Advertisement

The Role of Acetylcholine in Barrel Cortex

  • Sharon L. Juliano
  • S. Essie Jacobs
Part of the Cerebral Cortex book series (CECO, volume 11)

Abstract

Over the past several decades, acetylcholine (ACh) has been recognized as an important factor in neocortical function. The neocortical source of ACh arises from the basal forebrain, where specific nuclear groups supply the entire cortical mantle with this ubiquitous neurotransmitter (Mesulam et al., 1983; Rye et al., 1984; Wainer and Mesulam, 1990). Although numerous actions have been identified with ACh, in the cerebral cortex it appears to primarily enhance neural activity (for review see McCormick, 1992). ACh acts on both muscarinic and nicotinic receptors; however, the excitatory effect of ACh in the cerebral cortex is predominantly muscarinic and mediated by mechanisms that block K+ conductance (Krnjevic and Phillis, 1963; Krnjevic et al., 1971; Halliwell and Adams, 1982; Brown, 1983; McCormick and Prince, 1985). In the neocortex, ACh appears to work through several mechanisms; one of these blocks a voltage-dependent K+ current, which leads to a long-lasting increase in neural excitability (Brown and Adams, 1980; Madison and Nicoll, 1984; McCormick and Prince, 1987). It also impedes a Ca2+-activated potassium current, which is not substantially dependent on voltage (McCormick and Williamson, 1989). Additional contributions of a Na+-activated K+ current block and a slow afterdepolarization of unknown origin have also been implicated as potential mechanisms of ACh action in neocortex (McCormick and Prince, 1986; Schwindt et al., 1989).

Keywords

Somatosensory Cortex Basal Forebrain Cholinergic Innervation Muscarinic Receptor Subtype Whisker Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartus, R. T., Dean, R. L., Beer, B., and Lippa, A. S., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science. 217:408–417.PubMedCrossRefGoogle Scholar
  2. Bassant, M. H., Baleyte, J. M., and Lamour, Y., 1990, Effects of acetykholine on single cortical somatosensory neurons in the unanesthetized rat, Neuroscience. 39:189–197.PubMedCrossRefGoogle Scholar
  3. Becker, R. E., and Giacobini, E., 1988, Mechanisms of cholinesterase inhibition in senile dementia of the Alzheimer type: Clinical, pharmacological and therapeutic aspects, Drug Dev. Res. 12:163–195.CrossRefGoogle Scholar
  4. Brown, D. A., 1983, Slow cholinergic excitation-A mechanism for increasing neuronal excitability, Trends Neurosa. 6:302–307.CrossRefGoogle Scholar
  5. Brown, D. A., and Adams, P. R., 1980, Muscarinic suppression of a novel voltage sensitive K+ current in a vertebrate neurone, Nature. 283:673–676.PubMedCrossRefGoogle Scholar
  6. Burgard, E. C, and Sarvey, J. M., 1990, Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus, Neurosa. Lett. 116:34–39.CrossRefGoogle Scholar
  7. Chiaia, N. L., Fish, S. E., Bauer, W. R., Bennett-Clarke, C. A., and Rhoades, R. W., 1992, Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissa-related patterns in the rat’s somatosensory cortex, Dev. Brain Res. 66:244–250.CrossRefGoogle Scholar
  8. Collerton, D., 1986, Cholinergic function and intellectual decline in Alzheimer’s disease, Neuroscience. 19:1–28.PubMedCrossRefGoogle Scholar
  9. Craik, R. L., Hand, P. J., and Levin, B. E., 1987, Locus coeruleus input affects glucose metabolism in activated rat barrel cortex, Brain Res. Bull. 19:495–499.PubMedCrossRefGoogle Scholar
  10. Dekker, A. J. A. M., Connor, D. J., and Thai, L. J., 1991, The role of cholinergic projections from the nucleus basalis in memory, Neurosa. Biobehav. Rev. 15:299–317.CrossRefGoogle Scholar
  11. Donoghue, J. P., and Carroll, K. L., 1987, Cholinergic modulation of sensory responses in rat primary somatic sensory cortex, Brain Res. 408:367–371.PubMedCrossRefGoogle Scholar
