Intrinsic Physiology and Morphology of Single Neurons in Neocortex

  • Yael Amitai
  • Barry W. Connors
Part of the Cerebral Cortex book series (CECO, volume 11)


Neocortical neurons are eclectic in function, shape, and chemistry. Here we review a relatively neglected topic of neocortical biology, its cellular neurophysiology. Our central premise is that neurons of the neocortex display variations in membrane properties, and that these are correlated with other characteristics of the cells. Current methods allow specification of neuronal morphology, synaptology, biochemistry, intrinsic physiology, and gene expression, and each measurement has reinforced the view that neocortex is comprised of many neuron types. Within distinct classes there may also be wide variations in certain properties. Variability may represent either adaption, developmental noise, pathology, or technical artifact, and the challenge is to recognize the differences. We will discuss the interesting, but still tenuous, hypothesis that biophysical diversity of neurons in neocortex is an adaptation to specific functions within cortical circuits.


Pyramidal Neuron Pyramidal Cell Layer Versus Apical Dendrite Neocortical Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agmon, A., 1988, Intrinsic properties and synaptic connectivity of mouse barrel cortex neurons: Correlation between firing patterns and thalamocortical inputs, Ph.D. dissertation, Stanford University, Stanford, CA.Google Scholar
  2. Agmon, A., and Connors, B. W., 1989, Repetitive burst-firing neurons in the deep layers of mouse somatosensory cortex, Neurosci. Lett. 99:137–141.PubMedGoogle Scholar
  3. Agmon, A., and Connors, B.W., 1991, Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro, Neuroscience 41:365.PubMedGoogle Scholar
  4. Agmon, A., and Connors, B. W., 1992, Correlation between intrinsic firing patterns and thalamocortical responses of mouse barrel cortex neurons, J. Neurosci. 12:319–330.PubMedGoogle Scholar
  5. Agmon, A., Yang, L. T., O’Dowd, D. K., and Jones, E. G., 1993, Organized growth of thalamocortical axons from the deep tier of terminations in layer IV of developing mouse barrel cortex, J. Neurosci. 13:5365–5382.PubMedGoogle Scholar
  6. Alzheimer, C, Schwindt, P. C, and Grill, W. E., 1993, Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex, J. Neurosci. 13:660–673.PubMedGoogle Scholar
  7. Amitai, Y., Friedman, A., Connors, B. W., and Gutnick, M. J., 1993, Regenerative activity in the apical dendrites of pyramidal cells in neocoi tex, Cereb. Cortex. 3:26–38.PubMedGoogle Scholar
  8. Andersen, P., and Anderrson, S. A., 1968, Physiological Basis of the Alpha Rhythm, Appleton-Century-Crofts, New York.Google Scholar
  9. Armstrong-James, M., Fox, K., and Das-Gupta, A., 1992, The flow of excitation within rat SI barrel cortex on striking a single vibrissa, J. Neurophysiol. 68:1345–1358.PubMedGoogle Scholar
  10. Avoli, M., and Oliver, A., 1989, Electrophysiological properties and synaptic responses in the deep layers of the human epileptogenic neocortex in vitro, J. Neurophysiol. 61:589.PubMedGoogle Scholar
  11. Balestrino, M., Aitken, P. G., and Somjen, G. G., 1986, The effects of moderate changes of extracellular K+ and Ca2+ on synaptic and neural function in the CA1 region of the hippocampal slice, Brain Res. 377:229–239.PubMedGoogle Scholar
  12. Baranyi, A., Szente, M. B., and Woody, C. D., 1993, Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat: I. Patterns of firing activity and synaptic responses, J. Neurophysiol. 69:1850–1864.PubMedGoogle Scholar
  13. Benardo, L., Masukawa, L., and Prince, D. A., 1982, Electrophysiology of isolated hippocampal pyramidal dendrites, J. Neurosci. 2:1614–1622.PubMedGoogle Scholar
  14. Bernander, O., Douglas, R. F., Martin, K. A. C., and Koch, C., 1991, Synaptic background activity influences spatiotemporal integration in single pyramidal cells, Proc. Natl. Acad. Sci. USA. 88:11569–11573.PubMedGoogle Scholar
  15. Braitenberg, V., and Schüz, A., 1991, Anatomy of the Cortex, Springer-Verlag, Berlin.Google Scholar
  16. Brown, A. M., Saver, R. J., Schwindt, P. C, and Grill, W. E., 1992, P-type calcium channels in rat neocortical neurones, J. Physiol. 475:197–205.Google Scholar
