The Nature and Plasticity of Sensory Processing within Adult Rat Barrel Cortex

  • Michael Armstrong-James
Part of the Cerebral Cortex book series (CECO, volume 11)


The central tenet of the columnar hypothesis for sensory cortical organization (Mountcastle, 1957) is locus specificity; the idea of single columnar neuronal groups targeted by unimodal information from separate peripheral loci. Mountcastle conceived of the column as a single processing module, and implied that somatosensory cortex is constructed of an array of independent modules, each processing “labeled line” sensory information with uniform latency. The thinking behind the hypothesis is often a common starting point for theories of differentiation or modification of cortical neuronal groups in relation to learning (Edelman, 1978, 1987; Eccles, 1984; Changeux et al., 1984; Von der Malsberg, 1987). Processing within the column itself, or analogous neuronal groups has often relied on a black box approach to the neuronal group, using such devices as “hidden layers” and “back propagation” (Rumelhart et al., 1986; Zipser and Andersen, 1988). This maneuver has largely been required in the dearth of useful information on how spatiotemporal processing proceeds within sensory cortex (Douglas and Martin, 1990).


NMDA Receptor Receptive Field Somatosensory Cortex Sensory Processing Response Magnitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agmon, A., and Connors, B. W., 1991, Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro, Neuroscience 41: 365–379.PubMedGoogle Scholar
  2. Agmon, A., and Connors, B. W., 1992, Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex, J.Neurosci. 12:319–329.PubMedGoogle Scholar
  3. Alloway, K. D., Rosenthal, P., and Burton, H., 1989, Quantitative measurements of receptive field changes during antagonism of GABAergic transmission in primary somatosensory cortex of cats, Exp. Brain Res. 78:524–532.Google Scholar
  4. Armstrong-James, M., 1975, The functional status and columnar organization of single cells responding to cutaneous stimulation in neonatal rat somatosensory cortex, SI, J. Physiol. (London). 246:501–538.Google Scholar
  5. Armstrong-James, M., 1989, NMDA and non-NMDA neurotransmission in the construction of receptive fields of rat barrel-field neurones, Soc. Neurosci. Abstr. 15:949.Google Scholar
  6. Armstrong-James, M., and Callahan, C, 1991, Thalamocortical mechanisms in the formation of receptive fields of rat barrel cortex neurones. II. The contribution of ventroposterior medial thalamic (VPm) neurones, J. Comp. Neurol. 303:211–224.PubMedGoogle Scholar
  7. Armstrong-James, M., and Fox, K., 1983, Effects of iontophoresed noradrenaline on the spontaneous activity of neurones in rat primary somatosensory cortex, J. Physiol. (London). 335:427–448.Google Scholar
  8. Armstrong-James, M., and Fox, K., 1987, Spatio-temporal divergence and convergence in rat SI “barrel” cortex, J. Comp. Neurol. 263:265–281.PubMedGoogle Scholar
  9. Armstrong-James, M., and Fox, K., (1988a), A role for NMDA receptors in slow-wave sleep, Brain Res. 451:189–196.PubMedGoogle Scholar
  10. Armstrong-James, M., and Fox, K., 1988b, Functional development of cortical neurons, in: Cerebral Cortex, Vol. 7 (E. G. Jones and A. Peters, eds.), Plenum Press, New York.Google Scholar
  11. Armstrong-James, M., Callahan, C. A., and Friedman, M., 1991, Thalamocortical mechanisms in the formation of receptive fields of rat barrel cortex neurones. I. Intracortical mechanisms, J. Comp. Neurol. 303.193–210.PubMedGoogle Scholar
  12. Armstrong-James, M., Fox, K., and Das-Gupta, A., 1992, Flow of excitation within barrel cortex on striking a single vibrissa, J. Neurophysiol. 68:1345–1358.PubMedGoogle Scholar