  12. Dubois, B., Mayo, W., Agid, Y., LeMoal, M., and Simon, H., 1985, Profound disturbances of spontaneous and learned behaviors following lesions of the nucleus basalis magnocellularis in the rat, Brain Res. 338:249–258.PubMedCrossRefGoogle Scholar
  13. Dunnett, S. B., 1985, Comparative effects of cholinergic drugs and lesions of the nucleus basalis or fimbria-fornix on delayed matching in rats, Psychopharmacologia. 87:357–363.CrossRefGoogle Scholar
  14. Durham, D., and Woolsey, T. A., 1977, Barrels and columnar cortical organization: Evidence from 2-deoxyglucose (2-DG) experiments, Brain Res. 137:169–174.PubMedCrossRefGoogle Scholar
  15. Dykes, R. W., 1990, Acetykholine and neuronal plasticity in somatosensory cortex, in: Brain Cholinergic Systems (M. Steriade and D. Biesold, eds.), Oxford University Press, London, pp. 294–313.Google Scholar
  16. Eckenstein, F. P., and Baughman, R. W., 1987, Cholinergic innervation in cerebral cortex, in: Cerebral Cortex, Vol. 6 (A. Peters and E.G. Jones, eds.), Plenum Press, New York, pp. 129–160.Google Scholar
  17. Fibiger, H. C, and Lehmann, J., 1981, Anatomical organization of some cholinergic systems in the mammalian forebrain, Adv. Behav. Biol. 25:663–672.CrossRefGoogle Scholar
  18. Fine, A., Pittaway, K., deQuidt, M., Czudek, C, and Reynolds, G. P., 1987, Maintenance of cortical somatostatin and monoamine levels in the rat does not require intact cholinergic innervation, Brain Res. 406:326–329.PubMedCrossRefGoogle Scholar
  19. Fuchs, J. L., 1989, [125I]a-Bungarotoxin binding marks primary sensory areas of developing rat neocortex, Brain Res. 501:223–234.PubMedCrossRefGoogle Scholar
  20. Glazewski, S., Kossut, M., Siucinska, E., and Skangiel-Kramska, J., 1990, Cholinergic markers in the plasticity of murine barrel field, Ada Neurobiol. Exp. 50:163–172.Google Scholar
  21. Greenfield, S., 1984, Acetylcholinesterase may have novel functions in the brain, Trends Neurosci. 7:364–368.CrossRefGoogle Scholar
  22. Guic-Robles, E., Jenkins, W. M., and Bravo, H., 1992, Vibrissal roughness discrimination is barrelcortex-dependent, Behav. Brain Res. 48:145–152.PubMedCrossRefGoogle Scholar
  23. Hallanger, A. E., and Wainer, B. H., 1986, Colocalization of gamma-aminobutyric acid and acetylcholinesterase in rodent cortical neurons, Neuroscience. 19:763–769.PubMedCrossRefGoogle Scholar
  24. Halliwell, J. V., and Adams, P. R., 1982, Voltage clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250:71–92.PubMedCrossRefGoogle Scholar
  25. Hand, P. J., 1982, Plasticity of the rat cortical barrel system, in: Changing Concepts of the Nervous System (P. L. Strick and A. R. Morrison, eds.), Academic Press, New York, pp. 49–68.Google Scholar
  26. Henderson, T. A., Woolsey, T. A., Jacquin, M. F., 1992, Infraorbital nerve blockade from birth does not disrupt central trigeminal pattern formation in the rat, Dev. Brain Res. 66:146–152.CrossRefGoogle Scholar
  27. Henderson, T. A., Johnson, E. M., Jr., Osborne, T. A., and Jacquin, M. F., 1994, Fetal NGF augmentation preserves excess trigeminal ganglion cells and interrupts whisker-related pattern forma tion. J. Neurosci. 14:3389–3403.PubMedGoogle Scholar
  28. Höhmann, C. F., and Ebner, F. F., 1985, Development of cholinergic markers in mouse forebrain. I. Choline acetyltransferase enzyme activity and acetylcholinesterase histochemistry, Dev. Brain Res. 23:225–241.CrossRefGoogle Scholar
  29. Höhmann, C. F., and Levey, A. I., 1994, Development of muscarinic receptor subtypes in the forebrain of the mouse, submitted to J. Comp. Neurol., in press.Google Scholar
  30. Höhmann, C. F., Wenk, G. L., Lowenstein, P., Brown, M. E., and Coyle, J. T., 1987, Age-related recurrence of basal forebrain lesion-induced cholinergic deficits, Neurosci. Lett. 82:253–259.PubMedCrossRefGoogle Scholar
  31. Höhmann, G. F., Brooks, A. R., and Goyle, J. T., 1988, Neonatal lesions of the basal forebrain cholinergic neurons result in abnormal cortical development, Dev. Brain Res. 42:253–264.CrossRefGoogle Scholar