  17. Brown, A. M., Schwindt, P. C. and Grill, W. E., 1992, Kinetics and voltage dependence of the high threshold calcium current in rat neocortical neurons, Soc. Neurosci Abst 18:430.Google Scholar
  18. Bullier, J., and Henry, G. H., 1979, Ordinal position of neurons in cat striate cortex, J. Neurophysiol. 42:1251–1263.PubMedGoogle Scholar
  19. Bush, P. C, and Sejnowski, T. J., 1993, Faithfully reduced compartmental models of neocortical pyramidal cells, J. Neurosa. Methods. 46:159–166.Google Scholar
  20. Calvin, W. H., and Sypert, G. W., 1976, Fast and slow pyramidal tract neurons, an intracellular analysis of their contrasting repetitive firing properties in the cat, J. Neurophysiol. 39:420–434.PubMedGoogle Scholar
  21. Cauller, L. J., and Connors, B. W., 1992, Functions of very distal dendrites: Experimental and computational studies of layer I synapses on neocortical pyramidal cells, in: Single Neuron Computation (T. McKenna, J. Davis, and S. F. Zornetzer, eds.), Academic Press, New York.Google Scholar
  22. Cauller, L. J., and Connors, B. W., 1994, Synaptic physiology of horizontal afferents to layer I of primary somatosensory cortex in rats, J. Neurosci. 14:751–762.PubMedGoogle Scholar
  23. Caviness, V. S., 1976, Patterns of cell and fiber distribution in the neocortex of the ‘reeler’ mutant mouse, J. Comp. Neurol. 170:435–448.PubMedGoogle Scholar
  24. Chagnac-Amitai, Y., and Connors, B. W., (1989a), Horizontal spread of synchronized activity in neocortex, and its control by GABA-mediated inhibition, J. Neurophysiol. 61:747–758.PubMedGoogle Scholar
  25. Chagnac-Amitai, Y, and Connors, B. W., (1989b), Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex, J. Neurophysiol. 62:1149–1162.PubMedGoogle Scholar
  26. Chagnac-Amitai, Y, Luhmann, H. J., and Prince, D. A., 1990, Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features, J. Comp. Neurol, 296:598–613.PubMedGoogle Scholar
  27. Cheney, P. D., and Fetz, E. E., 1980, Functional classes of primate corticocomotoneuronal cells and their relation to force, J. Neurophysiol. 44:773–791.PubMedGoogle Scholar
  28. Connors, B.W., 1984, Initiation of synchronized neuronal busting in neocortex, Nature. 310:685–687.PubMedGoogle Scholar
  29. Connors, B. W, and Amitai, Y, 1993, Generation of epileptiform discharge by local circuits of neocortex, in: Epilepsy: Models, Mechanisms and Concepts (P. Schwartzkroin, ed.), Oxford University Press, London, pp. 388–423.Google Scholar
  30. Connors, B. W., and Gutnick, M. J., 1990, Intrinsic firing patterns of diverse neocortical neurons, Trends Neurosci. 13:99–104.PubMedGoogle Scholar
  31. Connors, B. W., and Kriegstein, A. R., 1986, Cellular physiology of the turtle visual cortex: Distinctive properties of pyramidal and stellate neurons, J. Neurosci. 6:164–177.PubMedGoogle Scholar
  32. Connors, B. W., and Ransom, B. R., 1984, Chloride conductance and extracellular potassium concentration interact to modify the excitability of rat optic nerve fibres, J. Physiol. (London). 355:619–633.Google Scholar
  33. Connors, B. W., Gutnick, M. J., and Prince, D. A., 1982, Electrophysiological properties of neocortical neurons in vitro, J. Neurophysiol. 48:1302–1320.PubMedGoogle Scholar
  34. Connors, B. W., Malenka, R. C, and Silva, L. R., 1988, Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat, J. Physiol. (London). 406:443–468.Google Scholar
  35. Creutzfeldt, O. D., 1993, Cortex Cerebri: Performance, Structural and Functional Organization of the Cortex, Mary Creutzfeldt, Göttingen.Google Scholar
  36. DeFelipe, J., and Farinas, I., 1992, The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs, Prog. Neurobiol. 39:563–607.Google Scholar
  37. DeFelipe, J., and Jones, E. C, 1988, Cajal on the Cerebral Cortex, Oxford University Press, London, pp. 557–622.Google Scholar
  38. Deisz, R. A., and Prince, D. A., 1987, Effects of D890 on membrane properties of neocrotical neurons, Brain Res. 422:63–73.PubMedGoogle Scholar
  39. Deisz, R. A., Fortin, G., and Zieglgänsberger, W., 1991, Voltage dependence of excitatory postsynap-tic potentials of rat neocortical neurons, J. Neurophysiol. 65:371–382.PubMedGoogle Scholar
  40. Deschênes, M., 1981, Dendritic spikes induced in fast pyramidal tract neurons by thalamic stimulation, Exp. Brain Res. 43:304–308.PubMedGoogle Scholar
  41. Deschênes, M., Labelle, A., and Landry, P., 1979, Morphological characterization of slow and fast pyramidal tract cells in the cat, Brain Res. 178:251–274.PubMedGoogle Scholar
  42. Dräger, U. G, 1981, Observations on the organization of the visual cortex in the reeler mouse, J. Comp. Neural. 201:555–570.Google Scholar
  43. Evarts, E. V., 1962, Spontaneous discharge of single neurons during sleep and waking, Science. 135:726–728.PubMedGoogle Scholar
  44. Fairén, A., DeFelipe, J., and Regidor, f., 1984, Nonpyramidal neurons: General account, in: Cerebral Cortex, Vol. 1. (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 201–254.Google Scholar
  45. Ferster, D., and Jagadeesh, B., 1992, EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording, J. Neurosci. 12:1262–1274.PubMedGoogle Scholar
  46. Ferster, D., and Lindstrom, S., 1983, An intracellular analysis of geniculocortical connectivity in area 17 of the cat, J. Physwl. (London). 342:181–215.Google Scholar
  47. Foehring, R. G, and Wyler, A. R., 1990, Two patterns of firing in human neocortical neurons, Neurosci. Lett. 14:279–285.Google Scholar
  48. Foehring, R. C, Lorenzon, N. M., Herron, P., and Wilson, C. J., 1991, Correlation of physiologically and morphologically identified neuronal types in human association cortex in vitro. J. Neurophysiol. 66:1825–1837.PubMedGoogle Scholar
  49. Franz, P., Galvan, M., and Constanti, A., 1986, Calcium-dependent action potentials and associated inward currents in guinea-pig neocortial neurons in vitro, Brain Res. 366:262–271.PubMedGoogle Scholar
  50. Friedman, A., and Gutnick, M. J., 1987, Low-threshold calcium electrogenesis in neocortical neurons, Neurosci, Lett. 81:117–122.Google Scholar
  51. Friedman, A., and Gutnick, M.J., 1989, Intracellular calcium and control of burst generation in neurons of guinea-pig neocortex in vitro, Eur. J. Neurosci. 1:372–381.Google Scholar
  52. Giffin, K., Solomon, J. S., Burkhalter, A., and Nerbonne, J. M., 1991, Differential expression of voltage-gated calcium currents in identified visual cortical neurons, Neuron. 6:321–332.PubMedGoogle Scholar
  53. Gruner, J. E., Hirsch, J. C, and Sotelo, G, 1974, Ultrastructural features of the isolated suprasylvian gyrus, J. Comp. Nenrol. 154:1–27.Google Scholar
  54. Hallman, L. E., Schofield, B. R., and Lin, G.-S., 1988, Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat, J. Comp. Nenrol, 272:149–160.Google Scholar
  55. Hamill, O. P., Huguenard, J. R., and Prince, I. A., 1991, Patch-clamp studies of voltage-gated currents in identified neurons of the rat cerebral cortex, Cereb. Cortex. 1:48–61.PubMedGoogle Scholar
  56. Hellweg, F. C, Schultz, W., and Creutzfeldt, O. D., 1977, Extracellular and intracellular recordings from cat’s cortical whisker projection area: Thalamocortical response transformation, J.Neuro-physiol. 40:463–479.Google Scholar
  57. Hille, B., 1992, Ionic Channels of Excitable Membranes, 2nd ed., Sinauer Assoc, Sunderland, MA.Google Scholar
  58. Hines, M. 1989, A program for simulation of nerve equations with branching geometries, Int, J. Biomed. Comput. 24:55–68.Google Scholar
  59. Hodgkin, A. L., 1948, The local electrical changes associated with repetitive action in a non-medullated axon, J. Physwl. (London). 107:165–169.Google Scholar
  60. Holmes, W. R., and Woody, C. D., 1989, Effects of uniform and non-uniform synaptic activation distributions on the cable properties of modeled cortical pyramidal cells, Brain Res. 505:12–22.PubMedGoogle Scholar
  61. Hübener, M., Schwarz, G, and Bolz, J., 1990, Morphological types of projection neurons in layer 5 of the cat visual cortex, J. Comp. Nenrol. 301:655–674.Google Scholar
  62. Huettner, J. E., and Baughman, R. W., 1988, The pharmacology of synapses formed by identified corticocollicular neurons in primary culture of rat visual cortex, J. Neurosci. 8:160–175.PubMedGoogle Scholar
  63. Huguenard, J. R., Hamill, O., and Prince, D. A., 1988, Developmental changes in Na+ conductances in rat neocortical neurons: Appearance of a slowly inactivating component, J. NeurophysioL. 59:778–795.PubMedGoogle Scholar
  64. Huguenard, J. R., Hamill, O., and Prince, D. A., 1989, Sodium channels in dendrites of rat cortical pyramidal cells, Proc. Natl, Acad. Sci, USA. 86:2473–2477.Google Scholar
  65. Istvan, P., and Zarzecki, P., 1993, Intrinsic membrane properties and somatosensory convergence in SI cortex of raccoon, Soc, Neurosci. Abstr. 19:1566.Google Scholar
  66. Jacobsen, S., and Pollen, D. A., 1968, Electrotonic spread of dendritic potentials in feline pyramidal cells, Science. 161:1351–1353.Google Scholar
  67. Jaslove, S. W., 1992, The integrative properties of spiny distal dendrites, Neuroscience. 47:495–519.PubMedGoogle Scholar
  68. Kandel, E.R., Schwartz, J. H., and Jessell, T. M., 1991, Principles of Neural Science, Elsevier, Amsterdam.Google Scholar
  69. Kasper, E., Larkman, A. U., Blakemore, C, and Judge, S., 1991, Physiology and morphology of identified projection neurons in rat visual cortex studied in vitro, Soc. Neurosci. Abstr. 17:114.Google Scholar
  70. Kasper, E., Larkman, A. U., Lübke, J., and Blakemore, C, 1994, Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation between cell morphology, intrinsic electrophysiological properties and axon targets, J. Cornp. Neurol. 339:459–474.Google Scholar
  71. Kawaguchi, Y., 1993, Groupings of non-pyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex, J. NeurophysioL. 69:416–431.PubMedGoogle Scholar
  72. Kawaguchi, Y., and Kubota, Y, 1993, Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin-and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex, J. NeurophysioL. 70:387–396.PubMedGoogle Scholar
  73. Kim, H. G., and Connors, B. W., 1993, Apical dendrites of the neocortex: Correlation between sodium-and calcium-dependent spiking and pyramidal cell morphology, J. Neurosci. 13:5301–5311.PubMedGoogle Scholar
  74. Kim, H. G., Flint, A., and Connors, B. W., 1994, Physiology and morphology of layer IV neurons in the rat somatosensory cortex. J. Comp. Neurol., in press.Google Scholar
  75. Koch, C, Douglas, R. J., and Wehmeier, U., 1990, Visibility of synaptically induced conductance changes: Theory and simulations of anatomically characterized cortical pyramidal cells, J. Neuro sci. 10:1728–1744.Google Scholar
  76. Koike, H., Okada, Y, and Oshima, T., 1968, Accommodative behavior of cat pyramidal tract cells investigated with intracellular injection of currents. Exp. Brenn Res. 5:189–201.Google Scholar
  77. Konnerth, A., Lux, H. D., and Heinemann, U., 1986, Ionic properties of burst generation in hippocampal pyramidal cell somata in vitro, Exp. Brain Res. 14:368.Google Scholar
  78. Landry, P., Wilson, C. J., and Kitai, S. T., 1984, Morphological and electrophysiological characteristics of pyramidal tract neurons in the rat, Exp. Brain Res. 57:177–190.PubMedGoogle Scholar
  79. Larkman, A. U., 1991, Dendritic morphology of pyramidal neurons in the visual cortex of the rat: I. Branching patterns, J. Comp. Neurol. 306:306–319.Google Scholar
  80. Larkman, A. U., and Mason, A., 1990, Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes, J. Neurosci. 10:1407–1414.PubMedGoogle Scholar
  81. Larkman, A. U., Major, G., Stratford, K. J., and Jack, J. J. B., 1992, Dendritic morphology of pyramidal neurons of the visual cortex of the rat. IV: Electrical geometry, J. Comp. Neurol. 323:137–152.PubMedGoogle Scholar
  82. Lemmon, V., and Pearlman, A. L., 1981, Does laminar position determine the receptive field properties of cortical neurons? A study of corticotectal cells in area 17 of the normal mouse and the reeler mutant, J. Neurosci. 1:83–93.PubMedGoogle Scholar
  83. Llinás, R. R., 1988, The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function, Science. 242:1654–1664.PubMedGoogle Scholar
  84. Llinás, R., and Nicholson, C, 1971, Electrophysiological properties of dendrites and somata in alligator Purkinje cells, J. NeurophysioL. 34:534–551.Google Scholar
  85. Llinás, R., and Sugimori, M., 1981, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. (London). 305:197–213.Google Scholar
  86. Lorenzon, N. M., and Foehring, R. C, 1992, Relationship between repetitive firing and afterhyper-polarization in human neocortical neurons, J. NeurophysioL. 67:350–363.PubMedGoogle Scholar
  87. McCormick, D. A., 1992, Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 39:337–388.PubMedGoogle Scholar
  88. McCormick, D. A., and Prince, D. A., 1986, Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro, J. Physiol. (London). 375:169–194.Google Scholar
  89. McCormick, D. A., Connors, B. W., Lighthall, J. W., and Prince, D. A., 1985, Comparative electro-physiology of pyramidal and sparsely spiny stellate neurons of” the neocortex, J. Neurophysiol. 54:782–806.PubMedGoogle Scholar
  90. Manor, Y., Koch, C, and Segev, I., 1991, Effect of geometrical irregularities on propagation delay in axonal trees, Biophys. J. 60:1424–1437.PubMedGoogle Scholar
  91. Martin, K. A. C, and Whitteridge, D., 1984, Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat, J. Physiol. (London). 353:463–504.Google Scholar
  92. Mason, A., and Larkman, A., 1990, Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology, J. Neurosci. 10:1415–1428.PubMedGoogle Scholar
  93. Mason, A., Nicoll, A., and Stratford, K., 1991, Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro, J. Neurosci. 11:72.PubMedGoogle Scholar
  94. Mel, B. W., 1993, Synaptic integration in an excitable dendritic tree. J. Neurophysiol. 70:1086–1101.PubMedGoogle Scholar
  95. Miller, M. W., Chiaia, N. L., and Rhoades, R. W., 1990, Intracellular recording and injection study of corticospinal neurons in the rat somatosensory cortex: Effect of prenatal exposure to ethanol, J. Comp. Neurol. 297:91.PubMedGoogle Scholar
  96. Mintz, I. M., Adams, M. E., and Bean, B. P., 1992, P-type calcium channels in rat central and peripheral neurons, Neuron. 9:85–95.PubMedGoogle Scholar
  97. Montoro, R. J., López-Barneo, J., and Jassik-Gershenfeld, D., 1988, Differential burst firing modes in neurons of the mammalian visual cortex in vitro, Brain Res. 460:168.PubMedGoogle Scholar
  98. Mountcastle, V. B., 1980, Sensory receptors and neural encoding: Introduction to sensory processes, in: Medical Physiology, Vol. 1, (V. B. Mountcastle, ed.), Mosby, St. Louis, pp. 327–347.Google Scholar
  99. Mountcastle, V. B., Talbot, W. H., Sakata, H., and Hyvarinen, J., 1969, Cortical neuronal mechanisms in flutter-vibration studied in unanaesthetized monkeys. Neuronal periodicity and frequency discrimination, J. Neurophysiol. 32:452–484.PubMedGoogle Scholar
  100. Naegele, J. R., and Katz, L. C, 1990, Cell surface molecules containing N-acetylgalactosamine are associated with basket cells and neurogliaform cells in cat visual cortex, J. Neurosci. 10:540–557.PubMedGoogle Scholar
  101. Nicholson, C, ten Bruggencate, G., Stöckle, H., and Steinberg, R., 1978, Calcium and potassium changes in the extracellular microenvironment of cat cerebellar cortex, J. Neurophysiol. 41:1026–1037.PubMedGoogle Scholar
  102. Nicoll, A., and Blakemore, C, 1993, Single-fiber EPSPs in layer 5 of rat visual cortex, NeuroRep. 4:167–170.Google Scholar
  103. Nicoll, A., Kim, H. G., and Connors, B. W., 1993, Spatial organization of inhibitory synaptic responses onto pyramidal neurons of rat neocortex, Soc. Neurosci. Abstr. 19:1704.Google Scholar
  104. Nicoll, R. A., Malenka, R. C, and Kauer, J., 1990, Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system, Physiol. Rev. 70:413–565.Google Scholar
  105. Nunez, A., Amzica, F., and Steriade, M., 1993, Electrophysiology of cat association cortical cells in vivo: Intrinsic properties and synaptic responses, J. Neurophysiol. 70:418–430.PubMedGoogle Scholar
  106. Oshima, T., 1969, Studies of pyramidal tract cells, in: Basic Mechanisms of the Epilepsies (H. II. Jasper, A. A. Ward, and A. Pope, eds.), Little, Brown, Boston, pp. 253–261.Google Scholar
  107. Pei, X., Volgushev, M., Vidyasagar, T. R., and Creutzfeldt, O. D., 1991, Whole cell recording and conductance measurements in cat visual cortex in vivo, NeuroRep. 2:485.Google Scholar
  108. Peinado, A., and Katz, L. C, 1990, Development of cortical spiny stellate cells: Retraction of a transient apical dendrite, Soc. Neurosci. Abstr. 16:1127.Google Scholar
  109. Peters, A., and Jones, E. G. (eds.), 1984, Cerebral Cortex Vol. 1, Plenum Press, New York.Google Scholar
  110. Pockberger, H., 1991, Electrophysiological and morphological properties of rat motor cortex neurons in vivo, Brain Res. 539:181.PubMedGoogle Scholar
  111. Prince, D. A., 1978, Neurophysiology of epilepsy, Annu. Rev. Neurosci. 1:395–415.PubMedGoogle Scholar
  112. Prince, D. A., and Tseng, G.-F., 1993, Epileptogenesis in chronically injured cortex: In vitro studies, J. Neurophysiol. 69:1276–1291.PubMedGoogle Scholar
  113. Purpura, D. P., 1967, Comparative physiology of dendrites, in: The Neurosciences (Quarton et al., eds.), Rockefeller University Press, New York, pp. 372–393.Google Scholar
  114. Rail, W., 1977, Core conductor theory and cable properties of neurons, in: Handbook of Physiology, Section 1: The Nervous System, Vol. 1 (E. R. Kandel, ed.), American Physiological Society, Bethesda, pp. 39–98.Google Scholar
  115. Regehr, W. G., Konnerth, A., and Armstrong, C. M., 1992, Sodium action potentials in the dendrites of cerebellar Purkinje cells, Proc. Natl. Acad, Sci. USA. 89:5492–5496.Google Scholar
  116. Reuveni, I., Friedman, A., Amitai, Y, and Gutnick, M.J., 1993, Stepwise repolarization from Ca2 +plateaus in neocortical pyramidal cells: Evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites, J. Neurosci. 13:4609–4621.PubMedGoogle Scholar
  117. Rhodes, P. A., and Gray, C. M., 1994, Model of neocortical intrinsically bursting pyramidal neurons. Comput. Neurosci., in press.Google Scholar
  118. Ross, W. N., Lasser-Ross, N., and Werman, R., 1990, Spatial and temporal analysis of calciumdependent electrical activity in guinea pig Purkinje cell dendrites, Proc. R. Soc. London Ser. B. 240:173–185.Google Scholar
  119. Sakai, H., and Woody, C. D., 1988, Relationships between axonal diameter, soma size, and axonal conduction velocity of HRP-filled pyramidal tract cells of awake cats, Brain Res. 460:1–7.PubMedGoogle Scholar
  120. Sayer, R. J., Schwindt, P. C, and Crill, W. E., 1990, High-threshold and low-threshold calcium currents in neurons acutely isolated from rat sensorimotor cortex, Neurosci. Lett. 120:175–178.PubMedGoogle Scholar
  121. Sayer, R. J., Schwindt, P. C, and Crill, W. E., (1993a), Metabotropic glutamate receptor-mediated suppression of L-type calcium current in acutely isolated neocortical neurons, J. Neurophysiol. 68:833–842.Google Scholar
  122. Sayer, R. J., Brown, A. M., Schwindt, P. C, and Crill, W. E., (1993b), Calcium currents in acutely isolated human neocortical neurons, J. Neurophysiol. 69:1596–1606.PubMedGoogle Scholar
  123. Schwartzkroin, P. A., and Haglund, M. M., 1986, Spontaneous rhythmic synchronous activity in epileptic human and normal monkey temporal lobe, Epilepsia. 27:523–533.PubMedGoogle Scholar
  124. Schwartzkroin, P. A., and Mathers, L. H., 1978, Physiological and morphological identification of a nonpyramidal hippocampal cell type, Brain Res. 157:1–10.PubMedGoogle Scholar
  125. Schwindt, P. C, 1992, Ionic currents governing input-output relations of Betz cells, in: Single Neuron Computation (T. McKenna, J. Davis, and S. F. Zornetzer, eds.), Academic Press, New York, pp. 235–258.Google Scholar
  126. Schwindt, P. C, Spain, W. J., Foehring, R. C, Chubb, M. C, and Crill, W. E., (1988a), Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes, J. Neurophysiol. 59:450–467.PubMedGoogle Scholar
  127. Schwindt, P. C, Spain, W. J., Foehring, R. C, Stafstrom, C. E., Chubb, M. C, and Crill, W. E., (1988b), Multiple potassium conductances and their function in neurons from cat sensorimotor cortex in vitro, J. Neurophysiol. 59:424–449.PubMedGoogle Scholar
  128. Schwindt, P. C, Spain, W. J., and Crill, W. E., 1989, Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortical neurons, J. Neurophysiol. 61:233–244.PubMedGoogle Scholar
  129. Segev, I., Fleshman, J. W., and Burke, B., 1989, Compartmental models of complex neurons, in: Methods in Neuronal Modelling (C. Koch and I. Segev, eds.), MIT Press, Cambridge, MA, pp. 63–96.Google Scholar
  130. Shepherd, G. M., and Brayton, R. K., 1987, Logic operations are properties of computer-simulated interactions between excitable dendritic spines, Neuroscience. 21:151–166.PubMedGoogle Scholar
  131. Silva, L. R., 1991, Pyramidal neurons of neocortical layer 5: Intrinsic firing properties, mechanisms of inhibition, and role in synchronized cortical activity, Ph.D. dissertation, Stanford University, Stanford, CA.Google Scholar
  132. Silva, L. R., and Connors, B. W., 1986, Spatial distribution of intrinsic cortical neurons that excite or inhibit layer 2/3 pyramidal cells: A physiological study of the neocortex in vitro, Soc. Neurosci. Abstr. 12:1435.Google Scholar
  133. Silva, L. R., Amitai, Y., and Connors, B. W., (1991a), Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons, Science. 251:432–435.PubMedGoogle Scholar
  134. Silva, L. R., Gutnick, M. J., and Connors, B. W., (1991b), Laminar distribution of neuronal membrane properties in neocortex of normal and reeler mouse, J. Neurophysiol. 66:2034–2040.PubMedGoogle Scholar
  135. Simons, D. F., 1978, Response properties of vibrissa units in rat SI somatosensory neocortex, J. Neurophysiol. 41:798–820.PubMedGoogle Scholar
  136. Simons, D. J. and Carvell, G. E., 1989, Thalamocortical response transformation in the rat vi-brissa/barrel system, J. Neurophysiol. 61:311–330.PubMedGoogle Scholar
  137. Somogyi, P., 1990, Synaptic organization of GABAergic neurons and GABAA receptors in the lateral geniculate nucleus and the visual cortex, in: Neural Mechanisms of Visual Perception (D. M. Lam and C. D. Gilbert, eds.), Gulf Pub., Houston, pp. 35–62.Google Scholar
  138. Spain, W. J., Schwindt, P. C, and Crill, W. E., 1987, Anomalous rectification in neurons from cat sensorimotor cortex in vitro, J. Neurophysiol. 57:1555–1576.PubMedGoogle Scholar
  139. Spain, W. J., Schwindt, P. C, and Crill, W. E., (1991a), Post-inhibitory excitation and inhibition in layer V pyramidal neurones from cat sensorimotor cortex, J. Physiol. (London). 434:609–626.Google Scholar
  140. Spain, W. J., Schwindt, P. G, and Crill, W. E., (1991b), Two transient potassium currents in layer V pyramidal neurones from cat sensorimotor cortex, J. Physiol. (London). 434:591–607.Google Scholar
  141. Spencer, W. A., and Kandel, E. R., 1961, Electrophysiology of hippocampal neurons. IV. Fast prepotentials, J. Neurophysiol. 24:272285.Google Scholar
  142. Stafstrom, C. E., Schwindt, P. G, and Crill, W. E., 1984a, Repetitive firing in layer V neurons from cat neocortex in vitro, J. Neurophysiol, 52:264–277.PubMedGoogle Scholar
  143. Stafstrom, C. E., Schwindt, P. C, Flatman, J. A., and Crill, W. E., 1984b, Properties of the sub-threshold response and action potential recorded in layer V neurons from cat sensorimotor cortex in vitro, J. Neurophysiol. 52:244–263.PubMedGoogle Scholar
  144. Stafstrom, C. E., Schwindt, P. C, Chubb, M. C, and Crill, W. E., 1985, Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro, J. Neurophysiol. 53:153.PubMedGoogle Scholar
  145. Steriade, M., 1991, Alertness, quiet sleep, dreaming, in: Cerebral Cortex, Vol. 9, (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 279–357.Google Scholar
  146. Stratford, K., Mason, A., Larkman, A., Major, G., and Jack, J., 1989, The modeling of pyramidal neurones in the visual cortex, in: The Computing Neuron (R. Durbin, C. Mial, and G. Mitchison, eds.), Addison-Wesley, Reading, MA, pp. 296–321.Google Scholar
  147. Strowbridge, B. W., Masukawa, L. M., Spencer, D. D., and Shepherd, G. M., 1992, Hyperexcitability associated with localized lesions in epileptic patients, Brain Res. 587:158–163.PubMedGoogle Scholar
  148. Sugimori, M., and Elinas, R., 1990, Real-time imaging of calcium influx in mammalian cerebellar Purkinje cells in vitro, Proc. Natl. Acad. Sci. USA. 87:5084–5088.PubMedGoogle Scholar
  149. Sutor, B., and Zieglgänsberger, W., 1987, A low-threshold activated, transient calcium current is responsible for the time-dependent depolarizing inward rectification of rat neocortical neurons in vitro, Eur. J. Physiol. 410:102–111.Google Scholar
  150. Swadlow, H. A., 1989, Efferent neurons and suspected interneurons in SI vibrissa cortex of the awake rabbit: Receptive fields and axonal properties, J. Neurophysiol. 62:288–308.PubMedGoogle Scholar
  151. Szentágothai, J., 1965, The use of degeneration in the investigation of short neuronal connections, Prog. Brain Res. 14:1–32.PubMedGoogle Scholar
  152. Takahashi, K., 1965, Slow and fast groups of pyramidal tract neurons and their respective membrane properties, J. Neurophysiol. 28:908–924.PubMedGoogle Scholar
  153. Tasker, J. G., Hoffman, IE W., Fisher, R. S., Kim, Y. E, Peacock, W. D., and Dudek, F. E., 1990, Immature neocortical neurons have low-threshold Ca2+ spikes but do not generate intrinsic bursts, Soc. Neurosci. Abstr. 16:448.Google Scholar
  154. Telfeian, A. E., Cauller, L. J., and Connors, B. W., 1991, Contribution of apical dendrites to somatic membrane properties of layer V pyramidal cells in neocortex, Soc. Neurosci. Abstr. 17:311.Google Scholar
  155. Terashima, T., Inoue, K., Inoue, Y, Midoshiba, K., and Tsukuda, Y, 1983, Distribution and morphology of corticospinal tract neurons in reeler mouse cortex by retrograde HRP method, J. Comp. Neurol. 218:314.PubMedGoogle Scholar
  156. Thomson, A. M., and West, D. C, 1993, Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex, Neuroscience. 54:329–346.PubMedGoogle Scholar
  157. Thomson, A. M., Deuchars, J., and West, D. G, 1993, Single axon excitatory postsynaptic potentials in neocortical interneurons exhibit pronounced paired pulse facilitation, Neuroscience. 54:347–360.PubMedGoogle Scholar
  158. Traub, R., Miles, R., 1991, Neuronal Networks of the Hippocampus, Cambridge University Press, London.Google Scholar
  159. Traub, R. D., Wong, R. K. S., Miles, R., and Michelson, EL, 1991, A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances, J. Neurophysiol. 66:635–650.PubMedGoogle Scholar
  160. Tseng, G.-F., and Prince, D. A., 1993, Heterogeneity of rat corticospinal neurons, J. Comp. Neurol. 335:92–108.PubMedGoogle Scholar
  161. Ulinski, P. S., 1990, Cerebral cortex in reptiles, in: Cerebral Cortex, Vol. 8A, Plenum Press, New York, pp. 139–216.Google Scholar
  162. van Brederode, J. F. M., and Snyder, G. L., 1992, A comparison of the electrophysiological properties of morphologically identified cells in layers 5B and 6 of the rat neocortex, Neuroscience. 50:315–337.PubMedGoogle Scholar
  163. Wang, Z., and McCormick, D. A., 1993, Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and IS, 3R-ACPD, J. Neurosci. 13:2199–2216.PubMedGoogle Scholar
  164. Waxman, S. G., and Swadlow, H. A., 1977, The conduction properties of axons in central white matter, Prog. Brain Res. 8:297–324.Google Scholar
  165. Westenbroek, R. E., Hell, J. W., Warner, C, Dubel, S. J., Snutch, T. P., and Catterall, W. A., 1992, Biochemical properties and subcellular distribution of an N-type calcium channel al subunit, Neuron. 9:1099–1115.PubMedGoogle Scholar
  166. White, E. L., and Keller, A., 1989, Cortical Circuits: Synaptic Organization of the Cerebral CortexStructure, Function and Theory, Birkhauser, Boston.Google Scholar
  167. White, E. L., Amitai, Y., and Gutnick, M. J., 1994, Axosomatic synapses onto intrinsically bursting neurons in rat SmI (barrel) cortex, J. Comp. Neural. 342:1–14.Google Scholar
  168. Wise, S. P., and Jones, E. G., 1977, Gells or origin and terminal distribution of descending projections of the rat somatic sensory cortex, J. Comp. Neural. 175:129–158.Google Scholar
  169. Wong, R. K. S., and Stewart, M., 1992, Different firing patterns generated in dendrites and somata of GA1 pyramidal neurones in guinea-pig hippocampus, J. Physiol. (London). 457:657–687.Google Scholar
  170. Wong, R. K. S., Prince, D. A., and Basbaum, A. I., 1979, Intradendritic recordings from hippocampal neurons, Proc. Natl. Acad. Sa. USA. 76:986–990.Google Scholar
  171. Yarom, Y, and Spira, M. E., 1982, Extracellular potassium ions mediate specific neuronal interaction, Science. 216:80–82.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Yael Amitai
    • 1
  • Barry W. Connors
    • 2
  1. 1.Unit of PhysiologyBen-Gurion University of the NegevBeershevaIsrael
  2. 2.Department of NeuroscienceBrown UniversityProvidenceUSA

Personalised recommendations