  13. Armstrong-James, M., Welker, E., and Callahan, C. A., 1993, The contribution of NMDA and non-NMDA receptors to fast and slow transmission of sensory information in the rat SI barrel cortex, J. Neurosci. 13:2149–2160.PubMedGoogle Scholar
  14. Artola, A., and Singer, W., 1987, Long-term potentiation and NMDA receptors in rat visual cortex, Nature. 330:649–652.PubMedGoogle Scholar
  15. Artola, A., and Singer, W., 1990, The involvement of N-methyl-D-aspartate receptors in induction and maintenance of long-term potentiation in rat visual cortex, Eur.J. Neurosci. 2:254–269.PubMedGoogle Scholar
  16. Axelrad, H., Verley, R., and Farkas, E., 1976, Responses evoked in mouse and rat SI cortex by vibrissa stimulation, Neurosci. Lett. 3:265–274.PubMedGoogle Scholar
  17. Bernardo, K. L., McCasland, J., Woolsey, T. A., and Strominger, R. N., 1990, Local and intra-and interlaminar connections in mouse barrel cortex, J. Comp. Neurol. 291:231–255.PubMedGoogle Scholar
  18. Blasdel, G. G., 1992, Orientation selectivity, preference, and continuity in monkey striate cortex, J. Neurosci. 12:3139–3161.PubMedGoogle Scholar
  19. Bolz, J., Gilbert, G. D., and Wiesel, T. N., 1989, Pharmacological analysis of cortical circuitry, Trends Neurosci. 12:292–296.PubMedGoogle Scholar
  20. Bullier, J., Mustari, M. J., and Henry, G. H., 1982, Receptive-field transformations between LGN neurons and S-cells of cat striate cortex, J. Neurophysiol. 47:417–438.PubMedGoogle Scholar
  21. Changeux, J. P., Heidmann, T., and Patte, P., 1984, Learning by selection, in: The Biology of Learning (P. Marier and H. S. Terrace, eds.), Springer-Verlag, Berlin, pp. 15–133.Google Scholar
  22. Chapin, J. K., and Lin. G.-S., (1984), Mapping the body representation in the SI cortex of the anaesthetised and awake rat, J. Comp. Neurol. 299:199–213.Google Scholar
  23. Chapin, J. K., Waterhouse, B. D., and Woodward, D. J., 1981, Differences in the cutaneous sensory response of single somatosensory cortical neurons in awake and halothane anesthetized rats, Brain Res. Bull. 6:63–70.PubMedGoogle Scholar
  24. Chapin, J. K., Sadeq, M., and Guise, L. U., 1987, Corticocortical connections within the primary somatosensory cortex of the rat, J. Comp. Neurol. 263:326–346.PubMedGoogle Scholar
  25. Chmielowska, J., Kossut, M., and Chmielowski, M., 1986, Single vibrissal cortical column in the mouse labeled with 2-deoxyglucose, Exp. Brain Res. 63:606–619.Google Scholar
  26. Collingridge, G. L., and Bliss, T. V. P., 1987, NMDA receptors-Their role in long-term potentiation, Trends Neurosci. 10:288–293.Google Scholar
  27. Connors, B. W., Gutnick, M. J., and Prince, D. A., 1982, Electrophysiological properties of neocortical neurons in vitro, J. Neurophysiol. 48:1302.PubMedGoogle Scholar
  28. Constantine-Paton, M., Cline, H. T, and Debski, E., 1990, Patterned activity, synaptic convergence and the NMDA receptor in developing visual pathways, Annu. Rev. Neurosci. 13:129–154.PubMedGoogle Scholar
  29. Damasio, A. R., 1990, Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition, in: Neurobiology of Cognition (P. D. Eimas and A. M. Galaburda, eds.), MIT Press, Cambridge, MA, pp. 25–62.Google Scholar
  30. DeFreitas, J. B., and Stryker M. P., 1990, Visual activity and ocular dominance plasticity in cat visual cortex persist following specific blockade of non-NMDA glutamate receptors, Soc. Neurosci. Abrstr. 16:3317.Google Scholar
  31. Diamond, M. E., Armstrong-James, M., Budway, M. J., and Ebner, F. F., (1992a), Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus, J. Comp. Neurol. 318:462–476.PubMedGoogle Scholar
  32. Diamond, M. E., Armstrong-James, M., Budway, M. J., and Ebner, F. F., (1992b), Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel cortex, J. Comp. Neurol. 319:66–84.PubMedGoogle Scholar
  33. Diamond, M. E., Armstrong-James, M., and Ebner, F. F., 1993, Experience dependent plasticity in adult rat barrel cortex, Proc. Natl. Acad. Sci. USA. 90:2082–2085.PubMedGoogle Scholar
  34. Douglas, R. J., and Martin, K. A. C, 1990, Opening the grey box, Trends Neurosci. 14:286–293.Google Scholar
  35. Durham, D., and Woolsey, T A., 1978, Acute whisker removal reduces neuronal activity in barrels of mouse SmI cortex, J. Comp. Neurol. 178:629–644.PubMedGoogle Scholar
  36. Dykes, R. W., Landry, P., Metherate, R., and Hicks, T. P., 1984, Functional role of GAB A in cat primary somatosensory cortex: Shaping receptive fields of cortical neurons, J. Neurophysiol. 52:1066–1093.PubMedGoogle Scholar
  37. Eccles, J. C, 1984, The cerebral neocortex: A theory of its operation, in: Cerebral Cortex, Vol. 2 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 1–36.Google Scholar
  38. Edelman, G. M., 1978, Group selection and phasic reentrant signalling: A theory of higher brain function, in: The Mindful Brain (G. M. Edelman and V. B. Mountcastle, eds.), MIT Press, Cambridge, MA, pp. 51–100.Google Scholar
  39. Edelman, G. M., 1987, Neural Darwinism: The Theory of Neuronal Group Selection, Basic Books, New York.Google Scholar
  40. Ferster, D., and Lindstrom, S., 1983, An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat, J. Physwl, (London). 342:181–215.Google Scholar
  41. Fox, K., 1992, A critical period for experience-dependent synaptic plasticity in rat barrel cortex, J. Neurosci. 12:1826–1838.PubMedGoogle Scholar
  42. Fox, K., and Armstrong-James, M., 1986, The role of the anterior intralaminar nuclei and N-methyl D-aspartate receptors in the generation of spontaneous bursts in rat neocortical neurones, Exp. Brain Res. 63:505–518.PubMedGoogle Scholar
  43. Fox, K., Sato, H., and Daw, N., 1991, The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex, J. Neurophysiol. 64:1413–1427.Google Scholar
  44. Fox, K., and Daw, N., 1993, Do NMDA receptors have a critical function in visual cortical plasticity? Trends Neurosci. 16:116–122.PubMedGoogle Scholar
  45. Fox, K., Sato, H., and Daw, N., 1989, The location and function of NMDA receptors in cat and kitten visual cortex, J. Neurosci. 9:2443–2454.PubMedGoogle Scholar
  46. Gardner, E. P., and Costanzo, R. M., (1980a), Spatial integration of multiple-point stimuli in primary somatosensory cortical receptive fields of alert monkey, J. Neurophysiol. 43:420–443.PubMedGoogle Scholar
  47. Gardner, E. P., and Costanzo, R. M., (1980b), Temporal integration of multiple-point stimuli in primary somatosensory cortical receptive fields of alert monkey, J. Neurophysiol. 43:444–468.PubMedGoogle Scholar
  48. Gilbert, C. D., 1977, Laminar differences in receptive field properties in cat primary visual cortex (area 17), J. Physiol. (London). 268:391–421.Google Scholar
  49. Hamori, J., Savy, C, Madarasz, M., Somogyi, J., Takacs, J., Verley, R., and Farkas-Bargeton, E., 1986, Morphological alterations in sub-cortical vibrissal relays following vibrissal follicle destruction at birth in the mouse, J. Comp. Nenrol. 254:166–183.Google Scholar
  50. Harris, R. M., 1986, Morphology of physiologically identified thalamocortical relay neurons in the rat ventrobasal thalamus, J. Comp. Neurol. 251:491–505.PubMedGoogle Scholar
  51. Harris, R. M., and Woolsey, T A., 1979, Morphology of Golgi-impregnated neurons in mouse cortical barrels following vibrissae damage at different post-natal ages, Brain Res. 161:143–149.PubMedGoogle Scholar
  52. Harris, R. M., and Woolsey, T. A., 1983, Computer-assisted analyses of barrel neuron axons and their putative synaptic contacts, J. Comp. Neurol. 220:63–79.PubMedGoogle Scholar
  53. Hebb, D. O., 1949, The Organization of Behaviour, Wiley, New York.Google Scholar
  54. Hersch, S. M., and White, E. L., 1981, Thalamocortical synapses involving identified neurons in mouse primary somatosensory cortex: A terminal degeneration and Golgi/EM study, J. Comp. Neurol. 195:253–263.PubMedGoogle Scholar
  55. Hersch, S. M., and White, E. L., 1982, A quantitative study of the thalamocortical and other synapses in layer IV of pyramidal cells projecting from mouse SmI cortex to the caudate-putamen nucleaus, J. Comp. Neurol, 211:217–225.PubMedGoogle Scholar
  56. Hicks, T. P., and Dykes, R. W., 1983, Receptive field size for certain neurons in primary somatosensory cortex is determined by GABA-mediated intracortical inhibition, Brain Res. 274:160–164.PubMedGoogle Scholar
  57. Hicks, T. P., and Gliedes, R. C. A., 1983, Neuropharmacological properties of electrophysiologically identified, visually responsive neurones of the posterior lateral suprasylvian area. A microion-tophoretic study, Exp. Brain Res. 49:157–173.PubMedGoogle Scholar
  58. Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol, (London). 160:106–154.Google Scholar
  59. Hubel, D. H., and Wiesel, T. N., 1963, Shape and arrangement of columns in cat’s striate cortex, J. Physiol. (London) 165: 559–568.Google Scholar
  60. Hubel, D. H., Wiesel, T. N., and Stryker, M. P., 1978, Anatomical demonstration of orientation columns in macaque monkey, J. Comp. Neurol, 177:361–380.PubMedGoogle Scholar
  61. Huettner, J. E., and Baughman, R. W., 1988, The pharmacology of synapses formed by corticocollicular neurons in primary cultures of rat visual cortex, J. Neurosci. 8:160–175.PubMedGoogle Scholar
  62. Ito, M., 1981, Some quantitative aspects of vibrissa-driven neuronal responses in rat neocortex, J. Neurophysiol, 46:705–715.PubMedGoogle Scholar
  63. Ito, M., 1985, Processing of vibrissa sensory information within the rat neocortex, J. Neurophysiol, 54: 479–490.PubMedGoogle Scholar
  64. Jacquin, M. F., Zahm, D. S., Henderson, T. A., Golden, J. P., Johnson, E. M., Renehan, W. E., and Klein, B. G., 1993, Structure-function relationships in rat. brainstem subnucleus interpolaris. X. Mechanisms underlying enlarged spared whisker projections after infraorbital nerve injury at birth, J. Neurosci. 13(7):2946–2964.PubMedGoogle Scholar
  65. Jenkins, W M., Merzenich, M. M., Ochs, M. T., Allard, T., and Guic-Robles, E., 1990, Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviourally controlled tactile stimulation, J. Neurophysiol, 63:82–104.PubMedGoogle Scholar
  66. Jensen, K. F., and Killackey, H. P., 1987, Terminal arbors of axons projecting to the somatosensory cortex of adult rats. 1. The normal morphology of specific thalamocortical afferents, J. Neurosci. 7:3529–3543.PubMedGoogle Scholar
  67. Kaas, J. H., 1991, Plasticity of sensory and motor maps in adult animals, Annu. Rev. Neurosci. 14:137–168.PubMedGoogle Scholar
  68. Keller, A., White, E. L., and Cippoloni, P. B., 1985, The identification of thalamocortical axon terminals in barrels of mouse SmI cortex using immunohistochemistry of anterogradally transported lectin (Phaseolus vulgaris-leucoagglutinin), Brain Res. 51:326–331.Google Scholar
  69. Killackey, H. P., 1973, Anatomical evidence for cortical sub-divisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat, Brain Res. 51:326–331.PubMedGoogle Scholar
  70. Killackey, H. P., and Leshin, S., 1975, The organization of specific thalamocortical projections to the posteromedial barrel subfields of the rat somatosensory cortex, Brain Res. 86:469–472.PubMedGoogle Scholar
  71. Killackey, H. P., Belford, G., Ryugo, R. G., and Ryugo, D. K., 1976, Anomalous organization of thalamocortical projections consequent to vibrassae removal in newborn rat and mouse, Brain Res. 104:309–315.PubMedGoogle Scholar
  72. Kleinschmidt, A., Bear, M. F., and Singer, W., 1987, Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten striate cortex, Science. 283:355–358.Google Scholar
  73. Knudsen, E. I., 1987, Neural differentiation of sound source location in the barn owl. An example of a computational map, Ann. N. Y. Acad. of Sci. 510:33–38.Google Scholar
  74. Koralek, K.-A., Jensen, K. F., and Killackey, H. P., 1988, Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex, Brain Res. 463:346–351.PubMedGoogle Scholar
  75. Kossut, M., Stewart, M. G., Siucinska, E., Bourne, R. C., and Gabbot, P. L. A., 1991, Loss of gammaaminobutyric acid (GABA) immunoreactivity from mouse first somatosensory (SI) cortex following neonatal, but not adult, denervation, Brain Res. 538:165–170.PubMedGoogle Scholar
  76. Laskin, S. E., and Spencer, W. A., 1979, Cutaneous masking. II. Geometry of excitatory and inhibitory receptive fields of single units in somatosensory cortex of the cat, J. Neurophysiol. 42:1061–1082.PubMedGoogle Scholar
  77. Levy, W. B., and Steward, O., 1989, Synapses as associated memory elements in the hippocampal formation, Brain Res. 175:233–245.Google Scholar
  78. Lorente de Nö, R., 1922, La corteza cerebral del raton, Trab. Lab. Invest. Biol. (Madrid). 20:41–78.Google Scholar
  79. Lorente de Nö, R., 1943, Cerebral cortex: Architecture, intracortical connections, motor projections, in: Physiology of the Nervous System (J. F. Fulton, ed.), Oxford University Press, London, pp. 274–313.Google Scholar
  80. McCasland, J. S., and Woolsey, T. A., 1988, High resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex, J. Comp. Nenrol. 278:555–569.Google Scholar
  81. McCormick, D. A., Connors, B. W., Lighthall, J. W., and Prince, D. A., 1985, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, J. Neurophysiol. 54:782–806.PubMedGoogle Scholar
  82. McKenna, T. M., Light, A. R., and Whitsel, B. L., 1984, Neurons with unusual response and receptive-field properties in upper laminae of cat SI cortex, J. Neurophysiol. 51:1055–1076.PubMedGoogle Scholar
  83. Madison, D. V., Malenka, R. C, and Nicoll, R. A., 1991, Mechanisms underlying long-term potentiation of synaptic transmission, Annu. Rev. Neurosci. 14:379–398.PubMedGoogle Scholar
  84. Marr, D., 1970, A theory for cerebral neocortex, Proc. R. Soc. London Ser. B. 176:161–234.Google Scholar
  85. Martin, K. A. C, 1984, Neuronal circuits in cat striate cortex, in: Cerebral Cortex, Vol. 2 (E. G. Jones and A. Peters, eds.) Plenum Press, New York, pp. 241–284.Google Scholar
  86. Mayer, M. L., Westbrook, G. L., and Guthrie, G., 1984, Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones, Nature. 309:261–263.PubMedGoogle Scholar
  87. Mercier, B. E., Glickstein, M., and Legg, C. R., 1990, Basal ganglia and cerebellum receive different somatosensory information in rats, Proc. Natl. Acad. Sci. USA 87:4388–4392.PubMedGoogle Scholar
  88. Merzenich, M. M., Recanzone, G., Jenkins, W. M., Allard, T., and Nudo, R. J., 1988, Cortical representational plasticity, in: Neurobiology of Neocortex (P. Rakic and W. Singer, eds.), Wiley, New York, pp. 41–67.Google Scholar
  89. Miller, K. D., Chapman, B., and Stryker, M. P., 1989. Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors, Proc. Natl. Acad. Sci. USA 86:5153–5187.Google Scholar
  90. Miller, M. W., 1988, Development of projection and local circuit neurons in neocortex, in: Cerebral Cortex, Vol. 7 (A. Peters and E. G. Jones, eds.) Plenum Press, New York, pp. 133–175.Google Scholar
  91. Mitra, N. L., 1955, Quantitative analysis of cell types in mammalian neocortex, J. Ana. 189:467–483.Google Scholar
  92. Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of cat’s somatic sensory cortex, J.Neurophysiol. 20:408–434.PubMedGoogle Scholar
  93. Nowak, L., Bregestovski, P., Ascher, P., Herbert, A., and Prochiantz, A., 1984, Magnesium gates glutamate-activated channels in mouse central neurones, Nature. 307:462–465.PubMedGoogle Scholar
  94. Rakic, P., 1988, Intrinsic and extrinsic determinants of neocortical parcellation: Radial unit model, in: Neurobiology of the Neocortex (P. Rakic and W. Singer, eds.), Wiley, New York.Google Scholar
  95. Ribak, C. E., 1978, Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats containglutamic acid decarboxylase, J. Neurocytol. 7:461–478.PubMedGoogle Scholar
  96. Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986, Learned internal representations by error propagation, in: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1 (D. E. Rumelhart, J. L. McLelland, and PDP Research Group, eds.), Bradford Books/MIT Press, Cambridge, MA, pp. 318–362.Google Scholar
  97. Salt, T. E., 1987, Excitatory aniino acid receptors and synaptic transmission in the rat ventrobasal thalamus, J. Physiol, (London). 391:499–510.Google Scholar
  98. Salt, T. E., and Eaton, S. A., 1989, Function of non-NMDA receptors and NMDA receptors in synaptic responses to natural somatosensory stimulation in the ventrobasal thalamus, Exp. Brain Res. 77:646–652.PubMedGoogle Scholar
  99. Sato, H., Hata, Y., Hagihara, K., and Tsumoto, T., 1987, Effects of cholinergic depletion on neuron activities in the cat visual cortex, J. Neurophysiol, 58:781–794.PubMedGoogle Scholar
  100. Shatz, C. J., and Stryker, M. P., 1978, Ocular dominance columns in layer IV of the cat’s visual cortex and the effects of monocular deprivation, J. Physiol. (London). 281:267–283.Google Scholar
  101. Shirokawa, T., Nishigori, A., Kimura, F., and Tsumoto, T., 1989, Actions of excitatory amino acid antagonists on synaptic potentials of layer I I/I 11 neurons of the cat’s visual cortex, Exp. Brain Res. 78:489–500.PubMedGoogle Scholar
  102. Sholl, D. A., 1956, The Organization of the Cerebral Cortex, Methuen, London, and Wiley, New York.Google Scholar
  103. Sillito, A. M., 1984, Functional considerations of the operation of GABA-ergic inhibitory processes in the visual cortex, in: Cerebral Cortex, Vol. 2 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 91–117.Google Scholar
  104. Simons, D. J., 1978, Response properties of vibrissa units in rat SI somatosensory neocortex, J. Neurophysiol. 41:798–820.PubMedGoogle Scholar
  105. Simons, D. J., and Carvell, G. E., 1989, Thalamocortical response transformation in the rat vibrissa/barrel system, J. Neurophysiol. 41:798–820.Google Scholar
  106. Simons, D. J., and Land, P. W., 1987, Early experience of tactile stimulation influences organization of somatosensory cortex, Nature. 326:694–697.PubMedGoogle Scholar
  107. Simons, D. J., Carvell, G. E., Hcrshey, A. E., and Bryant, D. P., 1992, Responses of barrel cortex neurons in awake rats and effects of urethane anesthesia, Exp. Brain Res. 91:259–272.PubMedGoogle Scholar
  108. Steffen, H., and Van der Loos, H., 1980, Early lesions of mouse vibrissal follicles: Their influence on dendrite orientation in the cortical barrelfield, Exp. Brain Res. 40:419–431.PubMedGoogle Scholar
  109. Stem, G. S., 1973, A physiological mechanism for Hebb’s postulate of learning, Proc. Natl. Aead. Sci. USA. 70:997–1001.Google Scholar
  110. Sutor, B., and Hablitz, J.D., 1989, EPSPs in rat neocortical neurones in vitro. II. Involvement of N-methyl-D-aspartate receptors in the generation of EPSPs, J. Neurophysiol. 61:621–634.PubMedGoogle Scholar
  111. Swadlow, H. A., 1989, Efferent neurons and suspected interneurons in S-l vibrissa cortex of the awake rabbit: Receptive fields and axonal properties, J. Neurophysiol. 59:1162–1187.Google Scholar
  112. Swindale, N. V., 1990, Is the cerebral cortex modular? Trends Neurosei. 13:487–492.Google Scholar
  113. Szentágothai, J., 1975, The “module-concept” in cerebral cortex architecture, Brain Res. 95:475–496.PubMedGoogle Scholar
  114. Szentágothai, J., 1978a, Specificity versus (quasi-) randomness in cortical connectivity, in: Architectonics of the Cerebral Cortex, (M. A. B. Brazier and H. Petsche, eds.), Raven Press, New York, pp. 77–97.Google Scholar
  115. Szentagothai, J., (1978b), The neuron network of the cerebral cortex: A functional interpretation, Proc. R. Soc. London Ser. B. 201:219–248.Google Scholar
  116. Thomson, A. M., 1986, A magnesium-sensitive post-synaptic potential in rat cerebral cortex resembles neuronal responses to N-methylaspartate, J. Physiol. (London). 370:531–549.Google Scholar
  117. Thomson, A. M., West, D. C, and Lodge, D., 1985, An N-methyl-D-aspartate receptor mediated synapse in rat cerebral cortex: A site of action of ketamine? Nature. 313:479–481.PubMedGoogle Scholar
  118. Towe, A. L., 1975, Notes on the hypothesis of columnar organization in somatosensory cortex, Brain Behav. Evol. 11:16–47.PubMedGoogle Scholar
  119. Tsumoto, T, Haghihara, H., Sato, H., and Hata, Y, 1987, NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats, Nature. 327:513–514.PubMedGoogle Scholar
  120. Valverde, F., 1986, Intrinsic neocortical organization: Some comparative aspects, Neuroscience. 18:1–23.PubMedGoogle Scholar
  121. Van der Loos, H., and Dörfl, J., 1978, Does the skin tell the somatosensory cortex how to construct a map of the periphery? Neurosei. Lett. 7:23–30.Google Scholar
  122. Von der Malsberg, C., 1987, Synaptic plasticity as a basis of brain organization, in: The Neural and Molecular Bases of Learning (J.-P. Changeux and M. Knoishi, eds.), Wiley, New York, pp. 411–432.Google Scholar
  123. Waite, P. M. E., and Taylor, P. K., 1978, Removal of whiskers in young rats causes functional changes in cerebral cortex, Nature. 274:600–602.PubMedGoogle Scholar
  124. Wall, J. T., 1988, Variable organization in cortical maps of the skin as an indication of the lifelong adaptive capacities of circuits in the mammalian brain, Trends Neurosei. 11:549–557.Google Scholar
  125. Welker, C., 1971, Microelectrode delineation of fine grain somatotopic organization of SmI cerebral neocortex in albino rat, Brain Res. 25:259–275.Google Scholar
  126. Welker, E., Soriano, E., and Van der Loos, H., 1989, Plasticity in the barrel cortex of adult mouse: Effects of peripheral deprivation on GAD-immunoreactivity, Exp. Brain Res. 74:412–452.Google Scholar
  127. Welker, E., Armstrong-James, M., and Van der Loos, H., 1993, The mode of activation of a barrel column: Response properties of single units in the somatosensory cortex of the mouse to whisker deflection, Eur. J. Neurosa. 5:691–712.Google Scholar
  128. White, E. L., 1979, Thalamocortical synaptic relations. A review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex, Brain Res. Rev. 1:275–311.Google Scholar
  129. Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex: The description of a cortical field composed of discrete cytoarchitectonic units, Brain Res. 17:205–242.PubMedGoogle Scholar
  130. Woolsey, T. A., Dierker, M. L., and Wann, D. F., 1975, Mouse SmI cortex: Qualitative and quantitative classification of Golgi-impregnated barrel neurons, Proc. Natl. Acad. Sci. USA. 72:2165–2169.PubMedGoogle Scholar
  131. Zipser, D., and Anderson, R. A., 1988, A back propagation programmed network that simulates response properties of a subset of posterior parietal neurons, Nature. 331:679–684.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Michael Armstrong-James
    • 1
  1. 1.Department of Physiology, Queen Mary Westfield CollegeLondon UniversityLondonEngland

Personalised recommendations