  32. Höhmann, C. F., Wilson, L., and Goyle, J. T., 1991, Efferent and afferent connections of mouse sensory-motor cortex following cholinergic deafferentation at birth, Cereb. Cortex. 1:158–172.PubMedCrossRefGoogle Scholar
  33. Hosey, M. M., 1992, Diversity of structure, signalling and regulation within the family of muscarinic cholinergic receptors, FASEB. 6:845–852.Google Scholar
  34. Houser, G. R., Crawford, G. D., Salvaterra, P. M., and Vaughn, J. E., 1985, Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: A study of cholinergic neurons and synapses, J. Comp. Neurol. 234:17–34.PubMedCrossRefGoogle Scholar
  35. Hulme, E. C., Birdsall, N.J. M., and Buckley, N.J., 1990, Muscarinic receptor subtypes, Annu. Rev. Pharmacol. Toxicol, 30:633–673.PubMedCrossRefGoogle Scholar
  36. Hurwitz, B. E., Dietrich, W. D., McCabe, P. M., Watson, B. D., Ginsberg, M. D., and Schneiderman, N., 1990, Sensory-motor deficit and recovery from thrombotic infarction of the vibrissal barrel-field cortex, Brain Res. 512:210–220.PubMedCrossRefGoogle Scholar
  37. Hutson, K. A., and Masterton, R. B., 1986, The sensory contribution of a single vibrissa’s cortical barrel, J. Neurophysiol. 56:1196–1223.PubMedGoogle Scholar
  38. Jacobs, S. E., and Juliano, S. L., 1992, The effect of cortical acetylcholine depletion on sensory processing in rats, Soc. Neurosci. Abstr. 18:1543.Google Scholar
  39. Jacobs, S. E., and Juliano, S. L., 1994, The impact of basal forebrain lesions on the ability of rats to perform a sensory discrimination task involving barrel cortex, J. Neuroscience, in press.Google Scholar
  40. Jacobs, S. E., Code, R. A., and Juliano, S. L., 1991, Basal forebrain lesions alter stimulus-evoked metabolic activity in rat somatosensory cortex, Brain Res. 560:342–345.PubMedCrossRefGoogle Scholar
  41. Jacobs, S. E., Fine, A., and Juliano, S. L., 1994. Cholinergic basal forebrain transplants restore diminished metabolic activity in the somatosensory cortex of rats with acetylcholine depletion. J. Neuroscience 14:697–711.Google Scholar
  42. Johnston, M. V., McKinney, M., and Coyle, J. T., 1981, Neocortical cholinergic innervation: A description of extrinsic and intrinsic components in the rat, Exp. Brain Res. 43:159–172.PubMedCrossRefGoogle Scholar
  43. Kitt, C. A., Höhmann, C, Coyle, J. T., and Price, D. L., 1994, Cholinergic innervation of mouse forebrain structures, J. Comp. Neurol. 341:117–129.PubMedCrossRefGoogle Scholar
  44. Kossut, M., Hand, P. J., Greenberg, J., and Hand, C. L., 1988, Single vibrissal cortical column in SI cortex of rat and its alterations in neonatal and adult vibrissa-deafferented animals: A quantitative 2DG study, J. Neurophysiol. 60:829–852.PubMedGoogle Scholar
  45. Kostovic, I., and Goldman-Rakic, P. S., 1983, Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain, J. Comp. Neurol. 219:431–447.PubMedCrossRefGoogle Scholar
  46. Kostovic, I., and Rakic, P., 1984, Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining, J. Neurosci. 4:25–42.PubMedGoogle Scholar
  47. Kristt, D. A., (1979a), Development of neocortical circuitry: Histochemical localization of acetylcholin-esterase in relation to the cell layers of rat somatosensory cortex, J. Comp. Neurol. 186:1–16.PubMedCrossRefGoogle Scholar
  48. Kristt, D. A., (1979b), Somatosensory cortex: Acetylcholinesterase staining of barrel neuropil in the rat, Neurosci. Lett. 12:177–182.PubMedCrossRefGoogle Scholar
  49. Kristt, D. A., 1987, Acetylcholinesterase in the cortex, in: Cerebral Cortex, Vol. 6 (E. G. Jones and A. Peters, eds.), Plenum Press, New York.Google Scholar
  50. Kristt, D. A., and Molliver, M. E., 1976, Synapses in immature rat neocortex: A quantitative ultra-structural study, Brain Res. 108:180–186.PubMedCrossRefGoogle Scholar
