophysiol. 42:1692–1710.PubMedGoogle Scholar
  20. Bode-Gruel, K. M., and Singer, W., 1989, The development of N-methyl-D-aspartate receptors in cat visual cortex, Dev. Brain Res. 466:197–204.Google Scholar
  21. Bohringer, R. C., and Rowe, M. J., 1977, The organization of the sensory and motor areas of cerebral cortex in the platypus (Ornithorhynchus anatinus), J. Comp. Neurol. 174:1–14.PubMedGoogle Scholar
  22. Boothe, R. G., Greenough, W. T., Lund, J. S., and Wrege, K. 1979, A quantitative investigation of spine and dendrite development of neurons in visual cortex (area 17) of Macaca nemestrina monkeys, J. Comp. Neurol. 186:473–490.PubMedGoogle Scholar
  23. Bourgeois, J.-P., Jastreboff, P. J., and Rakic, P., 1989, Synaptogenesis in visual cortex of normal and preterai monkeys: Evidence for intrinsic regulation of synaptic overproduction, Proc. Natl. Acad. Sci. USA 86:4297–4301.PubMedGoogle Scholar
  24. Bovolenta, P., and Mason, C., 1987, Growth cone morphology varies with position in the developing mouse visual pathway from retina to first targets, J. Neurosci. 7:1447–1460.PubMedGoogle Scholar
  25. Brenneman, D. E., and Eiden, L. E., 1986, Vasoactive intestinal peptide and electrical activity influence neuronal survival, Proc. Natl. Acad. Sci. USA 83:1159–1162.PubMedGoogle Scholar
  26. Brodmann, K., 1912, Neue Ergebnisse über die vergleichende histologische Lokalisation der Grosshirnrinde mit Berücksichtigung des Stirnhirns, Anat.Anz. 41 (Suppl.): 157–216.Google Scholar
  27. Buisseret, P., and Imbert, P., 1976, Visual cortical cells: Their developmental properties in normal and dark-reared kittens, J. Physiol. (London) 255:511–525.Google Scholar
  28. Buisseret, P., Gary-Bobo, E., and Imbert, M., 1978, Ocular motility and recovery of orientational properties of visual cortical neurones in dark-reared kittens, Nature 272:816–817.PubMedGoogle Scholar
  29. Bulloch, A. G. M., 1987, Somatostatin enhances neurite outgrowth and electrical coupling of regenerating neurons in Helisoma, Brain Res. 412:6–17.PubMedGoogle Scholar
  30. Calford, M. B., and Tweedle, R., 1988, Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after induced sensory deficits, Nature 332:446–448.PubMedGoogle Scholar
  31. Campbell, M. J., Lewis, D. A., Benoit, R., and Morrison, J. H., 1987, Regional heterogeneity in the distribution of somatostatin-28-and somatostatin-28 1–12-immunoreactive profiles in monkey neocortex, J. Neurosci. 7:1133–1144.PubMedGoogle Scholar
  32. Cavanaugh, M. E., and Parnavelas, J. G., 1988, Development of somatostatin immunoreactive neurons in the rat occipital cortex: A combined immunocytochemical-autoradiographic study, J. Comp. Neurol. 268:1–12.Google Scholar
  33. Caviness, V. S., Jr., and Korde, M. G., 1981, Monoaminergic afferents to the neocortex: A developmental histofluorescence study in normal and reeler mouse embryos, Brain Res. 209:1–9.PubMedGoogle Scholar
  34. Chalupa, L. M., and Killackey, H. P., 1989, Process elimination underlies ontogenetic changes in the distribution of callosal projection neurons in the postcentral guyrus of the fetal rhesus monkey, Proc. Natl. Acad. Sci. USA 86:1076–1079.PubMedGoogle Scholar
  35. Chalupa, L. M., Killackey, H. P., Snider, C. J., and Lia, B., 1989, Callosal projection neurons in area 17 of the fetal rhesus monkey, Dev. Brain Res. 46:303–308.Google Scholar
  36. Changeux, J. P., and Danchin, A., 1976, Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks, Nature 264:705–712.PubMedGoogle Scholar
  37. Choi, D. W., 1987, Ionic dependence of glutamate neurotoxicity, J. Neurosci. 7:369–379.PubMedGoogle Scholar
  38. Chun, J. J. M., and Shatz, C. J., 1988a, Redistribution of synaptic vesicle antigens is correlated with the disappearance of a transient synaptic zone in the developing cerebral cortex, Neuron 1:297–310.PubMedGoogle Scholar
  39. Chun, J. J. M., and Shatz, C. J., 1988b, A fibronectin-like molecule is present in the developing cat cerebral cortex and is correlated with subplate neurons, J. Cell Biol. 106:857–872.PubMedGoogle Scholar
  40. Chun, J. J. M., and Shatz, C. J., 1989a, The earliest-generated neurons of the cat cerebral: Characterization by MAP2 and neurotransmitter immunohistochemistry during fetal life, J. Neurosci. 9(5):1648–1667.PubMedGoogle Scholar
  41. Chun, J. J. M., and Shatz, C. J., 1989b, Interstitial cells of the adult neocortical white matter are the remnant of the early-generated subplate neuron population, J. Comp. Neurol. 282:555–569.PubMedGoogle Scholar
  42. Chun, J. J. M., Nakamura, M. J., and Shatz, C. J., 1987, Transient cells of the developing mammalian telencephalon are peptide immunoreactive neurons, Nature 325:617–620.PubMedGoogle Scholar
  43. Chuong, C.-M., and Edelman, G. M., 1984, Alterations in neural cell adhesion molecules during development of different regions of the nervous system, J. Neurosci. 4:2354–2368.PubMedGoogle Scholar
  44. Chuong, C.-M., and Edelman, G. M., 1985a, Expression of cell adhesion molecules in embryonic induction. I. Morphogenesis of nesting feathers, J. Cell Biol. 101:1009–1026.PubMedGoogle Scholar
  45. Chuong, C.-M., and Edelman, G. M., 1985b, Expression of cell adhesion molecules in embryonic induction. II. Morphogenesis of adult feathers, J. Cell Biol. 101:1027–1043.PubMedGoogle Scholar
  46. Chuong, C.-M., Crossin, K. L., and Edelman, G. M., 1987, Sequential expression and differential function of multiple-adhesion molecules during the formation of cerebellar cortical layers, J. Cell Biol. 104:331–342.PubMedGoogle Scholar
  47. Clark, S. A., Allard, T., Jenkins, W. M., and Merzenich, M. M., 1988, Receptive fields in the body-surface map in adult cortex defined by temporally correlated inputs, Nature 332:444–445.PubMedGoogle Scholar
  48. Clarke, S., and Innocenti, G. M., 1986, Organization of immature intrahemispheric connections, J. Comp. Neurol. 251:1–22.PubMedGoogle Scholar
  49. Cline, H. T., Debski, E. A., and Constantine-Paton, M., 1987, N-Methyl-D-aspartate receptor antagonist desegregates eye-specific stripes, Proc. Natl. Acad. Sci. USA 84:4342–4345.PubMedGoogle Scholar
  50. Cohen, J., Burne, J. F., Winter, J., and Bartlett, P., 1986, Retinal ganglion cells lose response to laminin with maturation, Nature 322:465–467.PubMedGoogle Scholar
  51. Conti, F. A., Rustioni, A., Petrusz, P., and Towle, A. C., 1987, Glutamate-positive neurons in the somatic sensory cortex of rats and monkeys, J. Neurosci. 7:1887–1901.PubMedGoogle Scholar
  52. Cooper, N. G. F., and Steindler, D. A., 1986, Lectins demarcate the barrel subfield in the somatosensory cortex of the early postnatal mouse, J. Comp. Neurol. 249:157–169.PubMedGoogle Scholar
  53. Cooper, N. G. F., and Steindler, D. A., 1989, Critical period-dependent alterations of the transient body image in the rodent cerebral cortex, Brain Res. 489:167–176.PubMedGoogle Scholar
  54. Cornwell, P., Ravizza, R., and Payne, B., 1984, Extrinsic visual and auditory connections in the 4-day old kitten, J. Comp. Neurol. 229:97–120.PubMedGoogle Scholar
  55. Cowan, W. M., 1973, Neuronal death as a regulative mechanism in the control of cell number in the nervous system, in: Development and Aging in the Nervous System (M. Rockstein and M. L. Sussman, eds.), Academic Press, New York, pp. 19–41.Google Scholar
  56. Crandall, J. E., and Caviness, V. S., Jr., 1984, Axon strata of the cerebral wall in embryonic mice, Dev. Brain Res. 14:185–196.Google Scholar
  57. Crandall, J. E., Whitcomb, J. M., and Caviness, V. S., Jr., 1985, Development of the spinal-medullary projection from the mouse barrel field, J. Comp. Neurol. 239:205–215.PubMedGoogle Scholar
  58. Crawford, M. L. J., Blake, R., Cool, S. J., and von Noorden, G. K., 1975, Physiological consequences of unilateral and bilateral eye closure in macaque monkeys: Some further observations, Brain Res. 84:150–154.PubMedGoogle Scholar
  59. Cusick, C. G., and Lund, R. D., 1982, Modification of visual callosal projections in rats, J. Comp. Neurol. 212:385–398.PubMedGoogle Scholar
  60. Cynader, M., and Mitchell, D. E., 1977, Monocular astigmatism effects on kitten visual cortex development, Nature 270:177–178.PubMedGoogle Scholar
  61. Cynader, M., Timney, B. N., and Mitchell, D. E., 1980, Period of susceptibility of kitten visual cortex to the effects of monocular deprivation extends beyond six months of age, Brain Res. 191:545–550.PubMedGoogle Scholar
  62. Daw, N. W., Rader, R. K., Robertson, T. W., and Ariel, M., 1983, Effects of 6-hydroxydopamine on visual deprivation in the kitten striate cortex, J. Neurosci. 3:907–914.PubMedGoogle Scholar
