Advertisement

The Telencephalon of Actinopterygian Fishes

  • R. Nieuwenhuys
  • J. Meek
Part of the Cerebral Cortex book series (CECO, volume 8A)

Abstract

The class of bony fishes or Osteichthyes is usually subdivided into two subclasses, the Actinopterygii or ray-finned fishes and the Sarcopterygii or lobe-finned fishes. The subclass last mentioned, the telencephalon of which will be treated in the next chapter, can further be subdivided into the Dipnoi or lungfishes and the Crossopterygii or tassel-finned fishes. The Actinopterygii constitute by far the most abundant group of recent vertebrates. They are usually subdivided into three superorders, the Chondrostei, Holostei, and Teleostei. Interestingly, these three superorders may be considered as representing three subsequent stages or gradations of actinopterygian evolution. The Chondrostei are considered as descendants of the Palaeoniscoidei, a primitive group of paleozoic fishes. During the early and middle Mesozoic times, the Chondrostei were supplanted by the Holostei, which in turn were largely replaced in the last phase of the Mesozoic era and the Cenozoic era by the expanding and now-abundant Teleostei.

Keywords

Olfactory Bulb Optic Tectum Area Dorsalis Terminal Field Area Ventralis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airhart, M. J., and Kriebel, R. M., 1985, Telencephalic terminals in the major retinal synaptic lamina of the goldfish optic tectum, Brain Res. 336:363–367.PubMedGoogle Scholar
  2. Ariëns Kappers, C. U., 1929, The Evolution of the Nervous System in Invertebrates, Vertebrates and Man, Bohn, Haarlem, p. 335.Google Scholar
  3. Ariëns Kappers, C. U., Huber, G. C., and Crosby, E. C., 1936, The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, Volume II, Macmillan Co., New York, p. 1845.Google Scholar
  4. Balaban, C. D., and Ulinski, P. S., 1981, Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles. I. Projections of thalamic nuclei, J. Comp. Neurol. 200:95–129.PubMedGoogle Scholar
  5. Bass, A. H., 1981a, Organization of the telencephalon in the channel catfish, Ictalurus punctatus, J. Morphol. 169:71–90.Google Scholar
  6. Bass, A. H., 1981b, Olfactory bulb efferents in the channel catfish, Ictalurus punctatus, J. Morphol. 169:91–111.Google Scholar
  7. Bass, A. H., 1981c, Telencephalic efferents in the channel catfish, Ictalurus punctatus: Projections to the olfactory bulb and optic tectum. Brain Behav. Evol. 19:1–16.PubMedGoogle Scholar
  8. Braford, M. R., Jr., and Northcutt, R. G., 1974, Olfactory bulb projections in the bichir, Polypterus, J. Comp. Neurol. 156:165.PubMedGoogle Scholar
  9. Braford, M. R., Jr., and Northcutt, R. G., 1978, Correlation of telencephalic afferents and SDH distribution in the bony fish Polypterus, Brain Res. 152:157–160.PubMedGoogle Scholar
  10. Braford, M. R., Jr., and Northcutt, R. G., 1983, Organization of the diencephalon and pretectum of the ray-finned fishes, in: Fish Neurobiology, Volume 2 (R. E. Davis and R. G. Northcutt, eds.), University of Michigan Press, Ann Arbor, pp. 117–163.Google Scholar
  11. Bruce, L. L., and Butler, A. B., 1984a, Telencephalic connections in lizards. 1. Projections to cortex, J. Comp. Neurol. 229:585–601.PubMedGoogle Scholar
  12. Bruce, L. L., and Butler, A. B., 1984b, Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge, J. Comp. Neurol. 229:602–615.PubMedGoogle Scholar
  13. Campbell, C. B. G., and Hodos, W., 1970, The concept of homology and the evolution of the nervous system, Brain Behav. Evol. 3:353–367.PubMedGoogle Scholar
  14. Crosby, E. C., DeJonge, B. R., and Schneider, R. C., 1966, Evidence for some of the trends in the phylogenetic development of the vertebrate telencephalon, in: Evolution of the Forebrain (R. Hassler and H. Stephan, eds.), Thieme Verlag, Stuttgart, pp. 117–135.Google Scholar
  15. Daget, J., 1958, Sous-classe des brachiopterygiens, Trait. Zool. 13:2500–2521.Google Scholar
  16. Davis, R. E., Chase, R., Morris, J., and Kaufman, B., 1981, Telencephalon of the teleost Macropodus: Experimental localization of secondary olfactory areas and of components of the lateral forebrain bundle, Behav. Neural Biol. 33:257–279.Google Scholar
  17. Demski, L. S., and Northcutt, R. G., 1983, The terminal nerve: A new chemosensory system in vertebrates? Science 220:435–437.PubMedGoogle Scholar
  18. Droogleever Fortuyn, J., 1961, Topographical relations in the telencephalon of the sunfish, Eupomotis gibbosus, J. Comp. Neurol. 116:249–264.Google Scholar
  19. Ebbesson, S. O. E., 1980, A visual thalamo-telencephalic pathway in a teleost fish (Holocentrus rufus), Cell Tissue Res. 213:505–508.PubMedGoogle Scholar
  20. Ebbesson, S. O. E., and Vanegas, H., 1976, Projections of the optic tectum in two teleost species, J. Comp. Neurol. 165:161–180.PubMedGoogle Scholar
  21. Ebbesson, S. O. E., Meyer, D. L., and Scheich, H., 1981, Connections of the olfactory bulb in the piranha (Serrasalmus nattereri), Cell Tissue Res. 216:167–180.PubMedGoogle Scholar
  22. Echteler, S. M., 1984, Connections of the auditory midbrain in a teleost fish, Cyprinus carpio, J. Comp. Neurol 230:536–551.PubMedGoogle Scholar
  23. Echteler, S. M., 1985, Organization of central auditory pathways in a teleost fish, Cyprinus carpio, J. Comp. Physiol. 156:267–280.Google Scholar
  24. Echteler, S. M., and Saidel, W. M., 1981, Forebrain connections in the goldfish support telencephalic homologies with land vertebrates, Science 212:683–685.PubMedGoogle Scholar
  25. Fiebig, E., Ebbesson, S. O. E., and Meyer, D. L., 1983, Afferent connections of the optic tectum in the piranha (Serrasalmus nattereri), Cell Tissue Res. 231:55–72.PubMedGoogle Scholar
  26. Finger, T. E., 1980, Nonolfactory sensory pathway to the telencephalon in a teleost fish, Science 210:671–673.PubMedGoogle Scholar
  27. Finger, T. E., and Bullock, T.H., 1982, Thalamic center for the lateral line system in the catfish Ictalurus nebulosus: Evoked potential evidence, J. Neurobiol. 13(1):39–47.PubMedGoogle Scholar
  28. Gage, S. P., 1893, The brain of Diemyctilus viridescens from larval to adult life and comparison with the brain of Amia and of Petromyzon, The Wilder Quarter Century Book, Ithaca, pp. 259-314.Google Scholar
  29. Gans, C., 1969, Some questions and problems in morphological comparison, in: Comparative and Evolutionary Aspects of the Vertebrate Central Nervous System (J. M. Petras and C. R. Noback, eds.), The New York Academy of Sciences, New York, pp. 506–513.Google Scholar
  30. Goldstein, K., 1905, Untersuchungen über das Vorderhirn und Zwischenhirn einiger Knochenfische, Arch. Mikrosk. Anat. 66:135–219.Google Scholar
  31. Grover, B. G., and Sharma, S. C., 1981, Organization of extrinsic tectal connections in goldfish (Carassius auratus), J. Comp. Neurol. 196:471–488.PubMedGoogle Scholar
  32. Herrick, C. J., 1901, The cranial nerves and cutaneous sense organs of the North American siluroid fishes, J. Comp. Neurol. 11:177–247.Google Scholar
  33. Herrick, C. J., 1921, A sketch of the origin of the cerebral hemispheres, J. Comp. Neurol. 32:429–454.Google Scholar
  34. Herrick, C. J., 1922, Functional Factors in the Morphology of the Forebrain of Fishes, Libro en honor de D. Santiago Ramón y Cajal, Madrid, Volume 1, pp. 143–204.Google Scholar
  35. Herrick, C. J., 1933, The amphibian forebrain, J. Comp. Neurol. 58:1–288.Google Scholar
  36. Herrick, C. J., 1948, The Brain of the Tiger Salamander, University of Chicago Press, Chicago, p. 470.Google Scholar
  37. Holmgren, N., 1920, Zur Anatomie und Histologie des Vorder-und Zwischenhirns der Knochenfische, Acta Zool. 1:137–315.Google Scholar
  38. Holmgren, N., 1922, Points of view concerning forebrain morphology in lower vertebrates, J. Comp. Neurol 34:391–459.Google Scholar
  39. Ito, H., and Kishida, R., 1977, Tectal afferent neurons identified by the retrograde HRP method in the carp telencephalon, Brain Res. 130:142–145.PubMedGoogle Scholar
  40. Ito, H., and Kishida, R., 1978, Telencephalic afferent neurons identified by the retrograde HRP method in the carp diencephalon, Brain Res. 149:211–215.PubMedGoogle Scholar
  41. Ito, H., and Vanegas, H., 1983, Cytoarchitecture and ultrastructure of nucleus prethalamicus, with special reference to degenerating afferents from optic tectum and telencephalon, in a teleost (Holocentrus ascensionis), J. Comp. Nenrol. 221:401–415.Google Scholar
  42. Ito, H., and Vanegas, H., 1984, Visual receptive thalamopetal neurons in the optic tectum of teleosts (Holocentridae), Brain Res. 290:201–210.PubMedGoogle Scholar
  43. Ito, H., Morita, Y., Sakamoto, N., and Ueda, S., 1980a, Possibility of telencephalic visual projection in teleosts, Holocentrus, Brain Res. 197:219–222.PubMedGoogle Scholar
  44. Ito, H., Butler, A. B., and Ebbesson, S. O. E., 1980b, An ultrastructural study of the normal synaptic organization of the optic tectum and the degenerating tectal afferents from retina, telencephalon, and contralateral tectum in a teleost, Holocentrus rufus, J. Comp. Neurol. 191:639–659.PubMedGoogle Scholar
  45. Ito, H., Murakami, T., and Morita, Y., 1982, An indirect telencephalo-cerebellar pathway and its relay nucleus in teleosts, Brain Res. 249:1–13.PubMedGoogle Scholar
  46. Ito, H., Murakami, T., Fukuoka, T., and Kishida, R., 1986, Thalamic fiber connections in a teleost (Sebastiscus marmoratus): Visual, somatosensory, octavolateral, and cerebellar relay region to the telencephalon, J. Comp. Neurol. 250:215–227.PubMedGoogle Scholar
  47. Jarvik, E., 1968a, The Systematic Position of the Dipnoi, Nobel Symposium 4 (T. Orvig, ed.), Almqvist & Wiksell, Stockholm, pp. 223–245.Google Scholar
  48. Jarvik, E., 1968b, Current Problems of Lower Vertebrate Phylogeny, Nobel Symposium 4 (T. Orvig, ed.), Almqvist & Wiksell, Stockholm, pp. 497–527.Google Scholar
  49. Johnston, J. B., 1911, The telencephalon of ganoids and teleosts, J. Comp. Neurol. 21:489–591.Google Scholar
  50. Johnston, J. B., 1912, The telencephalon in cyclostomes, J. Comp. Neurol. 22:341–404.Google Scholar
  51. Källén, B., 1950a, A contribution to the ontogenetic development of the nuclei in the forebrain of Lepisosteus, Acta Anat. 9:297–308.PubMedGoogle Scholar
  52. Källén, B., 1950b, Contributions to the ontogeny of the everted forebrain, K. Fysiogr. Saellsk. Lund Foerh. 20:87–110.Google Scholar
  53. Källén, B., 1951, Embryological studies on the nuclei and their homologization in the vertebrate forebrain, K. Fysiogr. Saellsk. Handl. 62(5):34.Google Scholar
  54. Kuhlenbeck, H., 1929, Die Grundbestandteile des Endhirns im Lichte der Bauplanlehre, Anat. Anz. 67:1–51.Google Scholar
  55. Levine, R. L., and Dethier, S., 1985, The connections between the olfactory bulb and the brain in the goldfish, J. Comp. Neurol. 237:427–444.PubMedGoogle Scholar
  56. Luiten, P. G. M., 1981, Afferent and efferent connections of the optic tectum in the carp (Cyprinus carpio L.), Brain Res. 220:51–65.PubMedGoogle Scholar
  57. McCormick, C. A., 1978, Central projections of the lateralis and eight nerves in the bowfin, Amia calva, thesis, Ann Arbor, p. 131.Google Scholar
  58. Matsutani, S., Uchiyama, H., and Ito, H., 1986, Cytoarchitecture, synaptic organization and fiber connections of the nucleus olfacto-retinalis in a teleost (Navodon modestus), Brain Res. 373:126–138.PubMedGoogle Scholar
  59. Meader, R. G., 1939, The forebrain of bony fishes, K. Ned. Akad. Wet. Proc. Sect. Sci. 42:657–670.Google Scholar
  60. Meek, J., Nieuwenhuys, R., and Elsevier, D., 1986a, Afferent and efferent connections of cerebellar lobe C1 of the mormyrid fish Gnathonemus petersi: An HRP study, J. Comp. Neurol. 245:319–341.PubMedGoogle Scholar
  61. Meek, J., Nieuwenhuys, R., and Elsevier, D., 1986b, Afferent and efferent connections of cerebellar lobe C3 of the mormyrid fish Gnathonemus petersi: An HRP study, J. Comp. Neurol. 245:342–358.PubMedGoogle Scholar
  62. Miller, R. N., 1940, The telencephalic zonal system of the teleost Corydora paliatus, J. Comp. Neurol. 72:149–176.Google Scholar
  63. Morgan, G. C., Jr., 1975, The telencephalon of the sea catfish Galeichthys felis, J. Hirnforsch. 16:131–150.PubMedGoogle Scholar
  64. Morita, Y., Ito, H., and Masai, H., 1980, Central gustatory paths in the crucian carp, Carassius carassius, J. Comp. Neurol. 191:119–132.PubMedGoogle Scholar
  65. Morita, Y., Murakami, T., and Ito, H., 1983, Cytoarchitecture and topographic projections of the gustatory centers in a teleost, Carassius carassius, J. Comp. Neurol. 218:378–394.PubMedGoogle Scholar
  66. Moy-Thomas, J. A., and Miles, R. S., 1971, Palaeozoic Fishes, Chapman & Hall, London, p. 259.Google Scholar
  67. Münz, H., 1982, Centrifugal innervation of the retina by luteinizing hormone releasing hormone (LHRH)-immunoreactive telencephalic neurons in teleostean fishes, Cell Tissue Res. 222:313–323.PubMedGoogle Scholar
  68. Münz, H., and Claas, B., 1981, Centrifugal innervation of the retina in cichlid and poecilid fishes. A horseradish peroxidase study, Neurosci. Lett. 22:223–226.Google Scholar
  69. Murakami, T., Morita, Y., and Ito, H., 1983, Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, Sebastiscus marmoratus, J. Comp. Neurol. 216:115–131.PubMedGoogle Scholar
  70. Murakami, T., Ito, H., and Morita, Y., 1986a, Telencephalic afferent nuclei in the carp diencephalon, with special reference to fiber connections of the nucleus preglomerulosus pars lateralis, Brain Res. 382:97–103.PubMedGoogle Scholar
  71. Murakami, T., Fukuoka, T., and Ito, H., 1986b, Telencephalic ascending acousticolateral system in a teleost (Sebastiscus marmoratus), with special reference to the fiber connections of the nucleus preglomerulosus, J. Comp. Neurol 247:383–397.PubMedGoogle Scholar
  72. Nelson, G. J., 1969, Origin and diversification of teleostean fishes, Ann. N.Y. Acad. Sci. 167:18–30.Google Scholar
  73. Nieuwenhuys, R., 1959, The structure of the telencephalon of the teleost Gasterosteurs aculeatus I en II, K. Akad. Wet. Amsterdam Proc. Sect. Sci. 62:341–362.Google Scholar
  74. Nieuwenhuys, R., 1962a, The morphogenesis and the general structure of the actinopterygian forebrain, Acta Morphol. Neerl. Sci, 5:65–78.Google Scholar
  75. Nieuwenhuys, R., 1962b, Trends in the evolution of the actinopterygian forebrain, J. Morphol. 111:69–88.PubMedGoogle Scholar
  76. Nieuwenhuys, R., 1963, The comparative anatomy of the actinopterygian forebrain, J. Hirnforsch. 6:171–192.Google Scholar
  77. Nieuwenhuys, R., 1964, Further studies on the general structure of the actinopterygian forebrain, Acta Morphol. Neerl. Scand. 6:65–79.PubMedGoogle Scholar
  78. Nieuwenhuys, R., 1966, The interpretation of the cell masses in the teleostean forebrain, in: Evolution of the Forebrain (R. Hassler and H. Stephan, eds.), Thieme Verlag, Stuttgart, pp. 32–39.Google Scholar
  79. Nieuwenhuys, R., 1967a, Comparative anatomy of olfactory centres and tracts, Prog. Brain Res. 23:1–64.PubMedGoogle Scholar
  80. Nieuwenhuys, R., 1967b, Comparative anatomy of the cerebellum, Prog. Brain Res. 25:1–93.PubMedGoogle Scholar
  81. Nieuwenhuys, R., 1969, A survey of the structure of the forebrain in higher bony fishes (Osteichthyes), Ann. N.Y. Acad. Sci. 167:31–64.Google Scholar
  82. Nieuwenhuys, R., 1982, An overview of the organization of the brain of actinopterygian fishes, Am. Zool. 22:287–310.Google Scholar
  83. Nieuwenhuys, R., 1983, The central nervous system of the brachiopterygian fish, Erpetoichthys calabaricus, J. Hirnforsch. 24:501–533.PubMedGoogle Scholar
  84. Nieuwenhuys, R., and Nicholson, C., 1969, A survey of the general morphology, the fiber connections, and the possible functional significance of the gigantocerebellum of mormyrid fishes, in: Neurobiology of Cerebellar Evolution and Development (R. Llinás, ed.), University of Chicago Press, Chicago, pp. 107–134.Google Scholar
  85. Nieuwenhuys, R., and Verrijdt, P. W. Y, 1983, Structure and connections of the telencephalon of the teleost fish Xenomystis nigri. II. The area dorsalis, Acta Morphol. Neerl. Scand. 21:330.Google Scholar
  86. Nieuwenhuys, R., Bauchot, R., and Arnoult, J., 1969, Le dévelopement du télencéphale d’un poisson osseux primitif, Polypterus senegalus Cuvier, Acta Zool. 50:101–125.Google Scholar
  87. Northcutt, R. G., 1981a, Localization of neurons afferent to the telencephalon in a primitive bony fish, Polypterus palmas, Neurosci. Lett. 22:219–222.Google Scholar
  88. Northcutt, R. G., 1981b, Evolution of the telencephalon in nonmammals, Annu. Rev. Neurosci. 4:301–350.PubMedGoogle Scholar
  89. Northcutt, R. G., and Braford, M. R., Jr., 1980, New observations on the organization and evolution of the telencephalon of actinopterygian fishes, in: Comparative Neurology of the Telencephalon (S. O. E. Ebbersson, ed.), Plenum Press, New York, pp. 41–97.Google Scholar
  90. Northcutt, R. G., and Davis, R. E., 1983, Telencephalic organization in ray-finned fishes, in: Fish Neurobiology, Volume 2 (R. E. Davis and R. G. Northcutt, eds.), University of Michigan Press, Ann Arbor, pp. 203–236.Google Scholar
  91. Oka, Y., and Ueda, K., 1981, Telencephalic afferents in the goldfish: An anterograde degeneration study, Brain Res. Bull. 7:391–394.PubMedGoogle Scholar
  92. Parent, A., 1986, Comparative Neurobiology on the Basal Ganglia (R. G. Northcutt, ed.), Wiley, New York.Google Scholar
  93. Parent, A., and Northcutt, R. G., 1982, The monoamine-containing neurons in the brain of the garfish, Lepisosteus osseus, Brain Res. Bull. 9:189–204.PubMedGoogle Scholar
  94. Parent, A., Dube, L., Braford, M. R., Jr., and Northcutt, R. G., 1978, The organization of monoamine-containing neurons in the brain of the sunfish (Lepomis gibbosus) as revealed by fluorescence microscopy, J. Comp. Neurol. 182(3):495–516.PubMedGoogle Scholar
  95. Prasada Rao, P. D., and Finger, T. E., 1984, Asymmetry of the olfactory system in the brain of the winter flounder, Pseudopleuronectes americanus, J. Comp. Neurol. 225:492–510.PubMedGoogle Scholar
  96. Rabl-Rückhard, H., 1882, Zur Deutung und Entwickelung des Gehirns der Knochenfische, Arch. Anat. Physiol. Anat. Abt. pp. 111-138.Google Scholar
  97. Remane, A., 1956, Die Grundlagen des Naturlichen Systems der Vergleichenden Anatomie und der Phylogenetik, Theoretische Morphologie und Systematiek I, Akad. Verlag. Geest & Portig, Leipzig, p. 634.Google Scholar
  98. Romer, A. S., 1962, The Vertebrate Body, Saunders, Philadelphia, p. 627.Google Scholar
  99. Sakamoto, N., and Ito, H., 1982, Fiber connections of the corpus glomerulosum in a teleost, Navodon modestus, J. Comp. Neurol. 205:291–298.PubMedGoogle Scholar
  100. Schnitzlein, H. N., 1968, Introductory remarks on the telencephalon offish, in: The Central Nervous System and Fish Behaviour (D. Ingle, ed.), University of Chicago Press, Chicago, pp. 97–100.Google Scholar
  101. Sheldon, R. E., 1912, The olfactory tracts and centers in teleosts, J. Comp. Neurol. 22:177–338.Google Scholar
  102. Sheldon, R. E., and Brookover, C., 1909, The nervus terminalis in teleosts, Anat. Rec. 3:257–259.Google Scholar
  103. Springer, A. D., 1983, Centrifugal innervation of goldfish retina from ganglion cells of the nervus terminalis, J. Comp. Neurol. 214:404–415.Google Scholar
  104. Springer, A. D., and Gaffney, J. S., 1981, Retinal projections in the goldfish: A study using cobaltouslysine, J. Comp. Neurol. 203:401–424.PubMedGoogle Scholar
  105. Stensiö, E. A., 1921, Triassic Fishes from Spitzbergen, Part 1, Vienna, p. 307.Google Scholar
  106. Story, R. H., 1964, The olfactory bulbar formation and related nuclei of the paddlefish (Polyodon spathula), J. Comp. Neurol. 123:285–298.PubMedGoogle Scholar
  107. Studnicka, F. K., 1896, Beiträge zur Anatomie und Entwicklungsgeschichte des Vorderhirns der Cranioten, S.-B. Akad. Boehm. Wiss. Math.-Nat. Kl., Pt. 2.Google Scholar
  108. Vanegas, H., and Ebbesson, S. O. E., 1976, Telencephalic projections in two teleost species, J. Comp. Neurol. 165:(2): 181–195.PubMedGoogle Scholar
  109. Vanegas, H., and Ito, H., 1983, Morphological aspects of the teleostean visual system: A review, Brain Res. Rev. 6:117–137.Google Scholar
  110. von Bartheld, C. S., and Meyer, D. L., 1986a, Central projections of the nervus terminalis in the bichir, Polypterus palmas, Cell Tissue Res. 244:181–186.Google Scholar
  111. von Bartheld, C. S., and Meyer, D. L., 1986b, Central connections of the olfactory bulb in the bichir, Polypterus palmas, reexamined, Cell Tissue Res. 244:527–535.Google Scholar
  112. von Bartheld, C. S., and Meyer, D. L., 1986c, Tracing of single fibers of the nervus terminalis in the goldfish brain, Cell Tissue Res. 245:143–158.Google Scholar
  113. von Bartheld, C. S., Meyer, D. L., Fiebig, E., and Ebbesson, S. O. E., 1984, Central connections of the olfactory bulb in the goldfish, Carassius auratus, Cell Tissue Res. 238:475–487.Google Scholar
  114. von Bartheld, C. S., Rickmann, M. J., and Meyer, D. L., 1986, A light-and electron-microscopic study of mesencephalic neurons projecting to the ganglion of the nervus terminalis in the goldfish, Cell Tissue Res. 246:63–70.Google Scholar
  115. Weston, J. K., 1937, Notes on the telencephalon of Mormyrus and Gnathonemus, K. Akad. Wet. Amsterdam Proc. Sect. Sci. 40:894–904.Google Scholar
  116. Wright, J. D., 1967, The telencephalon of the bichir, Polypterus, Ala.J. Med. Sci. 4:252–273.PubMedGoogle Scholar
  117. Wullimann, M. F., 1988, The tertiary gustatory center in sunfishes is not nucleus glomerulosus, Neurosci. Lett. 86:6–10.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • R. Nieuwenhuys
    • 1
  • J. Meek
    • 1
  1. 1.Department of Anatomy and EmbryologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations