Somatosensory Thalamus of the Rat

  • Mathew E. Diamond
Part of the Cerebral Cortex book series (CECO, volume 11)


Each sensory field of neocortex (somatic, visual, and auditory) is the target of multiple thalamic pathways (Macchi, 1983). The barrel field of rodent cortex (Woolsey and Van der Loos, 1970; C. Welker and Woolsey, 1974) provides a particularly useful model for investigating how multiple thalamic inputs are integrated; the various ascending sensory pathways are segregated in the thalamus and terminate in separate cortical sites. This chapter concerns the thalamic nuclei that project to the barrel cortex—their classification, their afferent and efferent connections, and their functional properties.


Receptive Field Thalamic Nucleus Reticular Nucleus Trigeminal Nucleus Spinal Trigeminal Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akers, R. M., and Killackey, H. P., 1978, Organization of corticocortical connections in the parietal cortex of rat, J. Comp. Neurol. 181:513–538.PubMedGoogle Scholar
  2. Albe-Fessard, D., Berkely, K.J., Kruger, L., Ralston, H. J., III, and Willis, W. D., 1985, Diencephalic mechanisms of pain sensation, Brian Res. Rev. 9:217–296.Google Scholar
  3. Armstrong-James, M., and Callahan, C. A., 1991, Thalamo-cortical processing of vibrissal information in the rat. II. Spatiotemporal convergence in the thalamic ventroposterior medial nucleus (VPm) and its relevance to generation of receptive fields of SI cortical “barrel” neurons, J. Comp. Neurol. 303:211–224.PubMedGoogle Scholar
  4. Armstrong-James, M., and Fox, K., 1987, Spatio-temporal divergence and convergence in rat “barrel” cortex, J. Comp. Neurol. 263:265–281.PubMedGoogle Scholar
  5. Armstrong-James, M., Callahan, C. A., and Friedman, M. A., 1991, Thalamo-cortical processing of vibrissal information in the rat. I. Intracortical origins of surround but not centre-receptive fields of layer IV neurones in the rat SI barrel field cortex, J. Comp. Neurol. 303:193–210.PubMedGoogle Scholar
  6. Armstrong-James, M., Fox, K., and Das-Gupta, A., 1992, Flow of excitation within rat barrel cortex on striking a single vibrissa, J. Neurophysiol. 68:1345–1358.PubMedGoogle Scholar
  7. Armstrong-James M. A., Welker, E., and Callahan, C. A., 1993, The contribution of NMDA and non-NMDA receptors to fast and slow sensory transmission in the rat SI barrel cortex, J. Neurosci. 13:2149–2160.PubMedGoogle Scholar
  8. Barbaresi, P., Spreafico, R., Frassoni, C, and Rustioni, A., 1986, GABA-ergic neurons are present in the dorsal column nuclei but not in the ventroposterior complex of rats, Brain Res. 382:305–326.PubMedGoogle Scholar
  9. Bentivoglio, M., Molinari, M., Minciacchi, D., and Macchi, G., 1983, Organization of the cortical projections of the posterior complex and intralaminar nuclei of the thalamus as studied by means of retrograde tracers, in: Somatosensory Integration in the Thalamus (G. Macchi, A. Rustioni, and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 337–364.Google Scholar
  10. Bernardo, K. L., McCasland, J. S., Woolsey, T. A., and Strominger, R. N., 1990, Local intra-and interlaminar connections in mouse barrel cortex, J. Comp. Neurol. 291:231–255.PubMedGoogle Scholar
  11. Carvell, G. E., and Simons, D. J., 1987, Thalamic and corticocortical connections of the second somatic sensory area of the mouse, J. Comp. Neurol. 265:409–427.PubMedGoogle Scholar
  12. Celio, M. R., 1991, Calbindin D-28K and parvalbumin in the rat nervous system, Neuroscience. 35:375–475.Google Scholar
  13. Chapin, J. K., and Lin, C.-S., 1984, Mapping the body representation in the SI cortex of anesthetized and awake rats, J. Comp. Neurol. 229:199–213.PubMedGoogle Scholar
  14. Chapin, J. K., Sadeq, M., and Guise, J. L. U., 1987, Corticocortical connections within the primary somatosensory cortex of the rat, J. Comp. Neurol. 263:326–346.PubMedGoogle Scholar
  15. Chiaia, N. L., Rhoades, R. W., Bennett-Clarke, C. A., Fish, S. E., and Killackey, H. P., 1991a, Thalamic processing of vibrissal information in the rat: I. Afferent input to the medial ventral posterior and posterior nuclei, J. Camp. Neural. 314:201–216.Google Scholar
  16. Chiaia, N. L., Rhoades, R. W., Fish, S. E., and Killackey, H. P., (1991b), Thalamic processing of vibrissal information in the rat: II. Morphological and functional properties of medial ventral posterior nucleus and posterior nucleus neurons, J. Comp. Neural. 314:217–236.Google Scholar
  17. Chmielowska, J., Carvell, G. E., and Simons, D. J., 1989, Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex, J. Camp. Neural. 285:325–338.Google Scholar
  18. Covenas, R., De Leon, M., Arevalo, J. R., Lara, J., and Aijon, J., 1991, Distribution of parvalbuminimmunoreactivity in the rat thalamus using a monoclonal antibody, Arch. Hal. Biol. 129:199–210.Google Scholar
  19. Curry, M. J., 1972, The exteroceptive properties of neurones in the somatic part of the posterior group (PO), Brain Res. 44:439–462.PubMedGoogle Scholar
  20. Dado, R. J., Katter, J. T, and Giesler, G. J., (1994a), Spinothalamic and spinohypothalamic tract neurons in the cervical enlargement of rats. I. Locations of antidromically identified axons in the thalamus and hypothalamus, J. Neurophysiol. 71:959–980.PubMedGoogle Scholar
  21. Dado, R. J., Katter, J. T, and Giesler, G. J., 1994b, Spinothalamic and spinohypothalamic tract neurons in the cervical enlargement of rats. II. Responses to innocuous and noxious mechanical and thermal stimuli, J.Neurophysiol., 71:981–108.PubMedGoogle Scholar
  22. Diamond, I. T., 1989, A note on the classification of thalamic nuclei, in: Neurologia e scienze di base: Scritti in onore di Giorgio Macchi (G. Gainotti, P. Bergonzi, M. Bentivoglio, and P. M. Ferro, eds.), Universitá Cattolica del Sacro Cuore, Milan, pp. 143–159.Google Scholar
  23. Diamond, M., 1993, Parallel somatic sensory pathways through the rat thalamus, in: Thalamic Networks for Relay and Modulation (D. Minciacchi, M. Molinari, G. Macchi, and E. G. Jones, eds.), Pergamon Press, Elmsford, NY, pp. 99–108.Google Scholar
  24. Diamond, M. E., and Armstrong-James, M., 1992, Role of parallel sensory pathways and cortical columns in learning, Concepts Neurosci. 3:55–78.Google Scholar
  25. Diamond, M. E., Armstrong-James, M., and Ebner, F. F., (1992a), Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus, J. Comp. Neural. 318:462–476.Google Scholar
  26. Diamond, M. E., Armstrong-James, M., Budway, M. J., and Ebner, F. F., (1992b), Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on barrel cortex, J. Camp. Neurol. 319:66–84.Google Scholar
  27. Diamond, M. E., Armstrong-James, M., and Ebner, F. F., (1993a), Experience-dependent plasticity in the barrel cortex of adult rats, Prac. Natl. Acad. Sci. USA. 90:2602–2606.Google Scholar
  28. Diamond, M. E., Huang, W., and Ebner, F. F., 1993b, Laminar comparison of plasticity in adult rat barrel cortex, Soc. Neurosci. Abst. 19:1569.Google Scholar
  29. Donaldson, L., Hand, P. J., and Morrison, A. R., 1975, Corticothalamic relationships in the rat, Exp. Neurol. 47:448–458.PubMedGoogle Scholar
  30. Dykes, R. W., 1983, Parallel processing of somatosensory information: A theory, Brain Res. Rev. 6:47–115.Google Scholar
  31. Dykes, R. W., Landry, P., Hicks, T P., Diadori, P., and Metherate, R., 1988, Specificity of connections in the ventroposterior nuclei of the thalamus, Prog. Neurobiol. 30:87–103.PubMedGoogle Scholar
  32. Erickson, R. P., Jane, J. A., Waite, R., and Diamond, I. T, 1964, Single neuron investigation of sensory thalamus of the opossum, J. Neurophysiol. 27:1026–1047.PubMedGoogle Scholar
  33. Erickson, R. P., Hall, W. C, Jane, J. A., Snyder, M., and Diamond, I. T, 1967, Organization of the posterior dorsal thalamus of the hedgehog, J. Comp. Neurol. 31:103–130.Google Scholar
  34. Erzurumlu, R. S., and Killackey, H. P., 1980, Differential organization of the thalamic projection cells in the brain stem trigeminal complex of the rat, Brain Res. 198:427–433.PubMedGoogle Scholar
  35. Erzurumlu, R. S., Bates, C. A., and Killackey, H. P., 1980, Diencephalic projections of the subnucleus interpolaris of the brainstem trigeminal complex in the rat, Neuroscience. 5:1891–1901.PubMedGoogle Scholar
  36. Fabri, M., and Burton, H., 1991, Topography of connections between primary somatosensory cortex and posterior complex in rat: A multiple fluorescent tracer study, Brain Res. 538:351–357.PubMedGoogle Scholar
  37. Feldman, S. G., and Kruger, L., 1980, An axonal transport study of the ascending projection of medial lemniscus neurons in the rat, J.Comp. Neurol. 192:427–454.PubMedGoogle Scholar
  38. Frassoni, C, Bentivoglio, M., Spreafico, R., Sanchez, M. P., Puelles, L., and Fairen, A., 1991, Postnatal development of calbindin and pai valbumin immunoreactivity in the thalamus of the rat, Dev. Brain Res. 58:243–249.Google Scholar
  39. Friedberg, M. H., Lee, S. M., and Ebner, F. F., 1991, Anesthetic state as a determinant of VPM receptive field properties, Soc. Neurosci. Abstr. 17:321.Google Scholar
  40. Good, K. E., and Killackey, H. P., 1992, Areal distribution of corticothalamic projection neurons to the posterior thalamic complex in rat somatosensory cortex, Soc. Neurosci. Abstr. 18:1390.Google Scholar
  41. Gregory, E., and Hall, W. C, 1988, Characterization of trigeminal afferents in the superior colliculus of the rat, Soc. Neurosci. Abstr. 14:1165.Google Scholar
  42. Guedel, A. E., 1920, Signs of inhalational anesthesia. A fundamental guide, in: Inhalational Anesthesia (A. E. Guedel, Ed.), Macmillan Co., New York, pp. 10–52.Google Scholar
  43. Harris, R. M., 1986, Morphology of physiologically identified thalamocortical relay neurons in the rat ventrobasal thalamus, J. Comp. Neurol. 251:491–505.PubMedGoogle Scholar
  44. Herkenham, M., 1979, The afferent and efferent connections of the ventromedial thalamic nucleus in the rat, J. Comp. Neurol. 183:487–518.PubMedGoogle Scholar
  45. Herkenham, M., 1980, Laminar organization of thalamic projections to the rat neocortex, Science. 207:532–535.PubMedGoogle Scholar
  46. Herkenham, M., 1986, New perspectives on the organization and evolution of nonspecific thalamocortical projections, in: Cerebral Cortex, Vol. 5 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 403–445.Google Scholar
  47. Honda, C. N., Mense, S., and Perl, E. R., 1983, Neurons in ventrobasal region of cat selectively responsive to noxious mechanical stimulation, J. Neurophysiol. 49:662–673.PubMedGoogle Scholar
  48. Hoogland, P. V., Welker, E., and Van der Loos, H., 1987, Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP, Exp. Brain Res. 68:73–87.PubMedGoogle Scholar
  49. Hoogland, P. V, Welker, E., Van der Loos, H., and Wouterlood, F. G., 1988, The organization and structure of the thalamic afferents from the barrel cortex in the mouse: A PHA-L study, in: Cellular Thalamic Mechanisms (M. Bentivoglio and R. Spreafico eds.), Elsevier, Amsterdam, pp. 152–162.Google Scholar
  50. Ito, M., 1988, Response properties and topography of vibrissa-sensitive VPM neurons in the rat, J. Neurophysiol. 60:1181–1197.PubMedGoogle Scholar
  51. Jensen, K. F., and Killackey, H. P., 1987, Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents, J. Neurosci. 7:3529–3543.PubMedGoogle Scholar
  52. Jones, E., G., 1985, The Thalamus, Plenum Press, New York.Google Scholar
  53. Jones, E. G., 1991, The anatomy of sensory relay functions in the thalamus, Prog. Brain Res. 87:29–52.PubMedGoogle Scholar
  54. Jones, E. G., and Leavitt, R. Y, 1974, Retrograde axonal transport and the demonstration of nonspecific projections to the cerebral cortex and striatum from the thalamic intralaminar nuclei in the rat, cat, and monkey, J. Comp. Neurol, 154:349–378.PubMedGoogle Scholar
  55. Killackey, H. P., 1973, Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat, Brain Res. 52:326–331.Google Scholar
  56. Killackey, H. P., and Leshin, S., 1975, The organization of specific thalamocortical projections to the posteriormedial barrel subfield of the rat somatic sensory cortex, Brain Res. 86:469–472.PubMedGoogle Scholar
  57. Koralek, K.-A., Jensen, K. F., and Killackey, H. P., 1988, Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex, Brain Res. 463:346–351.PubMedGoogle Scholar
  58. Kosar, E., and Hand, P. J., 1981, First somatosensory cortical columns and associated neuronal clusters of nucleus ventralis posterolateralis of the cat: An anatomical demonstration, J. Comp. Neurol. 198:515–539.PubMedGoogle Scholar
  59. Kubicki, S., 1968, Elektroenzephalgraphische apsekte der narkose, Berl. Med. 19:4–12.Google Scholar
  60. Land, P. W., and Simons, D. J., 1985, Metabolic and structural correlates of the vibrissae representation in the thalamus of the adult rat, Neurosci. Lett. 60:319–324.PubMedGoogle Scholar
  61. Landry, P., and Deschenes, M., 1981, Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat, J. Comp. Neurol. 199:345–371.PubMedGoogle Scholar
  62. LeDoux, J. E., Ruggiero, D. A., Forest, R., Stornetta, R., and Reis, D. J., 1987, Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat, J. Comp. Neurol. 264:123–146.Google Scholar
  63. Lee, S. M., Friedberg, M. H., and Ebner, F. F., (1994a), The role of GABA-mediated inhibition in the rat ventral posterior medial thalamus. I. Assessment of receptive field changes following thalamic reticular nucleus lesion, J. Neurophysiol. 71:1702–1715.PubMedGoogle Scholar
  64. Lee, S. M., Friedberg, M. H., and Ebner, F. F., 1994b, The role of GAB A-mediated inhibition in the rat ventral posterior medial thalamus. II. Differential effects of GABAA and GABAB receptor antagonists on responses of VPM neurons. J. Neurophysiol. 71:1716–1726.PubMedGoogle Scholar
  65. Lin, C. S., Lu, S. M., and Schmechel, D. E., 1985, Glutamic acid decarboxylase immunoreactivity in layer IV of barrel cortex of rat and mouse, J. Neurosci. 5:1934–1939.PubMedGoogle Scholar
  66. Lin, C. S., Nicolelis, M. A. L., Diamond, M. E., and Chapin, J. K., 1993, Developmental plasticity in the rodent VPM thalamus resembles long-term reorganization observed in primates, Soc. Neurosa. Abstr. 19:106.Google Scholar
  67. Lu, S. M, and Lin, C. S., 1993, Thalamic afferents of the rat barrel cortex: A light-and electronmicroscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer, Somatosens. Motor Res. 10:1–16.Google Scholar
  68. Lund., R. D., and Webster, K. E., 1967, Thalamic afferents from the spinal cord and the trigeminal nuclei: An experimental anatomical study in the rat, J. Comp. Neural, 130:313–328.Google Scholar
  69. Macchi, G., 1983, Old and new anatomo-functional criteria in the subdivision of the thalamic nuclei, in: Somatosensory Integration in the Thalamus (G. Macchi, A. Rustioni, and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 3–16.Google Scholar
  70. Macchi, G., and Bentivoglio, M., 1986, The thalamic intralaminar nuclei and the cerebral cortex, in: Cerebral Cortex, Vol. 5 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 355–401.Google Scholar
  71. Nicolelis, M. A. L., Chapin, J. K., and Lin, C. S., 1991, Ontogeny of corticocortical projections of the rat somatosensory cortex, Somatosens. Mot. Res. 8:193–200.PubMedGoogle Scholar
  72. Nicolelis, M. A. L., Lin, R. C, Woodward, D. J., and Chapin, J. K., 1993, Dynamic and distributed properties of many-neuron ensembles in the ventral posterior medial (VPM) thalamus of awake rats, Proc. Natl. Acad. Sci. USA. 90:2212–2216.PubMedGoogle Scholar
  73. Nothias, F., Peschanski, M., and Besson, J.-M., 1988, Somatotopic reciprocal connections between the somatosensory cortex and thalamic Po nucleus in the rat, Brain Res. 447: 169–174.PubMedGoogle Scholar
  74. Paxinos, G., and Watson, C, 1986, The Rat Brain in Sterotaxic Coordinates, 2nd ed., Academic Press, New York.Google Scholar
  75. Penny, G. R., Itoh, K., and Diamond, I. T, 1982, Cells of different sizes project to different layers of the somatic cortex in the cat, Brain Res. 242:55–65.PubMedGoogle Scholar
  76. Perl, E. R., and Whitlock, D. G., 1961, Somatic stimuli exciting spinothalamic projections to thalamic neurons in rat and monkey, Exp. Neural, 3:256–296.Google Scholar
  77. Peschanski, M., 1983, Trigeminal afferents to the diencephalon in the rat, Neuroscience. 12:465–487.Google Scholar
  78. Poggio, G. F., and Mountcastle, V. B., 1960, A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Central nervous mechanisms in pain, Bull. Johns Hopkins Hosp. 106:266–316.PubMedGoogle Scholar
  79. Rausell, E., and Jones, E. G., (1991a), Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the respresentational map, J. Neurosa. 11:210–225.Google Scholar
  80. Rausell, E., and Jones, E. G., (1991b), Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex, J. Neurosa. 11:226–237.Google Scholar
  81. Rema, V., Diamond, M. E., Van Eldyk, L., and Ebner F. F., (1992), Expression of calcium binding proteins in adult rat thalamus following cortical lesions, Soc. Neurosa. Abstr. 18:1390.Google Scholar
  82. Rhoades, R. W., Mooney, R. D., Chiaia, N. L., Nikoletseas, M. M., and Rohrer, W. H., 1988, What’s in a patch? Examination of the trigeminal projection to the superior colliculus with Phaseolus vulgaris leuco-agglutinin and single fiber labelling, Soc. Neurosa. Abstr. 14:1165.Google Scholar
  83. Rice., F. R., Gomez, C, Barstow, C, Burnet, A., and Sands, P., 1985, A comparative analysis of the development of the primary somatosensory cortex: Interspecies similarities during barrel and laminar development, J. Comp. Neural. 236:477–495.Google Scholar
  84. Roger, M., and Cadusseau, J., 1984, Afferent connections of the nucleus posterior thalami in the rat, with some evolutionary and functional considerations, J. Hirnforsch. 25:473–485.PubMedGoogle Scholar
  85. Saporta, S., and Kruger, L., 1977, The organization of the thalamocortical relay neurons in the rat ventrobasal complex studied by the retrograde transport of horseradish peroxidase, J.Comp. N enrol. 174:187–208.Google Scholar
  86. Simons, D. J., and Carvell, G. E., 1989, Thalamocortical response transformation in the rat vibrissa/barrel system, J. Neurophysiol. 61:311–330.PubMedGoogle Scholar
  87. Smith, R. L., 1973, The ascending fiber projections from the principal sensory trigeminal nucleus in the rat, J. Comp. Nenrol 148: 187–208.Google Scholar
  88. Spreafico. R., Barbaresi, P., Weinberg, R. J., and Rustioni, A., 1987, SII-projecting neurons in the rat thalamus: A single-and double-retrograde-tracing study, Somatosens. Res. 4:359–375.PubMedGoogle Scholar
  89. Sugitani, M., Yano. J., Sugai, T, and Ooyama, H., 1990, Somatotopic organization and columnar structure of the vibrissae representation in the rat ventrobasal complex, Exp. Brain Res. 81:346–351.PubMedGoogle Scholar
  90. Van der Loos, H., 1976, Barreloids in the mouse somatosensory thalamus, Neurosa. Lett. 2:1–6.Google Scholar
  91. Waite, P. M. E., (1973a), Somatotopic organization of vibrissal responses in the ventro-basal complex of the rat thalamus, J. Physiol. (London). 228:527–540.Google Scholar
  92. Wait, P. M. E., (1973b), The responses of cells in the rat thalamus to mechanical movements of the whiskers, J. Physiol. (London). 228:541–561.Google Scholar
  93. Welker, C, 1971, Microelectrode delineation of the fine grain somatotopic organization of SmI cerebral neocortex in albino rat, Brain Res. 26:259–275.PubMedGoogle Scholar
  94. Welker, C, and Woolsey, T. A., 1974, Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse, J. Comp. Neurol. 158:437–454.PubMedGoogle Scholar
  95. Welker, E., Hoogland, P. V., and Van der Loos, H., 1988, Organization of feedback and feedforward projections of the barrel cortex: A PHA-L study in the mouse, Exp. Brain Res. 73:411–435.PubMedGoogle Scholar
  96. Welker, W., Sanderson, K. J., and Shambes, G. M., 1984, Patterns of afferent projections to transitional zones in the somatic sensorimotor cerebral cortex of albino rats, Brain Res. 292:261–267.PubMedGoogle Scholar
  97. White, E. L., 1979, Thalamocortical synaptic relations: A review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex, Brain Res. Rev. 1:275–311.Google Scholar
  98. Williams, M. N., Zahm, D. S., and Jacquin, M. F., 1993, Differential foci and synaptic organization of the principal and spinal projections to the thalamus in rat, Eur. J. Neurosci. 6:429–453.Google Scholar
  99. Willis, W. D., 1991, Role of the forebrain in nociception, Prog. Brain Res. 87:1–12.PubMedGoogle Scholar
  100. Wise, S. P., and Jones, E. G., 1978, Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex, J. Comp. Neurol. 178:187–208.PubMedGoogle Scholar
  101. Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units, Brain Res. 17 205–242.PubMedGoogle Scholar
  102. Yuan, B., Morrow, T. J., and Casey, K. L., 1985, Responsiveness of ventrobasal thalamic neurons after suppression of SI cortex in the anesthetized rat, J. Neurosci. 5:2971–2978.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Mathew E. Diamond
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie BiomedicheUniversitá degli Studi di UdineUdineItaly

Personalised recommendations