  63. Daw, N. W., Robertson, T. W., Rader, R. K., Videen, T. O., and Coscia, C. J., 1984, Substantial reduction of cortical noradrenaline by lesions of adrenergic pathway does not prevent effects of monocular deprivation, J. Neurosci. 4:1354–1360.PubMedGoogle Scholar
  64. Daw, N. W., Robertson, T. W., and Rader, R. K., 1985a, DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) depletes noradrenaline in kitten visual cortex without altering the effects of monocular deprivation, J. Neurosci. 5:1925–1933.PubMedGoogle Scholar
  65. Daw, N. W., Videen, T. O., Robertson, T., and Rader, R. K., 1985b, An evaluation of the hypothesis that noradrenaline affects plasticity in the developing visual cortex, in: The Visual System, Liss, New York, pp. 133–144.Google Scholar
  66. Daw, N. W., Videen, T. O., Rader, R. K., Robertson, T. W., and Coscia, C. J., 1985c, Substantial reduction of noradrenaline in kitten visual cortex by intraventricular injections of 6-hydroxydopamine does not always prevent ocular dominance shifts after monocular deprivation, Exp. Brain Res. 59:30–35.PubMedGoogle Scholar
  67. Dawson, D. R., and Killackey, H. P., 1987, The organization and mutability of the forepaw and hindpaw representations in the somatosensory cortex of the neonatal rat, J. Comp. Neurol. 256:246–256.PubMedGoogle Scholar
  68. Dehay, C., Bullier, J., and Kennedy, H., 1984, Transient projections from the fronto parietal and temporal cortex to areas 17, 18, and 19 in kitten, Exp. Brain Res. 57:208–212.PubMedGoogle Scholar
  69. Dehay, C., Kennedy, H., and Bullier, J., 1986, Callosal connectivity of areas V1 and V2 in the newborn monkey, J. Comp. Neurol. 254:20–33.PubMedGoogle Scholar
  70. Dehay, C., Kennedy, H., Bullier, J., and Berland, M., 1988, Absence of interhemispheric connections of area 17 during development in the monkey, Nature 331:348–350.PubMedGoogle Scholar
  71. Dehay, C., Horsburgh, G., Berland, M., Killackey, H. P., and Kennedy, H., 1989, Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input, Nature 337:265–267.PubMedGoogle Scholar
  72. Des Rosiers, M., Sakurada, O., Jehle, J., Shinohara, M., Kennedy, C., and Sokoloff, L., 1978, Demonstration of functional plasticity in the immature striate cortex of the monkey by means of the [14C] deoxyglucose method, Science 200:447–449.PubMedGoogle Scholar
  73. Dews, P. B., and Wiesel, T. N., 1970, Consequences of monocular deprivation on visual behavior in kittens, J. Physiol. (London) 206:437–455.Google Scholar
  74. Dodd, J., and Jessell, T. M., 1988, Axon guidance and the patterning of neuronal projections in vertebrates, Science 242:692–700.PubMedGoogle Scholar
  75. Duffy, F. H., Snodgrass, S. R., Burchfiel, J. L., and Conway, J. L., 1976, Bicuculline reversal of deprivation amblyopia in the cat, Nature 260:256–257.PubMedGoogle Scholar
  76. Dykes, R. W., Landry, P., Metherate, R., and Hicks, T. P., 1984, Functional role of GABA in cat primary somatosensory cortex: Shaping receptive fields and cortical neurons, J. Neurophysiol. 52:1066–1093.PubMedGoogle Scholar
  77. Edelman, G. M., 1988a, Morphoregulatory molecules, Biochemistry 17:3533–3543.Google Scholar
  78. Edelman, G. M., 1988b, Topobiology: An Introduction to Molecular Embryology, Basic Books, New York.Google Scholar
  79. Edelman, G. M., Gallin, W. J., Delouvee, A., Cunningham, B. A., and Thiery, J.-P., 1983, Early epochal maps of two different cell adhesion molecules, Proc. Natl. Acad. Sci. USA 80:4384–4388.PubMedGoogle Scholar
  80. Fairén, A., Cobas, A., and Fonseca, M., 1986, Times of generation of glutamic acid decarboxylase immunoreactive neurons in mouse somatosensory cortex, J. Comp. Neurol. 251:67–83.PubMedGoogle Scholar
  81. Feng, J. Z., and Brugge, J. F., 1983, Postnatal development of auditory callosal connections in the kitten, J. Comp. Neurol. 214:416–426.Google Scholar
  82. Finlay, B. L., and Pallas, S. L., 1989, Control of cell number in the developing mammalian visual system Prog. Neurobiol. 32:207–234.PubMedGoogle Scholar
  83. Finlay, B. L., and Slattery, M., 1983, Local differences in the amount of early cell death in neocortex predict adult local specializations, Science 219:1349–1351.PubMedGoogle Scholar
  84. Flechsig, P., 1905, Einige Bemerkungen über die Untersuchungens methoden der Grosshirnrinde, insbesondere des Menschen, Arch.Anat. Entwicklungs. 1905:337–444.Google Scholar
  85. Floeter, M. K., and Jones, E. G., 1985, Transplantation of fetal postmitotic neurons to rat cortex: Survival, early pathway choices and long-term projections of outgrowing axons, Dev. Brain Res. 22:19–38.Google Scholar
  86. Foster, G. A., and Schultzberg, M., 1984, Immunohistochemical analysis of the ontogeny of neuropeptide Y immunoreactive neurons in the foetal rat brain, Int. J. Dev. Neurosci. 2:387–407.Google Scholar
  87. Freeman, R. D., and Bonds, A. B., 1979, Cortical plasticity in monocularly deprived immobilized kittens depends on eye movement, Science 206:1093–1095.PubMedGoogle Scholar
  88. Freeman, R. D., Sclar, G., and Ohzawa, I., 1983, An electrophysiological comparison of convergent and divergent strabismus in the cat: Visual evoked potentials, J. Neurophysiol. 49:227–237.PubMedGoogle Scholar
  89. Fregnac, Y., and Imbert, M., 1984, Development of neuronal selectivity in primary visual cortex of cat, Physiol. Rev. 64:325–434.PubMedGoogle Scholar
  90. Frost, D. O., 1981, Orderly anomalous retinal projections to the medial geniculate, ventrobasal, and lateral posterior nuclei of the hamster, J. Comp. Neurol. 203:227–256.PubMedGoogle Scholar
  91. Frost, D. O., 1982, Anomalous visual connections to somatosensory and auditory systems following brain lesions in early life, Dev. Brain Res. 3:627–636.Google Scholar
  92. Frost, D. O., 1984, Axonal growth and target selection during development: Retinal projections to the ventrobasal complex and other “nonvisual” structures in neonatal Syrian hamsters, J. Comp. Neurol. 230:576–592.PubMedGoogle Scholar
  93. Frost, D. O., 1986, Development of anomalous retinal projections to nonvisual thalamic nuclei in Syrian hamsters: A quantitative study, J. Comp. Neurol. 252:95–105.PubMedGoogle Scholar
  94. Frost, D. O., and Campbell, G., 1987, Target-controlled differentiation of axon terminals and synaptic organization, Proc. Natl. Acad. Sci. USA 84:6929–6933.PubMedGoogle Scholar
  95. Frost, D. O., and Metin, C., 1985, Induction of functional retinal projections to the somatosensory system, Nature 317:162–164.PubMedGoogle Scholar
  96. Gabbott, P. L. A., and Somogyi, P., 1986, Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat, Exp. Brain Res. 61:323–331.PubMedGoogle Scholar
  97. Glickstein, M., and Whitteridge, D., 1976, Degeneration of layer III pyramidal cells in area 18 following destruction of callosal input, Brain Res. 104:148–151.PubMedGoogle Scholar
  98. Gordon-Weeks, P. R., 1989, Growth at the growth cone, Trends Neurosci. 12:238–240.PubMedGoogle Scholar
  99. Gorgels, T. G. M. F., De Kort, E. J. M., Van Aanholt, H. T. H., and Nieuwenhuys, R., 1989, A quantitative analysis of the development of the pyramidal tract in the cervical spinal cord in the rat, Anat. Embryol. 179:377–385.PubMedGoogle Scholar
  100. Grimm-Jorgensen, Y., 1987, Somatostatin and calcitonin stimulate neurite regeneration of molluscan neurons in vitro, Brain Res. 403:121–126.PubMedGoogle Scholar
  101. Gu, Q., Bear, M. F., and Singer, W., 1989, Blockade of NMDA receptors prevents ocularity change in kitten visual cortex after reversed monocular deprivation, Dev. Brain Res. 47:281–288.Google Scholar
  102. Hall, D. E., Neugebauer, K. M., and Reichardt, L. F., 1987, Embryonic neural retinal cell response to extracellular matrix proteins: Developmental changes and effects of the cell substratum attachment antibody (CSAT), J. Cell Biol. 104:623–634.PubMedGoogle Scholar
  103. Harris, R. M., and Woolsey, T. A., 1979, Morphology of Golgi-impregnated neurons in mouse cortical barrels following vibrissae damage at different postnatal stages, Brain Res. 161:143–149.PubMedGoogle Scholar
  104. Hatten, M. E., Furie, M. B., and Rifkin, D. B., 1982, Binding of developing mouse cerebellar cells to fibronectin: possible mechanism for the formation of the external granular layer, J. Neurosci. 2:1195–1206.PubMedGoogle Scholar
  105. Hendry, S. H. C., and Jones, E. G., 1986, Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17, Nature 320:750–753.PubMedGoogle Scholar
  106. Hendry, S. H. C., and Jones, E. G., 1988, Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys, Neuron 1:701–712.PubMedGoogle Scholar
  107. Hendry, S. H. C., and Kennedy, M. B., 1986, Immunoreactivity lor a calmodulin-dependent protein kinase is selectively increased in macaque striate cortex after monocular deprivation, Proc. Natl. Acad. Sci. USA, 83:1536–1540.PubMedGoogle Scholar
  108. Hendry, S. H. C., Jones, E. G., and Emson, P. C., 1984, Morphology distribution and synaptic relations of somatostatin and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex, J. Neurosci. 4:2497–2517.PubMedGoogle Scholar
  109. Hendry, S. H. C., Schwark, H. D., Jones, E. G., and Yan, J., 1987a, Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex, J. Neurosci. 7:1503–1519.PubMedGoogle Scholar
  110. Hendry, S. H. C., Jones, E. G., Killackey, H. P., and Chalupa, L. M., 1987b, Choline acetyl transferase immunoreactive neurons in fetal monkey cerebral cortex, Dev. Brain Res. 37:313–317.Google Scholar
  111. Hendry, S. H. C., Jones, E. G., Hockfield, S., and McKay, R. D. G., 1988a, Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus, J. Neurosa. 8:518–542.Google Scholar
  112. Hendry, S. H. C., Jones, E. G., and Burstein, N., 1988b, Activity-dependent regulation of tachykininlike immunoreactivity in neurons of monkey visual cortex, J. Neurosci. 8:1225–1238.PubMedGoogle Scholar
  113. Hendry, S. H. C., Jones, E. G., Emson, P. C., Lawson, D. E. M., Heizmann, C. W., and Streit, P., 1989, Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities, Exp. Brain Res. 76:467–472.PubMedGoogle Scholar
  114. Heumann, D., Leuba, G., and Rabinowicz, T., 1977, Postnatal development of the mouse cerebral cortex. II. Quantitative cytoarchitectonics of visual and auditory areas, J. Hirnforsch. 18:483–500.PubMedGoogle Scholar
  115. Heumann, D., Leuba, G., and Rabinowicz, T., 1978, Postnatal development of the mouse cerebral cortex. IV. Evolution of the total cortical volume, of the population of neurons and glial cells, J. Hirnforsch. 19:385–393.PubMedGoogle Scholar
  116. Hicks, T. P., and Dykes, R. W., 1983, Receptive field size for certain neurons in primary somatosensory cortex is determined by GABA-mediated intracortical inhibition, Brain Res. 274:160–164.PubMedGoogle Scholar
  117. Hoffman, S., and Edelman, G. M., 1983, Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule, Proc. Natl. Acad. Sci. USA 80:5762–5766.PubMedGoogle Scholar
  118. Hogan, D., and Berman, N. E. J., 1989, Axon trajectory and growth cone morphology in the developing corpus callosum, Soc. Neurosci. Abstr. 15:874.Google Scholar
  119. Horton, J. C., and Hedley-Whyte, E. T., 1984, Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex, Philos. Trans. R. Soc. London Ser. B 304:255–272.Google Scholar
  120. Hubel, D. H., and Wiesel, T. N., 1965, Binocular interaction in striate cortex of kittens reared with artificial squint, J. Neurophysiol. 28:1041–1059.PubMedGoogle Scholar
  121. Hubel, D. H., and Wiesel, T. N., 1970, The period of susceptibility to the physiological effects of unilateral eye closure in kittens, J. Physiol. (London) 206:419–436.Google Scholar
  122. Hubel, D. H., and Wiesel, T. N., 1971, Aberrant visual projections in the Siamese cat, J. Physiol. (London) 218:33–62.Google Scholar
  123. Hubel, D. H., and Wiesel, T. N., 1977, Functional architecture of macaque monkey visual cortex, Proc. R. Soc. London Ser. B. 198:1–59.Google Scholar
  124. Hubel, D. H., Wiesel, T. N., and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Philos. Trans. R. Soc. London Ser. B 278:377–409.Google Scholar
  125. Huntley, G. W., and Jones, E. G., 1990, Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins, J. Neurocytol., in press.Google Scholar
  126. Huntley, G. W., Hendry, S. H. C., Jones, E. G., Chalupa, L. M., and Killackey, H. P., 1987, GABA neuropeptide and ChaT expression in neurons of the fetal monkey sensory-motor cortex, Soc. Neurosci. Abstr. 13:76.Google Scholar
  127. Huntley, G. W., Hendry, S. H. C., Killackey, H. P., Chalupa, L. M., and Jones, E. G., 1988a, Temporal sequence of neurotransmitter expression by developing neurons of fetal monkey visual cortex, Dev. Brain Res. 43:69–96.Google Scholar
  128. Huntley, G. W., Hendry, S. H. C., Killackey, H. P., Chalupa, L. M., and Jones, E. G., 1988b, GABA neuropeptide, and tyrosine hydroxylase immunoreactivity in the frontal cortex of fetal monkeys, Soc. Neurosci. Abstr. 14:1021.Google Scholar
  129. Huntley, G. W., Jones, E. G., and DeBlas, A. I., 1990, GABAA receptor immunoreactivity in adult and developing monkey sensory-motor cortex, Exp. Brain Res., in press.Google Scholar
  130. Innocenti, G. M., 1981, Growth and reshaping of axons in the establishment of visual callosal connections, Science 212:824–827.PubMedGoogle Scholar
  131. Innocenti, G. M., and Caminiti, R., 1980, Postnatal shaping of callosal connections from sensory areas, Exp. Brain Res. 38:381–394.PubMedGoogle Scholar
  132. Innocenti, G. M., and Clarke, S., 1984a, Bilateral transitory projection to visual areas from auditory cortex in kittens, Dev. Brain Res. 14:143–148.Google Scholar
  133. Innocenti, G. M., and Clarke, S., 1984b, The organization of immature callosal connections, J. Comp. Neurol. 230:287–309.PubMedGoogle Scholar
  134. Innocenti, G. M., and Frost, D. O., 1979, Effects of visual experience on the maturation of the efferent system to the corpus callosum, Nature 280:231–233.PubMedGoogle Scholar
  135. Innocenti, G. M., and Frost, D. O., 1980, The postnatal development of visual callosal connections in the absence of visual experience of the eyes, Exp. Brain Res. 39:365–375.PubMedGoogle Scholar
  136. Innocenti, G. M., Fiore, L., and Caminiti, R., 1977, Exuberant projection into the corpus callosum from the visual cortex of newborn cats, Neurosci. Lett. 4:237–242.PubMedGoogle Scholar
  137. Innocenti, G. M., Frost, D. O., and Illers, J., 1985, Maturation of visual callosal connections in visually deprived kittens: A challenging critical period, J. Neurosci. 5:255–267.PubMedGoogle Scholar
  138. Innocenti, G. M., Clarke, S., and Kraftsik, R., 1986, Interchange of callosal and association projections in the developing visual cortex, J. Neurosci. 6:1384–1409.PubMedGoogle Scholar
  139. Ivy, G. O., and Killackey, H. P., 1981, The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex, J. Comp. Neurol. 195:367–389.PubMedGoogle Scholar
  140. Ivy, G. O., and Killackey, H. P., 1982, Ontogenetic changes in the projections of neocortical neurons, J. Neurosci. 2:735–743.PubMedGoogle Scholar
  141. Jeanmonod, D., Rice, F. L., and Van der Loos, H., 1981, Mouse somatosensory cortex: Alterations in the barrelfield following receptor injury at different early postnatal ages, Neuroscience 6:1503–1535.PubMedGoogle Scholar
  142. Jensen, K. F., and Killackey, H. P., 1987, Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. II. The altered morphology of thalamocortical afferents following neonatal infraorbital nerve cut, J. Neurosci. 7:3544–3553.PubMedGoogle Scholar
  143. Jessell, T. M., 1988, Adhesion molecules and the hierarchy of neural development, Neuron 1:3–13.PubMedGoogle Scholar
  144. Jones, E. G., 1975, Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey, J. Comp. Neurol. 160:205–268.PubMedGoogle Scholar
  145. Jones, E. G., 1984, Laminar Distribution of cortical efferent cells, in: Cerebral Cortex, Volume 1 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 521–555.Google Scholar
  146. Jones, E. G., 1990, Cellular organization in the primate postcentral gyrus, Prog. Brain Res. in press.Google Scholar
  147. Jones, E. G., and Hendry, S. H. C., 1986, Co-localization of GABA and neuropeptides in neocortical neurons, Trends Neurosci. 9:71–76.Google Scholar
  148. Jones, E. G., and Wise, S. P., 1977, Size laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys, J. Comp. Neurol. 175:391–438.PubMedGoogle Scholar
  149. Jones, E. G., Valentino, K. L., and Fleshman, J. W., 1982a, Adjustment of connectivity in rat neocortex after prenatal destruction of precursor cells of layers II–IV, Dev. Brain Res. 2:425–431.Google Scholar
  150. Jones, E. G., DeFelipe, J., Hendry, S. H. C., and Maggio, J. E., 1988, A study of tachykinin-immunoreactive neurons in monkey cerebral cortex, J. Neurosci. 8:1206–1224.PubMedGoogle Scholar
  151. Jonsson, G., and Kasamatsu, T., 1983, Maturation of monoamine neurotransmitters, and receptors in cat occipital cortex during postnatal critical period, Exp. Brain Res. 50:449–458.PubMedGoogle Scholar
  152. Kaas, J. H., and Guillery, R. W., 1973, The transfer of abnormal visual field representations from the dorsal lateral geniculate nucleus to the visual cortex in Siamese cats, Brain Res. 59:61–96.PubMedGoogle Scholar
  153. Kaas, J. H., Merzenich, M. M., and Killackey, H. P., 1983, The reorganization of the somatosensory cortex following peripheral nerve damage in adult and developing mammals, Annu. Rev. Neurosci 6:325–356.PubMedGoogle Scholar
  154. Kalil, R. E., 1982, Development of ocular dominance columns in cats reared with binocular deprivation or strabismus, Soc. Neurosci. Abstr. 8:4.Google Scholar
  155. Kasamatsu, T., and Pettigrew, J. D., 1976, Depletion of brain catecholamines: Failure of ocular dominance shift after monocular occlusion in kittens, Science 194:206–209.PubMedGoogle Scholar
  156. Kasamatsu, T., and Pettigrew, J. D., 1979, Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine, J. Comp. Neurol. 185:139–162.PubMedGoogle Scholar
  157. Kasamatsu, T., Pettigrew, J. D., and Ary, M., 1979, Restoration of visual cortical plasticity by local microperfusion of norepinephrine, J. Comp. Neurol. 185:163–182.PubMedGoogle Scholar
  158. Kater, S. B., Mattson, M. P., Cohan, C., and Connor, J., 1988, Calcium regulation of the neuronal growth cone, Trends Neurosci. 11:315–321.PubMedGoogle Scholar
  159. Kelahan, A. M., and Doetsch, G. S., 1984, Time-dependent changes in the functional organization of somatosensory cerebral cortex following digit amputation in adult raccoons, Somatosens. Res. 2:49–81.PubMedGoogle Scholar
  160. Killackey, H. P., and Belford, G. R., 1979, The formation of afferent patterns in the somatosensory cortex of the neonatal rat, J. Comp. Neurol. 183:285–304.PubMedGoogle Scholar
  161. Killackey, H. P., and Chalupa, L. M., 1986, Ontogenetic change in the distribution of callosal projection neurons in the postcentral gyrus of the fetal rhesus monkey, J. Comp. Neurol. 244:331–348.PubMedGoogle Scholar
  162. Killackey, H. P., and Shinder, A., 1981, Central correlates of peripheral pattern alterations in the trigeminal system of the rat. II. The effect of nerve section, Dev. Brain Res. 1:121–126.Google Scholar
  163. Killackey, H., Ivy, G. O., and Cunningham, T. J., 1978, Anomalous organization of SMI somatotopic map consequent to vibrissae removal in the newborn rat, Brain Res. 155:136–140.PubMedGoogle Scholar
  164. Kleinschmidt, A., Bear, M. F., and Singer, W., 1987, Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten striate cortex, Science 238:355–358.PubMedGoogle Scholar
  165. Konig, N., Roch, G., and Marty, R., 1975, The onset of synaptogenesis in rat temporal cortex, Anat. Embryol. 148:73–87.PubMedGoogle Scholar
  166. Kostovic, I., and Goldman-Rakic, P. S., 1983, Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain, J. Comp. Neurol. 219:431–447.PubMedGoogle Scholar
  167. Kostovic, I., and Molliver, M. E., 1974, A new interpretation of the laminar development of cerebral cortex: Synaptogenesis in different layers of neopallium in the human fetus, Anat. Rec. 178:395.Google Scholar
  168. Kostovic, I., and Rakic, P., 1980, Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon, J. Neurocytol. 9:219–242.PubMedGoogle Scholar
  169. Kostovic, I., and Rakic, P., 1984, Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining, J. Comp. Neurol. 4:25–42.Google Scholar
  170. Kratz, K. E., and Spear, P. D., 1976, Effects of visual deprivation and alterations in binocular competition on responses of striate cortex neurons in the cat, J. Comp. Neurol. 170:141–152.PubMedGoogle Scholar
  171. Kristt, D. A., and Kasper, E. K., 1983, High density of cholinergic muscarinic receptors accompanies high intensity acetylcholinesterase-staining in layer IV of infant rat somatosensory cortex, Dev. Brain Res. 8:373–376.Google Scholar
  172. Kristt, D. A., and Molliver, M. E., 1976, Synapses, in newborn rat cerebral cortex: A quantitative ultrastructural study, Brain Res. 108:180–186.PubMedGoogle Scholar
  173. Kristt, D. A., and Waldman, J. V., 1982, Developmental reorganization of acetylcholinesterase-rich inputs to the somatosensory cortex of the mouse, Anat. Embryol. 164:331–342.PubMedGoogle Scholar
  174. LaMantia, A. S., and Rakic, P., 1990, Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey, J. Comp. Neurol. 291:520–537.PubMedGoogle Scholar
  175. Letourneau, P. C., Madsen, A. M., Palm, S. L., and Furcht, L. T., 1988, Immunoreactivity for laminin in the developing ventral longitudinal pathway of the brain, Dev. Biol. 125:135–144.PubMedGoogle Scholar
  176. Leuba, G., Heumann, D., and Rabinowicz, T., 1977, Postnatal development of the mouse cerebral neocortex. I. Quantitative cytoarchitectonics of some motor and sensory areas, J. Hirnforsch. 18:461–481.PubMedGoogle Scholar
  177. LeVay, S., Stryker, M. P., and Shatz, C. J., 1978, Ocular dominance columns and their development in layer IV of cat’s visual cortex. A quantitative study, J. Comp. Neurol. 179:223–244.PubMedGoogle Scholar
  178. LeVay, S., Wiesel, T. N., and Hubel, D. H., 1980, The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 191:1–51.PubMedGoogle Scholar
  179. Lidov, H. G. W., and Molliver, M. E., 1982, An immunohistochemical study of serotonin neuron development in the rat: Ascending pathways and terminal fields, Brain Res. Bull. 8:389–430.PubMedGoogle Scholar
  180. Lipton, S. A., 1988, Spontaneous release of acetylcholine affects the physiological nicotinic responses of rat retinal ganglion cells in culture, J. Neurosci. 8:3857–3868.PubMedGoogle Scholar
  181. Lipton, S. A., and Kater, S. B., 1989, Neurotransmitter regulation of neuronal outgrowth, plasticity and survival, Trends Neurosci. 12:265–269.PubMedGoogle Scholar
  182. Lubke, J., and Albus, K., 1989, The postnatal development of layer VI pyramidal neurons in the cat’s striate cortex, as visualized by intracellular Lucifer yellow injections of aldehyde-fixed tissue, Dev. Brain Res. 45:29–38.Google Scholar
  183. Luhmann, H. J., Martinez Millan, L., and Singer, W., 1986, Development of horizontal intrinsic connections in cat striate cortex, Exp. Brain Res. 144:169–172.Google Scholar
  184. Lumsden, A. G. S., and Davies, A. M., 1983, Earliest sensory nerve fibers are guided to peripheral targets by attractants other than nerve growth factor, Nature 306:786–788.PubMedGoogle Scholar
  185. Lumsden, A. G. S., and Davies, A. M., 1986, Chemotropic effect of specific target epithelium in the developing mammalian nervous system, Nature 323:538–539.PubMedGoogle Scholar
  186. Lund, J. S., Boothe, R. G., and Lund, R. D., 1977, Development of neurons in the visual cortex (area 17) of the monkey (Macaca nemestrina): A Golgi study from fetal day 127 to postnatal maturity, J. Comp. Neurol. 176:149.PubMedGoogle Scholar
  187. Lund, R. D., and Mitchell, D. E., 1979a, Asymmetry in the visual callosal connections of strabismic cats, Brain Res. 167:176–179.PubMedGoogle Scholar
  188. Lund, R. D., and Mitchell, D. E., 1979b, The effects of dark-rearing on visual callosal connections of cats, Brain Res. 167:172–175.PubMedGoogle Scholar
  189. Lund, R. D., and Mustari, M. J., 1977, Development of the geniculocortical pathway in rats, J. Comp. Neurol. 173:289–306.PubMedGoogle Scholar
  190. Lund, R. D., Mitchell, D. E., and Henry, G. H., 1978, Squint-induced modification of callosal connections in cats, Brain Res. 144:169–172.PubMedGoogle Scholar
  191. Luskin, M. B., and Shatz, C. J., 1985a, Neurogenesis of the cat’s primary visual cortex, J. Comp. Neurol. 242:611–631.PubMedGoogle Scholar
  192. Luskin, M. B., and Shatz, C. J., 1985b, Studies of the earliest generated cells of the cat’s visual cortex: Cogeneration of subplate and marginal zones, J. Neurosci. 5:1062–1075.PubMedGoogle Scholar
  193. Luskin, M. B., Pearlman, A. L., and Sanes, J. R., 1988, Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus, Neuron 1:635–647.PubMedGoogle Scholar
  194. McCandlish, C., Waters, R. S., and Cooper, N. G. F., 1989, Early development of the representation of the body surface in SI cortex barrel field in neonatal rats as demonstrated with peanut agglutinin binding: Evidence for differential development within the rattunculus, Exp. Brain Res. 77:425–431.PubMedGoogle Scholar
  195. McConnell, S. K., 1985, Migration and differentiation of cerebral cortical neurons after transplantation into the brains of ferrets, Science 229:1268–1271.PubMedGoogle Scholar
  196. McConnell, S. K., 1988, Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation, J. Neurosci. 8:945–974.PubMedGoogle Scholar
  197. McConnell, S. K., Ghosh, A., and Shatz, C. J., 1989, Subplate neurons pioneer the first axon pathway from the cerebral cortex, Science 245:978–981.PubMedGoogle Scholar
  198. McKinley, P. A., and Kruger, L., 1988, Nonoverlapping thalamocortical connections to normal and deprived primary somatosensory cortex for similar forelimb receptive fields in chronic spinal cats, Somatosens. Res. 5:311–323.PubMedGoogle Scholar
  199. Marin-Padilla, M., 1969, Origin of the percellular baskets of the pyramidal cells of the human motor cortex, Brain Res. 14:633–646.PubMedGoogle Scholar
  200. Marin-Padilla, M., 1970a, Prenatal and early postnatal ontogenesis of the human motor cortex: A Golgi study. I. The sequential development of the cortical layers, Brain Res. 23:167–183.PubMedGoogle Scholar
  201. Marin-Padilla, M., 1970b, Prenatal and early postnatal ontogenesis of the human motor cortex: A Golgi study. II. The basket pyramidal system, Brain Res. 23:185–191.PubMedGoogle Scholar
  202. Marin-Padilla, M., 1971, Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study, Z. Anat. Entwicklungsgesch. 134:117–145.PubMedGoogle Scholar
  203. Marin-Padilla, M., 1984, Neurons of layer I: A developmental analysis, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 447–478.Google Scholar
  204. Marin-Padilla, M., 1988, Early ontogenesis of the human cerebral cortex, in: Cerebral Cortex, Volume 7 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 1–34.Google Scholar
  205. Mastronade, D. N., 1983, Correlated firing of ct retinal ganglion cells. I. Spontaneously active inputs to X-and Y-cells, J. Neurophysiol. 49:303–324.Google Scholar
  206. Mattson, M. P., 1988, Neurotransmitters in the regulation of neuronal cytoarchitecture, Brain Res. Rev. 13:179–212.Google Scholar
  207. Merzenich, M. M., Kaas, J. H., Wall, J. T., Sur, M., Nelson, R. J., and Felleman, D. J., 1983a, Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys, Neuroscience 10:639–666.PubMedGoogle Scholar
  208. Merzenich, M. M., Kaas, J. H., Wall, J., Nelson, R. J., Sur, M., and Felleman, D., 1983b, Topographic reorganization of somatosensory cortical areas 3B and 1 in adult monkeys following restricted deafferentation, Neuroscience 8:33–56.PubMedGoogle Scholar
  209. Merzenich, M. M., Nelson, R. J., Stryker, M. P., Cynader, M. S., Schoppmann, A., and Zook, J. M., 1984, Somatosensory cortical map changes following digit amputation in adult monkeys, J. Comp. Neurol. 224:591–605.PubMedGoogle Scholar
  210. Merzenich, M. M., Recanzone, G., Jenkins, W. M., Allard, T., and Nudo, R. J., 1988, Cortical representational plasticity, in: The Neural and Molecular Basis for Learning (J. P. Changeux and M. Konishi, eds.), Wiley, New York.Google Scholar
  211. Meyer, G., and Ferres-Torres, R., 1984, Postnatal maturation of nonpyramidal neurons in the visual cortex of the cat, J. Comp. Neurol. 228:226–244.PubMedGoogle Scholar
  212. Meyer, R. L., 1982, Tetrodotoxin blocks the formation of ocular dominance columns in goldfish, Science 218:589–591.PubMedGoogle Scholar
  213. Meyer, R. L., 1983, Tetrodotoxin inhibits the formation of refined retinotopography in goldfish, Dev. Brain Res. 6:293–298.Google Scholar
  214. Miller, M. W., 1985, Cogeneration of retrogradely labeled corticocortical projection and GABA-immunoreactive local circuit neurons in cerebral cortex, Dev. Brain Res. 23:187–192.Google Scholar
  215. Miller, M. W., 1986, Maturation of rat visual cortex. III. Postnatal morphogenesis and synaptogenesis of local circuit neurons, Dev. Brain Res. 25:271–285.Google Scholar
  216. Mitchell, D. E., and Timney, B., 1984, Postnatal development of function in the mammalian visual system, in: Nervous System III, Handbook of Physiology, Volume III, Section I, American Physiological Society, Washington, D.C., pp. 507–555.Google Scholar
  217. Mitzdorf, U., and Singer, W. 1980, Monocular activation of visual cortex in normal and monocularly deprived cats: An analysis of evoked potentials, J. Physiol. (London) 304:.Google Scholar
  218. Molliver, M. E., Kostovic, I., and Van der Loos, H., 1973, The development of synapses in cerebral cortex of the human fetus, Brain Res. 50:403–407.PubMedGoogle Scholar
  219. Morest, D. K., 1969, The growth of dendrites in the mammalian brain, Z. Anat. Entwicklungsgesch. 128:290–317.PubMedGoogle Scholar
  220. Mountcastle, V. B., 1978, An organizing principle for cerebral function: The unit module and the distributed system, in: The Mindful Brain: Cortical Organization and the Group-Selective Theory of higher Brain Function by G. M. Edelman and V. B. Mountcastle, MIT Press, Cambridge, Mass. pp. 7–50.Google Scholar
  221. Movshon, J. A., 1976, Reversal of the physiological effects of monocular deprivation in the kitten’s visual cortex, J. Physiol (London) 261:125–174.Google Scholar
  222. Movshon, J. A., and Dursteler, M. R., 1977, Effects of brief periods of unilateral eye closure on the kitten’s visual system, J. Neurophysiol. 40:1255–1265.PubMedGoogle Scholar
  223. Movshon, J. A. and Van Sluyters, R. C., 1981, Visual neuronal development, Annu. Rev. Psychol. 32:477–522.PubMedGoogle Scholar
  224. Mower, G. D., Caplan, C. J., Christen, W. G., and Duffy, F. H., 1985, Dark-rearing prolongs physiological but not anatomical plasticity of the cat visual cortex, J. Comp. Neurol. 235:448–466.PubMedGoogle Scholar
  225. Mower, G. D., Rustad, R., and White, W. F., 1988, Quantitative comparisons of gamma-aminobutyric acid neurons and receptors in the visual cortex of normal and dark-reared cats, J. Comp. Neurol. 272:293–302.PubMedGoogle Scholar
  226. Nakanishi, S., 1983, Extracellular matrix during laminar pattern formation of neocortex in normal and reeler mutant mice, Dev. Biol. 95:305–316.PubMedGoogle Scholar
  227. Naus, C. C. G., Miller, F. D., Morrison, J. H., and Bloom, F. E., 1988, Immunohistochemical and in situ hybridization analysis of the development of the rat somatostatin-containing neocortical neuronal system, J. Comp. Neurol. 269:448–463.PubMedGoogle Scholar
  228. Neve, R. L., and Bear, M. F., 1989, Visual experience regulates gene expression in the developing striate cortex, Proc. Natl. Acad. Sci. USA 86:4781–4784.PubMedGoogle Scholar
  229. Nilsson, J., von Euler, A. M., and Dalsgaard, C.-J., 1985, Stimulation of connective tissue cell growth by substance P and substance K, Nature 315:61–63.PubMedGoogle Scholar
  230. Oka, H., Samejima, A., and Yamamoto, T., 1985, Post-natal development of pyramidal tract neurones in kittens, J. Physiol. (London) 363:481–499.Google Scholar
  231. O’Kusky, J., and Colonnier, M., 1982a, A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys, J. Comp. Neurol. 210:278–290.PubMedGoogle Scholar
  232. O’Kusky, J., and Colonnier, M., 1982b, Postnatal changes in the number of neurons and synapses in the visual cortex (area 17) of the macaque monkey: A stereological analysis in normal and monocularly deprived animals, J. Comp. Neurol. 210:291–505.PubMedGoogle Scholar
  233. Olavarria, J., and Van Sluyters, R., 1985, Organization and postnatal development of callosal connections in the visual cortex of the rat, J. Comp. Neurol. 239:1–26.PubMedGoogle Scholar
  234. O’Leary, D. D. M., and Stanfield, B. B., 1986, A transient pyramidal tract projection from the visual cortex in the hamster and its removal by selective collateral elimination, Dev. Brain Res. 27:87–100.Google Scholar
  235. O’Leary, D. D. M., and Stanfield, B. B., 1989, Selective elimination of axons extended by developing cortical neurons is dependent on regional locale: Experiments utilizing fetal cortical transplants, J. Neurosci. 9:2230–2246.PubMedGoogle Scholar
  236. Olson, C. R., and Freeman, R. D., 1975, Progressive changes in kitten striate cortex during monocular vision, J. Neurophysiol. 38:26–32.PubMedGoogle Scholar
  237. Olson, C. R., and Freeman, R. D., 1978, Monocular deprivation and recovery during sensitive period in kittens, J. Neurophysiol. 41:65–74.PubMedGoogle Scholar
  238. Paradiso, M. A., Bear, M. F., and Daniels, J. D., 1983, Effects of intracortical infusion of 6-hydroxydopamine on the response of kitten visual cortex to monocular deprivation, Exp. Brain Res. 51:413–422.Google Scholar
  239. Patterson, P. H., 1988, On the importance of being inhibited, or saying no to growth cones, Neuron 1:263–267.PubMedGoogle Scholar
  240. Peduzzi, J. D., 1988, Genesis of GABA-immunoreactive neurons in the ferret visual cortex, J. Neurosci. 8:920–931.PubMedGoogle Scholar
  241. Peters, A., 1987, Number of neurons and synapses in primary visual cortex, in: Cerebral Cortex, Volume 6 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 267–294.Google Scholar
  242. Peters, A., Kara, D. A., and Harriman, K. M., 1985, The neuronal composition of area 17 of rat visual cortex. III. Numerical considerations, J. Comp. Neurol. 238:263–274.PubMedGoogle Scholar
  243. Pettigrew, J. D., 1974, The effect of visual experience on the development of stimulus specificity by kitten cortical neurones, J. Physiol. (London) 237:249–274.Google Scholar
  244. Powell, T. P. S., 1973, The organization of the major functional areas of the cerebral cortex, Symp. Zool. Soc. London 33:235–252.Google Scholar
  245. Powell, T. P. S., and Hendrickson, A. E., 1981, Similarity in number of neurons through the depth of the cortex in the binocular and monocular part of area 17 of the monkey, Brain Res. 216:409–413.PubMedGoogle Scholar
  246. Price, D. J., and Blakemore, C., 1985, The postnatal development of the association projection from visual cortical area 17 to area 18 in the cat, J. Neurosci. 5:2443–2452.PubMedGoogle Scholar
  247. Price, D. J., and Blakemore, C., 1986, The postnatal development of clustered intrinsic connections in area 18 of the visual cortex in kittens, Dev. Brain Res. 24:31–38.Google Scholar
  248. Price, J., and Thurlow, L., 1988, Cell lineage in the rat cerebral cortex: A study using retroviralmediated gene transfer, Development 104:473–482.PubMedGoogle Scholar
  249. Price, D. J., and Zumbroich, T. J., 1989, Postnatal development of corticocortical efferents from area 17 in the cat’s visual cortex, J. Neurosci. 9:600–613.PubMedGoogle Scholar
  250. Prusky, G. T., Arbuckle, J. M., and Cynader, M. S., 1988a, Transient concordant distributions of nicotinic receptors and acetylcholinesterase activity in infant rat visual cortex, Dev. Brain Res. 39:154–159.Google Scholar
  251. Prusky, G. T., Shaw, C., and Cynader, M. S., 1988b, The distribution and ontogenesis of [3H]nicotine binding sites in cat visual cortex, Dev. Brain Res. 39:161–176.Google Scholar
  252. Raedler, E., and Raedler, A., 1978, Autoradiographic study of early neurogenesis in rat neocortex, Anat. Embryol. 158:267–284.Google Scholar
  253. Raedler, E., Raedler, A., and Feldhaus, S., 1980, Dynamical aspects of neocortical histogenesis in the rat, Anat. Embryol. 158:253–269.PubMedGoogle Scholar
  254. Rakic, P., 1972, Mode of cell migration to the superficial layers of fetal monkey neocortex, J. Comp. Nenrol. 145:61–84.Google Scholar
  255. Rakic, P., 1974, Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition, Science 183:425–427.PubMedGoogle Scholar
  256. Rakic, P., 1976, Prenatal genesis of connections subserving ocular dominance in the rhesus monkey, Nature 261:467–471.PubMedGoogle Scholar
  257. Rakic, P., 1981, Development of visual centers in the primate brain depends on binocular competition before birth, Science 214:928–931.PubMedGoogle Scholar
  258. Rakic, P., 1988, Specification of cerebral cortical areas, Science 241:170–176.PubMedGoogle Scholar
  259. Rakic, P., and Goldman-Rakic, P. S., 1982, Development and modifiability of the cerebral cortex, Neurosci. Res. Progr. Bull. 20:433–606.Google Scholar
  260. Rakic, P., Bourgeois, J.-P. Eckenhoff, M. F., Zecevic, N., and Goldman-Rakic, P. S., 1986, Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex, Science 231:232–235.Google Scholar
  261. Ramirez, L. F., and Kalil, K., 1985, Critical stages for growth in the development of cortical neurons, J. Comp. Neurol. 237:506–518.PubMedGoogle Scholar
  262. Ramoa, A. S., Paradiso, M. A., and Freeman, R. D., 1988, Blockade of intracortical inhibition in kitten striate cortex: Effects on receptive field properties and associated loss of ocular dominance plasticity, Exp. Brain Res. 73:285–298.PubMedGoogle Scholar
  263. Ramóny Cajal, S., 1891, Sur la structure de l’écorce cérébrale de quelques mammifères, La Cellule 7:125–176.Google Scholar
  264. Ramöny Cajal, S., 1894, The Croonian Lecture: La fine structure des centres nerveaux, Proc. R. Soc. London 55:444–467.Google Scholar
  265. Ramóny Cajal. S., 1900, Estudios sobre la corteza cerebral humana II: corteza motriz (conclusion), Rev. Trim. Micrograf. 5:1–11.Google Scholar
  266. Ramóny Cajal, S., 1911 Histologie du système nerveux de l’homme et des vertébrés, Consejo Superior de Investigaciones Cientificas, Volume 2, p. 993.Google Scholar
  267. Raphael, Y., Volk, T., Crossin, K. L. Edelman, G. M., and Geiger, G., 1988, The modulation of cell adhesion molecule expression and intercellular junction formation in the developing avian inner ear, Dev. Biol. 128:222–235.PubMedGoogle Scholar
  268. Rasmusson, D. D., 1982, Reorganization of raccoon somatosensory cortex following removal of the fifth digit, J. Comp. Neurol. 205:313–326.PubMedGoogle Scholar
  269. Rauschecker, J. P., and Singer, W., 1982, The effects of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses, J. Physiol. (London) 310:215–239.Google Scholar
  270. Reh, T. A., and Constantine-Paton, M., 1985, Eye-specific segregation requires neural activity in three-eyed Rana pipiens, J. Neurosci. 5:1132–1143.PubMedGoogle Scholar
  271. Reh, T., and Kalil, K., 1981, Development of the pyramidal tract in the hamster: I. A light microscopic study, J. Comp. Neurol. 200:55–67.PubMedGoogle Scholar
  272. Reh, T., and Kalil, K., 1982, Development of the pyramidal tract in the hamster: II. An electron microscopic study, J. Comp. Neurol. 205:77–88.PubMedGoogle Scholar
  273. Reiter, H. O., and Stryker, M. P., 1988, Neural plasticity without postsynaptic action potentials: Less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited, Proc. Natl. Acad. Sci. USA 85:3623–3627.PubMedGoogle Scholar
  274. Rickman, M., Chronwall, B. M., and Wolff, J. R., 1977, On the development of nonpyramidal neurons and axons outside the cortical plate: The early marginal zone as a pallial anlage, Anat. Embryol. 151:285–307.Google Scholar
  275. Riggett, M. J., and Moody, S. A., 1987, Distribution of laminin and fibronectin along peripheral trigeminal axon pathways in the developing chick, J. Comp. Neurol. 258:580–596.Google Scholar
  276. Robertson, D., and Irvine, D. R. F., 1989, Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness, J. Comp. Neurol. 282:456–471.PubMedGoogle Scholar
  277. Robertson, R. T., Tijerina, A., and Gallivan, M. E., 1985, Transient patterns of acetylcholinesterase activity in visual cortex of the rat: Normal development and the effects of neonatal monocular enucleation, Dev. Brain Res. 21:203–214.Google Scholar
  278. Rockel, A. J., Hiorns, R. W., and Powell, T. P. S., 1974, Numbers of neurons through full depth of neocortex, J. Anat. 118:371.PubMedGoogle Scholar
  279. Rockel, A. J., Hiorns, R. W., and Powell, T. P. S. Powell, 1980, The basic uniformity in structure of the neocortex, Brain 103:221–244.PubMedGoogle Scholar
  280. Rogers, S. L., Letourneau, P. C., Palm, S. L., McCarthy, J., and Furcht, L. T., 1983, Neurite extension by peripheral and central nervous system neurons in response to substratumbound fibronectin and laminin, Dev. Biol. 98:212–220.PubMedGoogle Scholar
  281. Rose, J. E., and Woolsey, C. N., 1948, Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit and cat, J. Comp. Neurol. 89:279–347.PubMedGoogle Scholar
  282. Rose, J. E., and Woolsey, C. N., 1949, The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat, J. Comp. Neurol. 91:441–466.PubMedGoogle Scholar
  283. Rothblatt, L. A., and Schwartz, M. L., 1979, The effect of monocular deprivation on dendritic spines in visual cortex of young and adult albino rats: Evidence for a sensitive period, Brain Res. 161:156–161.Google Scholar
  284. Rubin, G. M., 1988, Drosophila melanogaster as an experimental organism, Science 240:1453–1459.PubMedGoogle Scholar
  285. Ruiz-Marcos, A., and Valverde, F., 1969, The temporal evolution of the distribution of dendritic spines in the visual cortex of normal and dark reared mice, Exp. Brain Res. 8:284–294.PubMedGoogle Scholar
  286. Rutishauser, U., Acheson, A., Hall, A. K., Mann, D. M., and Sunshine, J., 1988, The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions, Science 240:53–57.PubMedGoogle Scholar
  287. Sanes, J. N., Suner, S., Lando, J. F., and Donoghue, J. P., 1988, Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury, Proc. Natl. Acad. Sci. USA 85:2003–2007.PubMedGoogle Scholar
  288. Sato, H., and Tsumoto, T., 1984, GABAergic inhibition already operates on a group of neurons in the kitten visual cortex at the time of eye opening, Dev. Brain Res. 12:311–316.Google Scholar
  289. Schlumpf, M., Shoemaker, W. J., and Bloom, F. E., 1980 Innervation of embryonic rat cerebral cortex by catecholamine-containing fibers, J. Comp. Neurol. 192:361–376.PubMedGoogle Scholar
  290. Schmidt, J. T., 1985, Formation of retinotopic connections: Selective stabilization by an activity dependent mechanism, Cell. Mol. Neurobiol. 5:65–84.PubMedGoogle Scholar
  291. Schreyer, D. J., and Jones, E. G., 1982, Growth and target finding by axons of the corticospinal tract in the prenatal and postnatal rat, Neuroscience 7:1837–1853.PubMedGoogle Scholar
  292. Schreyer, D. J., and Jones, E. G., 1988a, Axon elimination in the developing corticospinal tract of the rat, Dev. Brain Res. 38:103–119.Google Scholar
  293. Schreyer, D. J., and Jones, E. G., 1988b, Topographic sequence of outgrowth of corticospinal axons in the rat: A study using retrograde axonal labeling with fast blue, Dev. Brain Res. 38:89–101.Google Scholar
  294. Schwartz, M. L., and Goldman-Rakic, P. S., 1986, Some callosal neurons of the fetal monkey frontal cortex have axons in the contralateral hemisphere prior to the completion of migration, Soc. Neurosci. Abstr. 12:1211.Google Scholar
  295. Schwartz, M. L., Zheng, D.-S., and Goldman-Rakic, P. S., 1988, Periodicity of GABA-containing cells in primate prefrontal cortex, J. Neurosci. 8:1962–1970.PubMedGoogle Scholar
  296. Shatz, C., 1977a, A comparison of visual pathways in Boston and midwestern Siamese cats, J. Comp. Neurol 171:205–228.PubMedGoogle Scholar
  297. Shatz, C., 1977b, Abnormal interhemispheric connections in the visual system of Boston Siamese cats: A physiological study, J. Comp. Neurol. 171:229–246.PubMedGoogle Scholar
  298. Shatz, C. J., and Luskin, M. B., 1986, The relationship between the geniculocortical afferents and their cortical target cells during development of the cat’s primary visual cortex, J. Neurosci. 6:3655–3668.PubMedGoogle Scholar
  299. Shatz, C. J., and Rakic, P., 1981, The genesis of efferent connections from the visual cortex of the fetal rhesus monkey, J. Comp. Neurol. 196:287–308.PubMedGoogle Scholar
  300. Shatz, C. J., and Stryker, M. P., 1978, Ocular dominance in layer IV of the cat’s visual cortex and the effects of monocular deprivation, J. Physiol. (London) 281:267–284.Google Scholar
  301. Shatz, C. J., Lindstrom, S., and Wiesel, T. N., 1977, The distribution of afferents representing the right and left eyes in the cat’s visual cortex, Brain Res. 131:103–106.PubMedGoogle Scholar
  302. Shatz, C. J., Chun, J. J. M., and Luskin, M. B., 1988, The role of the subplate in the development of the mammalian telencephalon, in: Cerebral Cortex, Volume 7 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 35–58.Google Scholar
  303. Shaw, C., and Cynader, M., 1984, Disruption of cortical activity prevents ocular dominance changes in monocularly deprived kittens, Nature 308:731–734.PubMedGoogle Scholar
  304. Shaw, C., and Cynader, M., 1985, Alterations in the laminar distribution of pentagastrin binding sites in cat visual cortex during postnatal development, Dev. Brain Res. 20:132–136.Google Scholar
  305. Shaw, C., and Cynader, M., 1986, Laminar distribution of receptors in monkey (Macaca fascicularis) geniculostriate system, J. Comp. Neurol. 248:301–312.PubMedGoogle Scholar
  306. Shaw, C., Needier, M. C., and Cynader, M., 1984, Ontogenesis of muscimol binding sites in cat visual cortex, Brain Res. Bull. 13:331–334.PubMedGoogle Scholar
  307. Shaw, C., Wilkinson, M., Cynader, M., Needier, M. C., Aoki, C., and Hall, S. E., 1986, The laminar distributions and postnatal development of neurotransmitter and neuromodulator receptors in cat visual cortex, Brain Res. Bull. 16:661–671.PubMedGoogle Scholar
  308. Shaw, C., Prusky, G., van Huizen, F., and Cynader, M., 1989, Differential effects of quinolinic acid lesions on muscarinic acetylcholine receptors in cat visual cortex during postnatal development, Brain Res. Bull. 22:771–776.PubMedGoogle Scholar
  309. Sherman, S. M., and Spear, P. D., 1982, Organization of visual pathways in normal and visual deprived cats, Physiol. Rev. 62:738–855.PubMedGoogle Scholar
  310. Shoumura, K., 1974, An attempt to relate the origin and distribution of commissural fibers to the presence of large and medium pyramids in layer III in the cat’s visual cortex, Brain Res. 67:13–25.PubMedGoogle Scholar
  311. Shoumura, K., Ando, T., and Kato, K., 1975, Structural organization of ‘callosal’ OBg in human corpus callosum agenesis, Brain Res. 93:241–252.PubMedGoogle Scholar
  312. Sillito, A. M., 1975, The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat, J. Physiol. (London) 250:305–329.Google Scholar
  313. Sillito, A. M., 1979, Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels, J. Physiol. (London) 289:33–53.Google Scholar
  314. Sillito, A. M., Kemp, J. A., and Milson, J. A., and Berardi, N., 1980, A re-evaluation of the mechanisms underlying simple cell orientation selectivity, Brain Res. 194:517–520.PubMedGoogle Scholar
  315. Sillito, A. M., Kemp, J. A., and Blakemore, C., 1981, The role of GABAergic inhibition in the cortical effects of monocular deprivation, Nature 291:318–320.PubMedGoogle Scholar
  316. Silver, J., Poston, M., and Rutishauser, U., 1987, Axon pathway boundaries in the developing brain. I. Cellular and molecular determinants that separate the optic and olfactory projections, J. Neurosci. 7:2264–2272.PubMedGoogle Scholar
  317. Simons, D. J., and Land, P. W., 1987, Early experience of tactile stimulation influences organization of somatic sensory cortex, Nature, 326:694–697.PubMedGoogle Scholar
  318. Singer, W., 1979, Central-core control of visual-cortex functions, in: Neurosciences 4th Study Program, MIT Press, Cambridge, Mass., pp. 1093–1110.Google Scholar
  319. Singer, W., 1988, Pattern recognition and self-organization in biological systems, in: Processing Structures for Perception and Action (H. Marko, G. Hauske, and A. Struppler, eds.), VCH Verlagsgesellschaft, Weinheim, pp. 1–18.Google Scholar
  320. Singer, W., Rauschecker, J., and Werth, R., 1977, The effect of monocular exposure to temporal contrasts on ocular dominance in kittens, Brain Res. 134:568–572.PubMedGoogle Scholar
  321. Smalheiser, N. R., Crain, S. M., and Reid, L. M., 1984, Laminin as a substrate for retinal axons in vitro, Dev. Brain Res. 12:136–140.Google Scholar
  322. Snow, P. J., Nudo, R. J., Rivers, W., Jenkins, W. M., and Merzenich, M. M., 1988, Somatotopically inappropriate projections from thalamocortical neurons to SI cortex of the cat demonstrated by the use of intracortical microstimulation, Somatosens. Res. 5:349–372.PubMedGoogle Scholar
  323. Sotelo, C., and Arsenio-Nunez, M. L., 1976, Development of Purkinje cells in absence of climbing fibers, Brain Res. 111:389–395.Google Scholar
  324. Sotelo, C., Hillman, D. E., Zamora, A. J., and Llinás, R., 1975, Climbing fiber deafferentation: Its action on Purkinje cell dendritic spines, Brain Res. 98:574–581.PubMedGoogle Scholar
  325. Spiegelman, B. M., Lopata, M. A., and Kirschner, M. W., 1979, Aggregation of microtubule initiation sites preceding neurite outgrowth in mouse neuroblastoma cells, Cell 16:253.PubMedGoogle Scholar
  326. Stanfield, B. B., and O’Leary, D. D. M., 1985a, The transient corticospinal projection from the occipital cortex during the postnatal development of the rat, J. Comp. Neurol. 238:236–248.PubMedGoogle Scholar
  327. Stanfield, B. B., and O’Leary, D. D. M., 1985b, Fetal occipital cortical neurones transplanted to the rostral cortex can extend and maintain a pyramidal tract axon, Nature 313:135–137.PubMedGoogle Scholar
  328. Stanfield, B. B., O’Leary, D. D. M., and Fricks, C., 1982, Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones, Nature 298:371–373.PubMedGoogle Scholar
  329. Steffen, H., and Van der Loos, H., 1980, Early lesions on mouse vibrissal follicles: Their influence on dendrite orientation in the cortical barrelfield, Exp. Brain Res. 40:419–431.PubMedGoogle Scholar
  330. Steindler, D. A., Cooper, N. G. F., Faissner, A., and Schachner, M., 1989, Boundaries defined by adhesion molecules during development of the cerebral cortex: The J1/tenascin glycoprotein in the mouse somatosensory cortical barrelfield, Dev. Biol. 131:243–260.PubMedGoogle Scholar
  331. Stewart, G. R., and Pearlman, A. L., 1987, Fibronectin-like immunoreactivity in the developing cerebral cortex, J. Neurosci. 7:3325–3333.PubMedGoogle Scholar
  332. Stryker, M. P., and Harris, W. A., 1986, Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex, J. Neurosci. 6:2117–2132.PubMedGoogle Scholar
  333. Stryker, M. P., and Strickland, S. L., 1984, Physiological segregation of ocular dominance columns depends on the pattern of afferent electrical activity, Invest. Ophthalmol. Suppl. 25:278.Google Scholar
  334. Sunshine, J., Balak, K., Rutishauser, U., and Jacobson, M., 1987, Changes in neural cell adhesion molecule (NCAM) structure during vertebrate neural development, Proc. Natl. Acad. Sci. USA 84:5986–5990.PubMedGoogle Scholar
  335. Sur, M., Garraghty, P., and Roe, A. W., 1989, Experimentally induced visual cortical projections into auditory thalamus and cortex, Science 242:1437–1441.Google Scholar
  336. Takeichi, M., 1988, The cadhedrins: Cell-cell adhesion molecules controlling morphogenesis, Development 102:639–655.PubMedGoogle Scholar
  337. Tieman, S. B., 1988, Effects of monocular deprivation on geniculocortical synapses in the cat, J. Comp. Neurol. 222:166–176.Google Scholar
  338. Tsumoto, T., and Sato, H., 1985, GABAergic inhibition and orientation selectivity of neurons in the kitten visual cortex at the time of eye opening, Vision Res. 25:383–388.PubMedGoogle Scholar
  339. Tsumoto, T., Eckart, W., and Creutzfeldt, O., 1979, Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA mediation inhibition, Exp. Brain Res. 34:351–365.PubMedGoogle Scholar
  340. Valentino, K. L., and Jones, E. G., 1981, The early formation of the corpus callosum: A light and electron microscopic study in fetal and neonatal rats, J. Neurocytol. 11:583–609.Google Scholar
  341. Valentino, K. L., Jones, E. G., and Kane, S. A., 1983, Expression of GFAP immunoreactivity during development of long fiber tracts in the rat CNS, Dev. Brain Res..Google Scholar
  342. Valverde, F., 1967, Apical dendritic spines of the visual cortex and light deprivation in the mouse, Exp. Brain Res. 3:337–352.PubMedGoogle Scholar
  343. Valverde, F., and Esteban, M. E., 1968, Peristriate cortex of mouse: Location and the effects of enucleation on the number of dendritic spines, Brain Res. 9:145–148.PubMedGoogle Scholar
  344. Valverde, F., and Facal-Valverde, M. V., 1988, Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens: A correlated Golgi and electron microscopic study, J. Comp. Neurol. 269:168–192.PubMedGoogle Scholar
  345. Van der Loos, H., and Woolsey, T. A., 1973, Somatosensory cortex: Structural alterations following early injury to sense organs, Science 179:395–398.PubMedGoogle Scholar
  346. Verney, C., Berger, B., Adrien, J., Vigny, A., and Gay, M., 1982, Development of the dopaminergic innervation of the rat cerebral cortex. A light microscopic immunocytochemical study using anti-tyrosine hydroxylast antibodies, Dev. Brain Res. 5:41–52.Google Scholar
  347. Videen, T. O., N. W., Daw, and R. K., Rader, 1984, The effect of norepinephrine on visual cortical neurons in kittens and adult cats, J. Neurosci. 4:1607–1617.PubMedGoogle Scholar
  348. Vital-Durand, F., Garey, L. J., and Blakemore, C., 1978, Monocular and binocular deprivation in the monkey: Morphological effects and reversibility, Brain Res. 158:45–64.PubMedGoogle Scholar
  349. Vogt, C., and Vogt, O., 1919, Allgemeinere Ergebnisse unserer Hirnforschung, J. Psychol. Neurol. 25:277–462.Google Scholar
  350. Wahle, P., Meyer, G., Wu, J.-Y, and Albus, K., 1987, Morphology and axon terminal pattern of glutamate decarboxylase-immunoreactive cell types in the white matter of the cat occipital cortex during early postnatal development, Dev. Brain Res. 36:53–62.Google Scholar
  351. Wall, J. T., and Cusick, C. G., 1986, The representation of peripheral nerve inputs in the S-I hindpaw cortex of rats raised with incompletely innervated hindpaws, J. Neurosci. 6:1129–1147.PubMedGoogle Scholar
  352. Walsh, C., and Cepko, C. L., 1988, Clonally related cortical cells show several migration patterns, Science 241:1342–1345.PubMedGoogle Scholar
  353. Watanabe, E., Fujita, S. C., Murakami, F., Hayashi, M., and Matsumura, M., 1989, A monoclonalantibody identifies a novel epitope surrounding a subpopulation of the mammalian central neurons, Neuroscience 29(3):645–658.PubMedGoogle Scholar
  354. Welker, C., 1971, Microelectrode delineation of five grain somatotopic organization of Sm I cerebral neocortex in albino rat, Brain Res. 26:259–276.PubMedGoogle Scholar
  355. Welker, C., 1976, Receptive fields of barrels in the somatosensory neocortex of the rat, J. Comp. Nenrol. 166:173–190.Google Scholar
  356. Welker, E., and Van der Loos, H., 1986, Quantitative correlation between barrel field size and the sensory innervation of the whiskerpad: A comparative study in six strains of mice bred for different patterns of mystacial vibrissae, J. Neurosci. 6:3355–3373.PubMedGoogle Scholar
  357. Welker, E., Soriano, E., and Van der Loos, H., 1989, Plasticity in the barrel cortex of the adult mouse: Effects of peripheral deprivation of GAD-immunoreactivity, Exp. Brain Res. 74:441–452.PubMedGoogle Scholar
  358. Wiesel, T. N., and Hubel, D. H., 1963, Single cell responses in striate cortex of kittens deprived of vision in one eye, J. Neurophysiol. 26:1003–1017.PubMedGoogle Scholar
  359. Wiesel, T. N., and Hubel, D. H., 1965a, Extent of recovery from the effects of visual deprivation in kittens, J. Neurophysiol. 28:1059–1072.Google Scholar
  360. Wiesel, T. N., and Hubel, D. H., 1965b, Comparison of the effects of unilateral and bilateral closure on cortical unit responses in kittens, J. Neurophysiol. 28:1029–1040.PubMedGoogle Scholar
  361. Wiesel, T. N., and Hubel, D. H., 1974, Ordered arrangement of orientation columns in monkeys lacking visual experience, J. Comp. Neurol. 158:307–318.PubMedGoogle Scholar
  362. Wilkinson, M., Shaw, C., Khan, I., and Cynader, M., 1983, Ontogenesis of beta-adrenergic binding sites in kitten visual cortex and the effects of visual deprivation, Dev. Brain Res. 7:349–352.Google Scholar
  363. Wilson, J. R., Webb, S. V., and Sherman, S. M., 1977, Conditions for dominance of one eye during competitive development of central connections in visually deprived cats, Brain Res. 136:277–287.PubMedGoogle Scholar
  364. Windrem, M. S., Jan de Beur, S., and Finlay, B. L., 1988, Control of cell number in the developing neocortex. II. Effects of corpus callosum section, Dev. Brain Res. 43:13–22.Google Scholar
  365. Winfield, D. A., 1981, The postnatal development of synapses in the visual cortex of the cat and the effects of eyelid closure, Brain Res. 206:166–171.PubMedGoogle Scholar
  366. Winfield, D. A., 1983, The postnatal development of synapses in different laminae of the visual cortex in the normal kitten and in kittens with eyelid suture, Dev. Brain Res. 9:155–169.Google Scholar
  367. Wise, S. P., and Jones, E. G., 1976, The organization and postnatal development of the commissural projection of the rat somatic sensory cortex, J. Comp. Neurol. 163:313–344.Google Scholar
  368. Wise, S. P., and Jones, E. G., 1978, Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex, J. Comp. Neurol. 178:187–208.PubMedGoogle Scholar
  369. Wise, S. P., Hendry, S. H. C., and Jones, E. G., 1977, Prenatal development of sensorimotor cortical projections in cats, Brain Res. 138:538–544.PubMedGoogle Scholar
  370. Wise, S. P., Fleshman, J. W., and Jones, E. G., 1979, Maturation of pyramidal cell form in relation to developing afferent and efferent connections of rat somatic sensory cortex, Neuroscience 4:1275–1297.PubMedGoogle Scholar
  371. Wolf, W., Hicks, T. P., and Albus, K., 1986, The contributions of GAB A-mediated inhibitory mechanisms to visual response properties of neurons in the kitten’s striate cortex, J. Neurosci. 6:2779–2795.PubMedGoogle Scholar
  372. Wolff, J. R., Bottcher, H., Zetzshe, T., Oertel, W. H., and Chronwall, B. M., 1984, Development of GABAergic neurons in rat visual cortex as identified by glutamate decarboxylase-like immunoreactivity, Neurosci. Lett. 47:207–212.PubMedGoogle Scholar
  373. Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex, Brain Res. 17:205–242.PubMedGoogle Scholar
  374. Woolsey, T. A., and Wann, J. R., 1976, Areal changes in mouse cortical barrels following vibrissal damage at different postnatal ages, J. Comp. Neurol. 170:53–66.PubMedGoogle Scholar
  375. Yamashita, A., Hayashi, M., Shimizu, K., and Oshima, K., 1989, Ontogeny of somatostatin in cerebral cortex of macaque monkey: An immunohistochemical study, Dev. Brain Res. 45:103–112.Google Scholar
  376. Yurkewicz, L., Valentino, K. L., Floeter, M. K., Fleshman, J. W., Jr., and Jones, E. G., 1984, Effects of cytotoxic deletions of somatic sensory cortex in fetal rats, Somatosens. Res. 1:303–327.PubMedGoogle Scholar
  377. Zilles, K., Werners, R., Busching, U., and Schleicher, A., 1986, Ontogenesis of the laminar structure in areas 17 and 18 of the human visual cortex. A quantitative study, Anat. Embryol. 174:339–353.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Edward G. Jones
    • 1
  1. 1.Department of Anatomy and NeurobiologyUniversity of California, IrvineIrvineUSA

Personalised recommendations