  51. Kristt, D. A., and Waldman, J. V., 1981, The origin of the acetylcholinesterase-rich afferents to layer IV of infant somatosensory cortex: A histochemical analysis following lesions, Anat. Embryol. 163:31–41.PubMedCrossRefGoogle Scholar
  52. Kristt, D. A., and Waldman, J. V, 1982, Developmental reorganization of acetylcholinesterase-rich inputs to somatosensory cortex of the mouse, Anat. Embryol. 164:331–342.PubMedCrossRefGoogle Scholar
  53. Krnjevic, K., and Phillis, J. W., 1963, Pharmacological properties of acetylcholine-sensitive cells in the cerebral cortex, J. Physiol. (London). 166:328–350.Google Scholar
  54. Krnjevic, K., Pumain, R., and Renauld, L., 1971, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. (London). 215:247–268.Google Scholar
  55. Lamarca, M. V, and Fibiger, H. C, 1984, Deoxyglucose and choline acetyltransferase activity in cerebral cortex following lesions of the nucleus basalis magnocellularis, Brain Res. 307:366–369.PubMedCrossRefGoogle Scholar
  56. Lamour, Y., and Dykes, R. W., 1988, Somatosensory neurons in partially deafferented rat hindlimb granular cortex subsequent to transect ion of the sciatic nerve: Effects of glutamate and acetylcholine, Brain Res. 449:18–33.PubMedCrossRefGoogle Scholar
  57. Lamour, Y, Dutar, P., and Jobert, A., 1982, Spread of acetylcholine sensitivity in the neocortex following lesion of the nucleus basalis, Brain Res. 252:377–381.PubMedCrossRefGoogle Scholar
  58. Lamour, Y, Dutar, P., Jobert, A., and Dykes, R. W., 1988, An iontophoretic study of single somatosensory neurons in rat granular cortex serving the limbs: A laminar analysis of glutamate and acetylcholine effects on receptive-field properties, J. Neurophysiol. 60:725–750.PubMedGoogle Scholar
  59. Levey, A. I., Wainer, B. H., Rye, D. B., Mufson, E. J., and Mesulam, M.-M., 1984, Choline acetyltransferase-immunoreactive neurons intrinsic to rodent cortex and distinction from acetylcholinesterase-positive neurons, Neuroscience. 13:341–353.PubMedCrossRefGoogle Scholar
  60. Levey, A. I., Stormann, T. M., and Brann, M. R., 1990, Bacterial expression of human muscarinic receptor fusion proteins and generation of subtype-specific antisera, FEBS Lett. 275:65–69.PubMedCrossRefGoogle Scholar
  61. Levey, A. L, Kitt, C. A., Simonds, W. F., Price, D. L., and Brann, M. R., 1991, Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies, J. Neurosci. 11:3218–3226.PubMedGoogle Scholar
  62. Levin, B. E., Craik, R. L., and Hand, P. J., 1988, The role of norepinephrine in adult rat somatosensory (SmI) cortical metabolism and plasticity, Brain Res. 443:261–271.PubMedCrossRefGoogle Scholar
  63. London, E. D., McKinney, M., Dam, M., Ellis, A., and Coyle, J. T., 1984, Decreased cortical glucose utilization after ibotenate lesion of the rat ventromedial globus pallidus, J. Cereb. Blood Flow Metab. 4:381–390.PubMedCrossRefGoogle Scholar
  64. Lysakowski, A., Wainer, B. H., Rye, D. B., Bruce, G., and Hersh, L. B., 1986, Cholinergic innervation displays strikingly different laminar preferences in several cortical areas, Neurosci. Lett. 14:102–108.CrossRefGoogle Scholar
  65. Lysakowski, A., Wainer, B. H., Bruce, G., and Hersh, L. B., 1989, An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex, Neuroscience. 28:291–336.PubMedCrossRefGoogle Scholar
  66. Ma, W., Höhmann, C. F., Coyle, J. T., and Juliano, S. L., 1989, Lesions of the basal forebrain alter stimulus-evoked metabolic activity in mouse somatosensory cortex, J. Comp. Neurol. 288:414–427.PubMedCrossRefGoogle Scholar
  67. McCormick, D. A., 1992, Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity, Prog. Neurobiol. 39:337–388.PubMedCrossRefGoogle Scholar
  68. McCormick, D. A., and Prince, D. A., 1985, Two types of muscarinic response to acetylcholine in mammalian cortical neurons, Proc. Natl. Acad. Sci. USA. 83:6344–6348.CrossRefGoogle Scholar
  69. McCormick, D. A., and Prince, D. A., 1986, Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro, J. Physiol. (London) 375:169.Google Scholar
  70. McCormick, D. A., and Prince, D. A., 1987, Actions of acetylcholine in the guinea-pig and cat medial and lateral geniculate nuclei, in vitro, J. Physiol. (London). 392:147–165.Google Scholar
  71. McCormick, D. A., and Williamson, A., 1989, Convergence and divergence of neurotransmitter action in human cerebral cortex, Proc. Natl. Acad. Sci. USA. 86:8098–8102.PubMedCrossRefGoogle Scholar
  72. McKinney, M., Davies, P., and Coyle, J. T, 1982, Somatostatin is not co-localized in cholinergic neurons innervating the rat cerebral cortex-hippocampal formation, Brain Res. 243:169–172.PubMedCrossRefGoogle Scholar
  73. Madison, D. V., and Nicoll, R. A., 1984, Control of repetitive discharge of rat CA1 pyramidal neurons in vitro, J. Physiol. (London) 354:319.Google Scholar
  74. Mesulam, M.-M., Mufson, E. J., Wainer, B. H., and Levey, A. I., 1983, Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Chi-Ch6), Neuroscience. 10:1185–1201.PubMedCrossRefGoogle Scholar
  75. Metherate, R., Tremblay, N., and Dykes, R. W., 1987, Acetylcholine permits long-term enhancement of neuronal responsiveness in cat primary somatosensory cortex, Neuroscience. 22:75–81.PubMedCrossRefGoogle Scholar
  76. Metherate, R., Tremblay, N., and Dykes, R. W., (1988a), The effects of acetylcholine on response properties of cat somatosensory cortical neurons, J. Neurophysiol. 59:1231–1252.PubMedGoogle Scholar
  77. Metherate, R., Tremblay, N., and Dykes, R. W., (1988b), Transient and prolonged effects of acetylcholine on responsiveness of cat somatosensory cortical neurons, J. Neurophysiol. 59:1252–1276.Google Scholar
  78. Murray, C. L., and Fibiger, H. C, 1985, Learning and memory deficits after lesions of the nucleus basalis magnocellularis: Reversal by physostigmine, Neuroscience. 14:1025–1032.PubMedCrossRefGoogle Scholar
  79. Murray, C. L., and Fibiger, H. C, 1986, Pilocarpine and physostigmine attenuate spatial memory impairments produced by lesions of the nucleus basalis magnocellularis, Behav. Neurosci. 100:23–32.PubMedCrossRefGoogle Scholar
  80. Nilsson, O. G., and Bjorklund, A., 1992, Behavior-dependent changes in acetylcholine release in normal and graft-reinnervated hippocampus: Evidence for host regulation of grafted cholinergic neurons, Neuroscience. 49:33–44.PubMedCrossRefGoogle Scholar
  81. Olton, D. S., and Wenk, G. L., 1987, Dementia: Animal models of the cognitive impairments produced by degeneration of the basal forebrain cholinergic system, in: Psychopharmacology: The Third Generation of Progress (H. Y. Meltzer, ed.), Raven Press, New York, pp. 941–953.Google Scholar
  82. Orzi, F., Diana, G., Casamenti, F., Palombo, E., and Fieschi, C, 1988, Local cerebral glucose utilization following unilateral and bilateral lesions of the nucleus basalis magnocellularis in the rat, Brain Res. 462:99–103.PubMedCrossRefGoogle Scholar
  83. Rasmusson, D. D., and Dykes, R. W., 1988, Long-term enhancement of evoked potentials in cat somatosensory cortex produced by co-activation of the basal forebrain and cutaneous receptors, Exp. Brain Res. 70:276–286.PubMedCrossRefGoogle Scholar
  84. Robertson, R. T., 1987, A morphogenic role for transiently expressed acetylcholinesterase in developing thalamocortical systems? Dev. Brain Res. 41:1–23.CrossRefGoogle Scholar
  85. Robertson, R. T, Hanes, M. A., and Yu, J., 1988, Investigations of the origins of transient acetylcholinesterase activity in developing rat visual cortex, Dev. Brain Res. 41:1–23.CrossRefGoogle Scholar
  86. Robertson, R. T., Mostamand, F., Kageyama, G. H., Gallardo, K. A., and Yu, J., 1991, Primary auditory cortex in the rat: Transient expression of acetylcholinesterase activity in developing geniculocortical projections, Dev. Brain Res. 58:81–95.CrossRefGoogle Scholar
  87. Rye, D. B., Wainer, B. H., Mesulam, M.-M., Mufson, E. J., and Saper, C. B., 1984, Cortical projections arising from the basal forebrain: A study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase, Neuroscience. 13:627–643.PubMedCrossRefGoogle Scholar
  88. Sahin, M., Bowen, W. D., and Donoghue, J. P., 1992, Location of nicotinic and muscarinic cholinergic and x-opiate receptors in rat cerebral neocortex: Evidence from thalamic and cortical lesions, Brain Res. 579:135–147.PubMedCrossRefGoogle Scholar
  89. Sato, H., Hata, Y., Masui, H., and Tsumoto, T, 1987, A functional role of cholinergic innervation to neurons in the cat visual cortex, J. Neurophysiol. 58:765–780.PubMedGoogle Scholar
  90. Schwindt, P. C, Spain, W. J., and Crill, W. E., 1989, Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortical neurons, J. Neurophysiol. 61:233–244.PubMedGoogle Scholar
  91. Sillito, A. M., and Murphy, P. C, 1987, The cholinergic modulation of cortical function, in: Cerebral Cortex, Vol. 6 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 161–185.Google Scholar
  92. Simons, D., Puretz, J., and Finger, S., 1975, Effects of serial lesions of somatosensory cortex and further neodecortication on tactile retention in rats, Exp. Brain Res. 23:353–365.PubMedCrossRefGoogle Scholar
  93. Singer, W., 1990, Role of acetylcholine in use-dependent plasticity of the visual cortex, in: Brain Cholinergic Systems (M. Steriade and D. Biesold, eds.), Oxford University Press, London, pp. 314–336.Google Scholar
  94. Sokoloff, L., Reivich, M., Kennedy, C, DesRosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M., 1977, The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem. 28:897–916.PubMedCrossRefGoogle Scholar
  95. Soncrant, T. T, Holloway, H. W., Horwitz, B., Rapoport, S. I., and Lamour, Y. A., 1992, Effect of nucleus basalis magnocellularis ablation on local brain glucose utilization in the rat: Functional brain reorganization, Eur. J. Neurosci. 4:653–662.PubMedCrossRefGoogle Scholar
  96. Traub, M., and Freedman, S. B., 1992, The implication of current therapeutic approaches for the cholinergic hypothesis of dementia, Dementia. 3:189–192.Google Scholar
  97. Tremblay, N., Warren, R. A., and Dykes, R. W., 1990, Electrophysiological studies of acetylcholine and the role of the basal forebrain in the somatosensory cortex of the cat. II. Cortical neurons excited by somatic stimuli, J. Neurophysiol. 64:1212–1222.PubMedGoogle Scholar
  98. Wainer, B. H., and Mesulam, M.-M., 1990, Ascending cholinergic pathways in the rat brain, in: Brain Cholinergic Systems (M. Steriade and D. Biesold, eds.), Oxford University Press, London, pp. 65–119.Google Scholar
  99. Webster, H. H., Hanisch, U.-K., Dykes, R. W., and Biesold, D., 1991, Basal forebrain lesions with or without reserpine injection inhibit cortical reorganization in rat hindpaw primary somatosensory cortex following sciatic nerve section, Somatosens. Motor Res. 8:327–346.CrossRefGoogle Scholar
  100. Wenk, G. L., and Olton, D. S., 1987, Basal forebrain cholinergic neurons and Alzheimer’s disease, in: Animal Models of Dementia (J. T. Coyle, ed.), Liss, New York, pp. 81–101.Google Scholar
  101. Wenk, H., Bigl, V., and Meyer, U., 1980, Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats, Brain Res. Rev. 2:295–316.CrossRefGoogle Scholar
  102. Wozniak, D. F., Stewart, G. R., Finger, S., Olney, J. W., and Cozzari, C, 1989, Basal forebrain lesions impair tactile discrimination and working memory, Neurobiol. Aging. 10:173–179.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Sharon L. Juliano
    • 1
  • S. Essie Jacobs
    • 2
  1. 1.Department of Anatomy and Cell Biology and Program of NeuroscienceUniformed Services University of the Health SciencesBethesdaUSA
  2. 2.Department of Anatomy and Cell BiologyUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations