Advertisement

Comparative Aspects of Barrel Structure and Development

  • Frank L. Rice
Part of the Cerebral Cortex book series (CECO, volume 11)

Abstract

Cytoarchitectonic irregularities in layer IV in the cerebral cortex of the mouse, rat, and guinea pig were observed in several studies conducted in the first half of this century (DeVries, 1911, 1912; Droogleever Fortuyn, 1911, 1914; Rose, 1912, 1929; Lorente de Nó, 1922; Van Erp Taalman Kip, 1938). Considerable interest in these irregularities was kindled in the late 1960s when Woolsey (1967) found that in the mouse they formed an extended network that partially coincided with the primary somatosensory cortex (SI) as delineated by the low-resolution evoked potential technique. The significance of this network became apparent when Woolsey and Van der Loos (1970) subsequently prepared serial Nissl-stained sections that were cut parallel to the overlying pial surface (Fig. 1). They observed that layer IV contained a tangentially distributed array of cylindrical or oval-shaped multineuronal units that they dubbed “barrels.” Recognizing that the array was similar to that of the vibrissae on the mystacial pad, they hypothesized that the barrels were the “cortical correlates of the mystacial vibrissae” and that “one barrel represents one vibrissa.” They also hypothesized that the barrels
Figure 1.

Photomicrographs of three 50-µm-thick serial, Nissl-stained sections cut tangentially through the SI cortex of a celloidin-embedded mouse brain. Small arrows indicate blood vessels used for aligning the sections. Because of the orientation, layer IV was encountered first in the anterolateral part of the barrel field which is occupied by the small round barrels observed in sections A and B. In section B, rows of cell-dense patches (broad arrowhead) in deep layer III foreshadow the appearance of the rows of larger, oval-shaped barrels in the posteromedial portion of the barrel field. Bar = 2 mm uncorrected for shrinkage. Adapted and reproduced with permission from Woolsey and Van der Loos (1970).

were a morphological manifestation in layer IV of functional cortical columns which had recently been described in the somatosensory cortex of the cat and monkey (Mountcastle, 1957; Powell and Mountcastle, 1959).

Keywords

Somatosensory Cortex Cortical Plate Primary Somatosensory Cortex Gray Squirrel Tammar Wallaby 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akers, R. M., and Killackey, H. P., 1978, Organization of corticocortical connections in the parietal cortex of the rat, J Comp. Nenrol. 81:513–538.Google Scholar
  2. Al-Ghoul, W. M., and Miller, M. W., 1993, Development of the principal sensory nucleus of the trigeminal nerve of the rat and evidence for a transient synaptic field in the trigeminal sensory tract, J. Comp. Nenrol. 330:476–490.Google Scholar
  3. Andrés, F. L., 1989, Removal and reimplantation of the parietal cortex of mice during the first nine days of life: Consequences for the barrel field, J. Neural Transplant. 1:11–22.PubMedGoogle Scholar
  4. Andrés, F. L., and Van der Loos, H., 1985, Removal and reimplantation of the parietal cortex of the neonatal mouse: Consequences for the barrel field, Dev. Brain Res. 20:115–121.Google Scholar
  5. Andrés, K. H., 1966, Uber die Feinstruktur der Rezeptoren on sinushaaren, Z. Zellforsch. 75:335–365.Google Scholar
  6. Armstrong-James, M., and Callahan, C. A., 1991, Thalamocortical processing of vibrissal information in the rat. II. Spatiotemporal convergence in the thalamic ventroposterior medial nucleus, VPm, and its relevance to generation of receptive fields of SI cortical “barrel” neurones, J. Comp. Nenrol. 303:211–224.Google Scholar
  7. Armstrong-James, M., and Fox, K., 1987, Spatiotemporal convergence and divergence in the rat SI “barrel” cortex, J. Comp. Nenrol. 263:265–281.Google Scholar
  8. Armstrong-James, M., Callahan, C. A., and Friedman, M. A., 1991, Thalamocortical processing of vibrissal information in the rat. I. Intracortical origins of surround but not centre-receptive fields of layer IV neurones in the rat SI barrel field cortex, J. Comp. Nenrol. 303:193–210.Google Scholar
  9. Armstrong-James, M., Fox, K., and Das-Gupta, A., 1992, Flow of excitation within rat barrel cortex on striking a single vibrissa, J. Neurophysiol. 68:1345–1358.PubMedGoogle Scholar
  10. Arvidsson, J., 1982, Somatotopic organization of vibrissae afferents in the trigeminal sensory nuclei of the rat studied by transganglionic transport of HRP, J. Comp. Neurol. 211:84–92.PubMedGoogle Scholar
  11. Arvidsson, J., and Rice, F. L., 1991, Central projections of primary sensory neurons innervating different parts of the vibrissae follicles and intervibrissal skin on the mystacial pad of the rat, J. Comp. Neurol. 309:1–16.PubMedGoogle Scholar
  12. Bates, C. A., and Killackey, H. P., 1985, The organization of the neonatal rat’s brainstem trigeminal complex and its role in the formation of central trigeminal patterns, J. Comp. Neurol. 240:265–287.PubMedGoogle Scholar
  13. Bates, C. A., Erzurumlu, R. S., and Killackey, H. P., 1982, Central correlates of peripheral alterations in the trigeminal system of the rat. III. Neurons of the principal sensory nucleus, Dev. Brain Res. 5:108–113.Google Scholar
  14. Belford, G. R., and Killackey, H. P., 1979, Vibrissae representation in subcortical trigeminal centers of the neonatal rat, J. Comp. Neurol. 183:305–322.PubMedGoogle Scholar
  15. Belford, G. R., and Killackey, H. P., 1980, The sensitive period in the development of the trigeminal system of the neonatal rat, J. Comp. Neurol. 193:335–350.PubMedGoogle Scholar
  16. Bennett-Clarke, C. A., Chiaia, N. L., Crissman, R. S., and Rhoades, R. W., 1991, The source of the transient serotonergic input to the developing visual and somatosensory cortices in rat, Neuro-science. 43:163–183.Google Scholar
  17. Bennett-Clarke, C. A., Chiaia, N. L., Jacquin, M. F., and Rhoades, R. W., 1992, Parvalbumin and calbindin immunocytochemistry reveal functionally distinct cell groups and vibrissa-related patterns in the trigeminal brainstem complex of the adult rat, J. Comp. Neurol. 320:323–338.PubMedGoogle Scholar
  18. Bennett-Clarke, C. A., Leslie, M. J., Chiaia, N. L., and Rhoades, R. W., 1993, Serotonin Bl receptors in the developing somatosensory and visual cortices are located on thalamocortical axons, Proc. Natl. Acad. Sa. USA. 90:153–157.Google Scholar
  19. Bernardo, K. L., and Woolsey, T. A., 1987, Axonal trajectories between mouse somatosensory thalamus and cortex, J. Comp. Neurol. 258:542–564.PubMedGoogle Scholar
  20. Bernardo, K. L., McCasland, J. S., Woolsey, T. A., and Strominger, R. N., 1990, Local intra-and interlaminar connections in mouse barrel cortex, J. Comp. Neurol. 291:231–255.PubMedGoogle Scholar
  21. Berry, M., and Hollingsworth, T., 1973, Development of isolated neocortex, Experientia. 29:204–207.PubMedGoogle Scholar
  22. Berry, M., and Rogers, A. W., 1965, The migration of neuroblasts in the developing cerebral cortex, J.Anat. 99:691–709.PubMedGoogle Scholar
  23. Biemesderfer, D., Munger, B. L., Binck, J., and Dubner, R., 1978, The pilo-Ruffini complex: A non-sinus hair associated slowly-adapting mechanoreceptor in primate facial skin, Brain Res. 142:197–222.PubMedGoogle Scholar
  24. Blue, M. E., Erzurumlu, R. S., and Jhaveri, S., 1991, A comparison of pattern formation by thalamocortical and serotonergic afferents in the rat barrel field, Cereb. Cortex. 1:380–389.PubMedGoogle Scholar
  25. Boissonade, F. M., Sharkey, K. A., and Lucier, G. E., 1993, Trigeminal nuclear complex of the ferret: Anatomical and immunohistochemical studies, J. Comp. Neurol. 329:291–312.PubMedGoogle Scholar
  26. Brizzee, K. R., and Jacobs, L. A., 1959, Early postnatal changes in neuron packing density and volumetric relationships in the cerebral cortex of the white rat, Growth. 23:337–347.PubMedGoogle Scholar
  27. Bronchti, G., Schonenberger, N., Welker, E., and Van der Loos, H., 1992, Barrel field expansion after neonatal eye removal in mice, Neuroreport. 3:489–492.PubMedGoogle Scholar
  28. Bruce, L. L., McHaffie, J. G., and Stein, B. E., 1987, The organization of trigeminotectal and trigeminothalamic neurons in rodents: A double-labeling study with fluorescent dyes, J. Comp. Neurol. 262:315–330.PubMedGoogle Scholar
  29. Carvell, G. E., and Simons, D. J., 1987, Thalamic and corticocortical connections of the second somatic sensory area of the mouse, J. Comp. Neurol. 265:409–427.PubMedGoogle Scholar
  30. Carvell, G. E., Simons, D. J., Lichtenstein, S. H., and Bryant, P., 1991, Electromyographic activity of mystacial pad musculature during whisking behavior in the rat, Somatosens. Mot. Res. 8:159–164.PubMedGoogle Scholar
  31. Catalano, S. M., Robertson, R. T., and Killackey, H. P., 1991, Early ingrowth of thalamocortical afferents to the neocortex of the prenatal rat, Proc. Natl. Acad. Sci. USA. 88:2999–3003.PubMedGoogle Scholar
  32. Caviness, V. S., 1975, Architectonic map of neocortex of the normal mouse, J Comp. Neurol. 164:247–264.PubMedGoogle Scholar
  33. Celio, M. R., 1986, Parvalbumin in most y-aminobutyric acid-containing neurons of the rat cerebral cortex, Science. 231:995–997.PubMedGoogle Scholar
  34. Celio, M. R., 1990, Calbindin D-28k and parvalbumin in the rat nervous system, Neuroscience. 35:375–475.PubMedGoogle Scholar
  35. Chapin, J. K., 1986, Laminar differences in sizes, shapes, and response profiles of cutaneous receptive fields in the rat SI cortex, Exp. Brain Res. 62:549–559.PubMedGoogle Scholar
  36. Chapin, J. K., and Lin, C.-S., 1984, Mapping the body representation in the SI cortex of anesthetized and awake rats, J Comp. Neurol. 229:199–213.PubMedGoogle Scholar
  37. Chapin, J. K., and Lin, C.-S., 1990, The somatic sensory cortex of the rat, in: The Cerebral Cortex of the Rat (B. Kolb and R.C. Tees, eds.), MIT Press, Cambridge, MA, pp. 341–380.Google Scholar
  38. Chapin, J. K., Sadeq, M., and Guise, J. L. U., 1987, Corticocortical connections within the primary somatosensory cortex of the rat, J Comp. Neurol. 263:326–346.PubMedGoogle Scholar
  39. Chiaia, N. L., Hess, P. R., Hosoi, M., and Rhoades, R. W., 1987, Morphological characteristics of low-threshold primary afferents in the trigeminal subnuclei interpolaris and caudalis, the medullary dorsal horn, of the golden hamster, J. Comp. Neurol. 264:527–546.PubMedGoogle Scholar
  40. Chiaia, N. L., Bennett-Clarke, C. A., and Rhoades, R. W., (1991a), Effects of cortical and thalamic lesions upon primary afferent terminations, distributions of projection neurons, and the cyto-chrome oxidase pattern in the trigeminal brainstem complex, J. Comp. Neurol. 303:600–616.PubMedGoogle Scholar
  41. Chiaia, N. L., Rhoades, R. W., Bennett-Clarke, C. A. Fish, S. E., and Killackey, H. P., (1991b), Thalamic processing of vibrissal information in the rat: I. Afferent input to the medial ventral posterior and posterior nuclei, J. Comp. Neurol. 314:201–216.PubMedGoogle Scholar
  42. Chiaia, N. L., Rhoades, R. W., Fish, S. E., and Killackey, H. P., (1991c), Thalamic processing of vibrissal information in the rat: II. Morphological and functional properties of medial ventral posterior nucleus neurons, J. Comp. Neurol. 314:217–236.PubMedGoogle Scholar
  43. Chiaia, N. L., Bauer, W. R., Zhang, S., King, T A., Wright, P. C, Hobler, S. C, and Freeman, K. A., (1992a), Effects of neonatal transection of the intraorbital nerve upon the structural and functional organization or the ventral posteromedial nucleus in the rat, J. Comp. Neurol. 326:561–579.PubMedGoogle Scholar
  44. Chiaia, N. L., Bennett-Clarke, C. A., Eck, M., White, F. A., Crissman, R. S., and Rhoades, R. W., (1992b), Evidence for prenatal competition among the central arbors of trigeminal primary afferent neurons, J. Neurosci. 12:62–76.PubMedGoogle Scholar
  45. Chiaia, N. L., Bennett-Clarke, C. A., and Rhoades, R. W, (1992c), Differential effects of peripheral damage on vibrissa-related patterns in trigeminal nucleus principalis, subnucleus interpolaris, and subnucleus caudalis, Neuroscience. 49:141–156.PubMedGoogle Scholar
  46. Chiaia, N. L., Fish, S. E., Bauer, W. R., Bennett-Clarke, C. A., and Rhoades, R. W, (1992d), Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissa-related patterns in the rat’s somatosensory cortex, Dev. Brain Res. 66:244–250.Google Scholar
  47. Chmielowska, J., Kossut, M., and Chmielowski, M., 1986, Single vibrissal cortical column in the mouse labeled with 2-deoxyglucose, Exp. Brain Res. 63:606–619.Google Scholar
  48. Chmielowska, J., Carvell, G. E., and Simons, D. J., 1989, Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex, J. Comp. Neurol. 285:325–338.PubMedGoogle Scholar
  49. Cooper, N. G. F., and Steindler, D. A., (1986a), Lectins demarcate the barrel subfield in the somatosensory cortex of the early postnatal mouse, J. Comp. Neurol. 249:157–169.PubMedGoogle Scholar
  50. Cooper, N. G. F., and Steindler, D. A., (1986b), Monoclonal antibody to glial fibrillary acidic protein reveals a parcellation of individual barrels in the early postnatal mouse somatsensory cortex, Brain Res. 380:341–348.PubMedGoogle Scholar
  51. Crandall, J. E., and Caviness, V. S., jr., 1984, Thalamocortical connections in newborn mice, J. Comp. Neurol. 228:542–556.PubMedGoogle Scholar
  52. Crandall, J. E., Whitcomb, J. M., and Caviness, V. S., Jr., 1985, Development of the spinal-medullary projection from the mouse barrel field, J. Comp. Neurol. 239:205–215.PubMedGoogle Scholar
  53. Crandall, J. E., Misson, J.-P., and Butler, D., 1990, The development of radial glia and radial dendrites during barrel formation in mouse somatosensory cortex, Dev. Brain Res. 55:87–94.Google Scholar
  54. Crissman, R. S., Warden, R. J., Sicilino, D. A., Klein, B. G., Renehan, W. E., Jacquin, M. F., and Rhoades, R. W., 1991, Numbers of axons innervating mystacial vibrissa follicles in newborn and adult rats, Somatosens. Mot. Res. 8:103–109.PubMedGoogle Scholar
  55. Crossin, K. L., Hoffman, S., Seong-Seng, T., and Edelman, G. M., 1989, Cytotactin and its proteogly-can ligand mark structural and functional boundaries in somatosensory cortex of the early postnatal mouse, Dev. Biol. 136:381–392.PubMedGoogle Scholar
  56. D’Amato, R. J., Blue, M. E., Largent, B. L., Lynch, I. R., Ledbetter, D. J., Molliver, M. E., and Snyder, S. H., 1987, Ontogeny of the serotonergic projection to rat neocortex: Transient expression of a dense innervation to primary sensory areas, Proc. Natl. Acad. Sci. USA. 84:4322–4326.PubMedGoogle Scholar
  57. Davies, A. M., and Lumsden, A. G. S., 1986, Fasciculation in the early mouse trigeminal nerve is not ordered in relation to the emerging pattern of whisker follicles, J. Comp. Neurol. 253:13–24.PubMedGoogle Scholar
  58. Davies, J. A., Cook, G. M. W., Stern, C. D., and Keynes, R. J., 1990, Isolation from chick somites of a glycoprotein fraction that causes the collapse of dorsal root growth cones, Neuron. 4:11–20.PubMedGoogle Scholar
  59. Dawson, D. R., and Killackey, H. P., 1985, Distinguishing topography and somatotopy in the thalamocortical projections of the developing rat, Dev. Brain Res. 17:309–313.Google Scholar
  60. Dawson, D. R., and Killackey, H. P., 1987, The organization and mutability of the forepaw and hindpaw representations in the somatosensory cortex of the neonatal rat, J. Comp. Neurol. 256:246–256.PubMedGoogle Scholar
  61. Dehay, C. J., Kennedy, J., and Bullier, J., 1988, Characterization of transient cortical projections from auditory, somatosensory, and motor cortices to visual areas 17, 18, and 19 in the kitten, J. Comp. Neurol. 272:68–89.PubMedGoogle Scholar
  62. De Vries, I., 1911, De Cellulaire Bouw der Croate Hersenschors van de Muis en de Veranderungen daarin na Doornijding van het Corpus Callosum, De Waal, Groningen.Google Scholar
  63. De Vries, L, 1912, Über die Zytoarchitektonik der Grosshirnrinde der Maus und über die Beziehungen der einzelnen Zellschichten zum Corpus Callosum auf Grund von experimentellen Läsionen, Folia Neuro-biol. 6:288–322.Google Scholar
  64. Diamond, M. E., Armstrong-James, M., Budway, M. J., and Ebner, F. F., (1992a), Somatic sensory responses in the rostral sector of the posterior group, POm, and in the ventral posterior medial nucleus, VPM, of the rat thalamus: Dependence on the barrel field cortex, J. Comp. Neurol. 319:66–84.PubMedGoogle Scholar
  65. Diamond, M. E., Armstrong-James, M., and Ebner, F. F., (1992b), Somatic sensory responses in the rostral sector of the posterior group, POm, and in the ventral posterior medial nucleus, VPM, of the rat thalamus, J. Comp. Neurol. 318:462–476.PubMedGoogle Scholar
  66. Dietrich, W. D., Durham, D., Lowry, O. H., and Woolsey, T. A., 1981, Quantitative histochemical effects of whisker damage on single identified cortical barrels in the adult mouse, J. Neurosci. 1:929–935.PubMedGoogle Scholar
  67. Dietrich, W. D., Durham, D., Lowry, O. H., and Woolsey, T. A., 1982, Increased sensory stimulation leads to changes in energy-related enzymes in the brain, J. Neurosci. 2:1608–1613.PubMedGoogle Scholar
  68. Donaldson, L., Hand, P. J., and Morrison, A. R., 1975, Corticothalamic relationships in the rat, Exp. Neurol. 47:448–458.PubMedGoogle Scholar
  69. Donoghue, J. P., and Ebner, F. F., 1981, The organization of thalamic projections to the parietal cortex of the Virginia opossum, J. Comp. Neurol. 198:365–388.PubMedGoogle Scholar
  70. Donoghue, J. P., Kerman, K. L., and Ebner, F. F., 1979, Evidence for two organizational plans within the somatic sensory-motor cortex of the rat, J. Comp. Neurol. 183:647–664.PubMedGoogle Scholar
  71. Dörfl, J., 1985, The innervation of the mystacial region of the white mouse, J. Anat. 142:173–184.PubMedGoogle Scholar
  72. Dräger, U. C, and Hubel, D. H., 1976, Topography of visual and somatosensory projections to the mouse superior colliculus, J. Neurophysiol. 39:91–101.PubMedGoogle Scholar
  73. Droogleever Fortuyn, A. B., 1911, De Cytoarchitectonie der Groote Hersenschors van eenige Knaagdieren, Scheltema en Holkema, Amsterdam.Google Scholar
  74. Droogleever Fortuyn, A. B., 1914, Cortical cell-lamination of the hemispheres of some rodents, Arch. Neurol. Psychiatry (Mott’s). 5:221–354.Google Scholar
  75. Dunn-Meynell, A. A., Benowitz, L. I., and Levin, B. E., 1992, Vibrissectomy, induced changes in GAP-43 immunoreactivity in the adult rat barrel cortex, J. Comp. Neurol. 315:160–170.PubMedGoogle Scholar
  76. Durham, D., and Woolsey, T. A., 1977, Barrels and columnar cortical organization: Evidence from 2-deoxyglucose, 2-DG, experiments, Brain Res. 137:169–174.PubMedGoogle Scholar
  77. Durham, D., and Woolsey, T. A., 1984, Effects of neonatal whisker lesions on mouse central trigeminal pathways, J. Comp. Neurol. 223:424–447.PubMedGoogle Scholar
  78. Durham, D., Woolsey, T. A., and Kruger, L., 1981, Cellular localization of 2-(3H) deoxy-glucose from paraffin-embedded brains, J. Neurosci. 1:519–526.PubMedGoogle Scholar
  79. Dykes, R. W., 1975, Afferent fibers from mystacial vibrissae of cats and seals, J. Neurophysiol. 38:650–662.PubMedGoogle Scholar
  80. Dykes, R. W., 1983, Parallel processing of somatosensory information: A theory, Brain Res. Rev. 6:47–115.Google Scholar
  81. Dykes, R. W, Dudar, J. D., Tanji, D. G., and Publicover, N. G., 1977, Somatotopic projections of the mystacial vibrissae upon the cerebral cortex of cats, J. Neurophysiol. 40:997–1014.PubMedGoogle Scholar
  82. Dykes, R. W., Rasmusson, D. D., and Hoeltzell, P., 1980, Organization of the primary somatosensory cortex in the cat, J. Neurophysiol. 43:1527–1546.PubMedGoogle Scholar
  83. Dykes, R. W., Herron, P., and Lin, C.-S., 1986, Ventroposterior thalamic regions projecting to cytoarchitectonie areas 3a and 3b in the cat, J. Neurophysiol. 56:1521–1541.PubMedGoogle Scholar
  84. Ebner, F. F., and Armstrong-James, M. A., 1990, Intracortical processes regulating the integration of sensory information, Prog. Brain Res. 86:129–141.PubMedGoogle Scholar
  85. Erzurumlu, R. S., and Ebner, F. F., 1988, Maintenance of discrete somatosensory maps in subcortical relay nuclei is dependent on an intact sensory cortex, Dev. Brain Res. 44:302–308.Google Scholar
  86. Erzurumlu, R. S., and Jhaveri, S., 1990, Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex, Dev. Brain Res. 56:229–234.Google Scholar
  87. Erzurumlu, R. S., and Jhaveri, S., 1992, Trigeminal ganglion cell processes are spatially ordered prior to the differentiation of the vibrissa pad, J. Neurosci. 12:3946–3955.PubMedGoogle Scholar
  88. Erzurumlu, R. S., and Killackey, H.P., 1980, Diencephalic projections of the subnucleus interpolaris of the brainstem trigeminal complex in the rat, Neuroscience. 5:1891–1901.PubMedGoogle Scholar
  89. Erzurumlu, R. S., and Killackey, H. P., 1982, Order in the developing rat trigeminal nerve, Dev. Brain Res. 3:305–310.Google Scholar
  90. Erzurumlu, R. S., and Killackey, R. P., 1983, Development of order in the rat trigeminal system, J. Comp. Neurol. 213:365–380.PubMedGoogle Scholar
  91. Erzurumlu, R. S., Bates, C. A., and Killackey, H. P., 1980, Differential organization of thalamic projection cells in the brain stem trigeminal complex of the rat, Brain Res. 198:427–433.PubMedGoogle Scholar
  92. Erzurumlu, R. S. Jhaveri, S., and Benowitz, L. L, 1990, Transient patterns of GAP-43 expression during the formation of barrels in the rat somatosensory cortex, J. Comp. Neurol. 292:443–456.PubMedGoogle Scholar
  93. Escobar, M. I., Pimienta, H., Caviness, V. S., Jr., Jacobson, M., Crandall, J. E., and Kosik, K. S., 1986, Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems, Neuro-science. 17:975–989.Google Scholar
  94. Fabri, M., and Burton, H., 1991, Ipsilateral cortical connections of primary somatic sensory cortex in rats, J. Comp. Neurol. 311:405–424.PubMedGoogle Scholar
  95. Favorov, O. V., and Diamond, M. E., 1990, Demonstration of discrete place-defined columns—segregates-in the cat SI, J. Comp. Neurol. 298:97–112.PubMedGoogle Scholar
  96. Favorov, O. V., Diamond, M. E., and Whitsel, B. L., 1987, Evidence for a mosaic representation of the body surface in area 3b of the somatic cortex of cat, Proc. Natl. Acad. Sci. USA. 84:6606–6610.PubMedGoogle Scholar
  97. Felleman, D. J., Wall, J. T, Cusick, C. G., and Kaas, J. H., 1983, The representation of the body surface in S-I of cats, J. Neurosci. 3:1648–1669.PubMedGoogle Scholar
  98. Finlay, B. L., and Slattery, M., 1983, Local differences in the amount of early cell death in neocortex predict adult local specializations, Science. 219:1349–1351.PubMedGoogle Scholar
  99. Fox, K., 1992, A critical period for experience-dependent synaptic plasticity in rat barrel cortex, J. Neurosci. 12:1826–1838.PubMedGoogle Scholar
  100. Friede, R. L., 1966, Topographic Brain Chemistry, Academic Press, New York, pp. 48–53.Google Scholar
  101. Frost, D. O., and Caviness, V. S., Jr., 1980, Radial organization of thalamic projections to the neocortex in the mouse, J. Cornp. Neural. 194:369–393.Google Scholar
  102. Fujimiya, M., Kimura, H., and Maeda, T., 1986, Postnatal development of serotonin nerve fibers in the somatsensory cortex of mice studied by immunohistochemistry, J. Cornp. Nenrol. 246:191–201.Google Scholar
  103. Fukushima, T., and Kerr, F. W. L., 1979, Organization of trigeminothalamic tracts and other thalamic afferent systems of the brainstem in the rat: Presence of gelatinosa neurons with thalamic connections, J. Cornp. Neural. 183:169–184.Google Scholar
  104. Fundin, B. T., Rice, F.L., Pf aller, K., and Arvidsson, J., 1994, The innervation of the mystacial pad in the adult rat studied by anterograde transport of HRP-conjugates, Exp. Brain Res. in press.Google Scholar
  105. Ghosh, A., and Shatz, C. J., 1992, Pathfinding and target selection by developing geniculocortical axons, J. Neurosci. 12:39–51.PubMedGoogle Scholar
  106. Gibson, J. M., and Welker, W. I., 1983a, Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. I. Receptive field properties and threshold distributions, Somatosens. Res. 1:51–67.PubMedGoogle Scholar
  107. Gibson, J. M., and Welker, W. I., (1983b), Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters, Somatosens. Res. 1:95–117.PubMedGoogle Scholar
  108. Gonzalez, M. F., and Sharp, F. R., 1985, Vibrissae tactile stimulation: [1.4C]2-deoxyglucose uptake in rat brainstem, thalamus, and cortex, J. Camp. Neural. 231:457–472.Google Scholar
  109. Gottschaldt, K.-M., Iggo, A., and Young, D.W., 1973, Functional characteristics of mechanoreceptors in sinus hair follicles of the cat, J. Physiol. (London). 235:287–315.Google Scholar
  110. Gould, H. J., III, 1986, Body surface maps in the somatosensory cortex of rabbit, J. Camp. Neural. 243:207–233.Google Scholar
  111. Gould, H. J., III, and Kaas, J. H., 1981, The distribution of commissural terminations in somatosensory areas I and II of the grey squirrel, J. Camp. Neural. 196:489–504.Google Scholar
  112. Gould, H. J., III, Whitworth, R. H., Jr., and LeDoux, M. S., 1989, Thalamic and extrathalamic connections of the dysgranular unresponsive zone in the grey squirrel (Seiurus carolinensis), J. Camp. Neural. 287:38–63.Google Scholar
  113. Greenough, W. T., and Chang, F.-L. F., 1988, Dendritic pattern formation involves both oriented regression and oriented growth in the barrels of mouse somatosensory cortex, Dev. Brain Res. 43:148–152.Google Scholar
  114. Greiner, J. V., and Weidman, T A., 1981, Histogenesis of ferret retina, Exp. Eye Res. 33:315–332.PubMedGoogle Scholar
  115. Halata, Z., and Munger, B. L., 1980, Sensory nerve endings in the rhesus monkey sinus hair, J. Camp. Neural. 192:645–663.Google Scholar
  116. Hand, P. J., 1981, The 2-deoxyglucose method, in: Neuroanatomical Tract-Tracing Methods (L. Heimer and M. J. Robards, eds.), Plenum Press, New York, pp. 511–538.Google Scholar
  117. Harris, R. M., and Woolsey, T. A., 1981, Dendritic plasticity in mouse barrel cortex following postnatal vibrissa follicle damage, J. Camp. Neural. 196:357–376.Google Scholar
  118. Harris, R. M., and Woolsey, T. A., 1983, Computer-assisted analyses of barrel neuron axons and their putative synaptic contacts, J. Camp. Neural. 220:63–79.Google Scholar
  119. Hassler, R., and Muhs-Clement, K., 1964, Architektonischer autbaii des sensomotorischen und parietalen Cortex der Katze, J. Hirnforsch. 6:377–420.Google Scholar
  120. Hayashi, H., 1980, Distribution of vibrissa afferent fiber collaterals in the trigeminal nuclei as revealed by intraaxonal injection of horseradish peroxidase, Brain Res. 183:442–446.PubMedGoogle Scholar
  121. Hayashi, H., 1982, Differential terminal distribution of single large cutaneous afferent fibers in the spinal trigeminal nucleus and in the cervical spinal dorsal horn, Brain Res. 244:173–177.PubMedGoogle Scholar
  122. Hayashi, H., (1985a), Morphology of central terminations of intraaxonally stained large, myelinated primary afferent fibers from facial skin in the rat, J. Camp. Neural. 237:195–215.Google Scholar
  123. Hayashi, H., (1985b), Morphology of terminations of small and large myelinated trigeminal primary afferent fibers in the cat, J. Camp. Neural. 240:71–89.Google Scholar
  124. Henderson, T. A., Woolsey, T. A., and Jacquin, M. F., 1992, Infraorbital nerve blockade from birth does not disrupt central trigeminal pattern formation in the rat, Dev. Brain Res. 66:146–152.Google Scholar
  125. Hicks, S. P., and D’Amato, C. J., 1968, Migrations to the isocortex in the rat, Anat. Rec. 160:619–634.PubMedGoogle Scholar
  126. Hollis, D. E., and Lyne, A. G., 1974, Innervation of vibrissa follicles in the marsupial, Trichosurus vulpecula, Aust. J. Zool. 22:263–276.Google Scholar
  127. Hoogland, P. V., Welker, F., and Van der Loos, H., 1987, Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP, Exp. Brain Res. 68:73–87.PubMedGoogle Scholar
  128. Hoogland, P. V., Welker, F., Van der Loos, H., and Wouterlood, F. G., 1988, The organization and structure of the thalamic afferents from the barrel cortex in the mouse; a PHA-L study, in: Cellular Thalamic Mechanisms (M. Bentivoglio and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 151–162.Google Scholar
  129. Innocenti, G. M., 1982, Development of interhemispheric connections, Neurosci. Res. Program Bull. 20:532–540.PubMedGoogle Scholar
  130. Isseroff, A., Schwartz, M. L., Decker, J. J., and Goldman-Rakic, P. S., 1984, Columnar organization of callosal and associational projections from rat frontal cortex, Brain Res. 293:213–223.PubMedGoogle Scholar
  131. Ito, M., 1985, Processing of vibrissa sensory information within the rat neocortex, J. Neurophysiol. 54:479–490.PubMedGoogle Scholar
  132. Ito, M., 1992, Simultaneous visualization of cortical barrels and horseradish peroxidase-injected layer 5b vibrissa neurones in the rat, J. Physiol. (London). 454:247–265.Google Scholar
  133. Ito, M., and Seo, M. L., 1983, Avoidance of neonatal cortical lesions by developing somatosensory barrels, Nature. 310:600–602.Google Scholar
  134. Ivy, G. O., and Killackey, H. P., 1981, The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex, J. Comp. Neurol. 195:367–389.PubMedGoogle Scholar
  135. Ivy, G. O., and Killackey, H. P., 1982a, Ephemeral cellular segmentation in the thalamus of the neonatal rat, Dev. Brain Res. 2:1–17.Google Scholar
  136. Ivy, G. O., and Killackey, H. P., (1982b), Ontogenetic changes in the projections of neocortical neurons, J. Neurosci. 2:735–743.PubMedGoogle Scholar
  137. Ivy, G. O., Akers, R. M., and Killackey, H. P., 1979, Differential distribution of callosal projection neurons in the neonatal and adult rat, Brain Res. 173:532–537.PubMedGoogle Scholar
  138. Iwata, K., Kenshalo, D. R., Jr., Dubner, R., and Nahin, R. L., 1992, Diencephalic projections from the superficial and deep laminae of the medullary dorsal horn in the rat, J. Comp. Neurol. 321:404–420.PubMedGoogle Scholar
  139. Jackson, C. A., and Hickey, T. L., 1985, Use of ferrets in studies of the visual system, Lab. Anim. Sci. 35:211–215.PubMedGoogle Scholar
  140. Jackson, C. A., Peduzzi, J. D., and Hickey, T. L., 1989, Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons, J. Neurosci. 9:1242–1253.PubMedGoogle Scholar
  141. Jacquin, M. F., and Rhoades, R. W., 1983, Central projections of the normal and “regenerate” infraorbital nerve in adult rats subjected to neonatal infraorbital lesions: A transganglionic horseradish peroxidase study, Brain Res. 269:137–144.PubMedGoogle Scholar
  142. Jacquin, M. F., and Rhoades, R. W., 1985, Effects of neonatal infraorbital lesions upon central trigeminal primary afferent projections in rat and hamster, J. Comp. Neurol. 235:129–143.PubMedGoogle Scholar
  143. Jacquin, M. F., and Rhoades, R. W., 1987, Development and plasticity in hamster trigeminal primary afferent projections, Dev. Brain Res. 31:161–175.Google Scholar
  144. Jacquin, M. F., Mooney, R. D., and Rhoades, R. W., 1984, Axon arbors of functionally distinct whisker afferents are similar in medullary dorsal horn, Brain Res. 298:175–180.PubMedGoogle Scholar
  145. Jacquin, M. F., Mooney, R. D., and Rhoades, R. W., (1986a), Morphology, response properties, and collateral projections of trigeminothalamic neurons in brainstem subnucleus interpolaris of rat, Exp. Brain Res. 61:457–468.PubMedGoogle Scholar
  146. Jacquin, M. F., Renehan, W. F., Mooney, R. D., and Rhoades, R. W., (1986b), Structure-function relationships in rat medullary and cervical dorsal horns. I. Trigeminal primary afferents, J. Neurophysiol. 55:1153–1186.PubMedGoogle Scholar
  147. Jacquin, M. F., Woerner, D., Szczepanik, A. M., Rieker, V., Mooney, R. D., and Rhoades, R. W., (1986c), Structure-function relationships in rat brainstem subnucleus interpolaris. I. Vibrissa primary afferents, J. Comp. Neurol. 243:266–279.PubMedGoogle Scholar
  148. Jacquin, M. F., Golden, J., and Panneton, W. M., (1988a), Structure and function of barrel ‘precursor’ cells in trigeminal nucleus principalis, Dev. Brain Res. 43:309–314.Google Scholar
  149. Jacquin, M. F., Stennett, R. A., Renehan, W. E., and Rhoades, R. W., (1988b), Structure-function relationships in the rat brainstem subnucleus interpolaris: II. Low and high threshold trigeminal primary afferents, J. Comp. Neurol. 267:107–130.PubMedGoogle Scholar
  150. Jacquin, M. F., Barcia, M., and Rhoades, R. W., 1989, Structure-function relationships in rat brainstem subnucleus interpolaris: IV. Projection neurons, J. Comp. Neurol. 282:45–62.PubMedGoogle Scholar
  151. Jacquin, M. F., McCasland, J. S., Henderson, T A., Rhoades, R. W., and Woolsey, T. A., (1993a), 2-DG uptake patterns related to single vibrissae during exploratory behaviors in hamster trigeminal system, J. Comp. Neurol. 332:38–58.PubMedGoogle Scholar
  152. Jacquin, M. F., Renehan, W. E., Rhoades, R. W., and Panneton, W. M., (1993b), Morphology and topography of identified primary afferents in rat trigeminal subnuclei principalis and oralis, J. Neurophysiol. 70:1911–1936.PubMedGoogle Scholar
  153. Jeanmonod, D., Rice, F. L., and Van der Loos, H., 1977, Mouse somatsensory cortex: Development of the alterations in the barrel field which are caused by injury of the vibrissal follicles, Neurosci. Lett. 6:151–156.PubMedGoogle Scholar
  154. Jeanmonod, D., Rice, F. L., and Van der Loos, H., 1981, Mouse somatosensory cortex: Alterations in the barrel field following receptor injury at different early postnatal ages, Neuroscience. 6:1503–1535.PubMedGoogle Scholar
  155. Jensen, K. F., and Killackey, H. P., (1987a), Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents, J. Neurosci. 7:3529–3543.PubMedGoogle Scholar
  156. Jensen, K. F., and Killackey, H. P., (1987b), Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. II. The altered morphology of thalamocortical afferents following neonatal infraorbital nerve cut, J. Neurosci. 7:3544–3553.PubMedGoogle Scholar
  157. Jhaveri, S., Erzurumlu, R. S., and Crossin, K., 1991, Barrel construction in rodent neocortex: Role of thalamic afferents versus extracellular matrix molecules, Proc. Natl. Acad. Sci. USA. 88:4489–4493.PubMedGoogle Scholar
  158. Kaas, J. H., 1983, What, if anything, is SI? Organization of first somatosensory area of cortex, Physiol. Rev. 63:206–230.PubMedGoogle Scholar
  159. Kaas, J. H., Nelson, R. J., Sur, M., and Merzenich, M., 1979, Multiple representations of the body within the primary somatosensory cortex of primates. Science. 204:521–523.PubMedGoogle Scholar
  160. Kaas, J. H., Sur, M., Nelson, R. J., and Merzenich, M. M., 1981, Multiple representations of the body in the postcentral somatosensory cortex of primates, in: Cortical Sensory Organization, Multiple Somatic Areas, Vol. 1 (C. N. Woolsey, ed.), Humana, Clifton, NJ, pp. 29–45.Google Scholar
  161. Keller, A., White, E. L., and Cipolloni, P. B., 1985, The identification of thalamocortical axon terminals in barrels of mouse SmI cortex using immunohistochemistry of anterograde transported lectin (Phaseolus vulgara-leucoagglutinin), Brain Res. 343:159–165.PubMedGoogle Scholar
  162. Kennedy, H., Bullier, J., and Dehay, C, 1989, Transient projection from the superior temporal sulcus to area 17 in the newborn macaque monkey, Proc. Natl. Acad. Sci. USA. 86:8093–8097.PubMedGoogle Scholar
  163. Killackey, H. P., 1973, Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat, Brain Res. 51:326–331.PubMedGoogle Scholar
  164. Killackey, H. P., 1987, Three phases in the vulnerability of the somatosensory system to peripheral nerve damage, in: Effects of Injury on Trigeminal and Spinal Somatosensory Systems (L. Pubols and B. Sessle, eds.), Liss, New York, pp. 363–370.Google Scholar
  165. Killackey, H. P., and Belford, G. R., 1979, The formation of afferent patterns in the somatosensory cortex of the neonatal rat, J. Cornp. Neurol. 183:285–304.Google Scholar
  166. Killackey, H. P., and Belford, G. R., 1980, Central correlates of peripheral pattern alterations in the trigeminal system of the rat, Brain Res. 183:205–210.PubMedGoogle Scholar
  167. Killackey, H. P., and Fleming, K., 1985, The role of the principal sensory nucleus in central trigeminal pattern formation, Dev. Brain Res. 22:141–145.Google Scholar
  168. Killackey, H. P., and Leshin, S., 1975, The organization of specific thalamocortical projections to the posteromedial barrel subfield of the rat somatic sensory cortex, Brain Res. 86:469–472.PubMedGoogle Scholar
  169. Killackey, H. P., and Shinder, A., 1981, Central correlates of peripheral pattern alterations in the tngeminal system of the rat. II. The effect of nerve section, Dev. Brain Res. 1:121–26.Google Scholar
  170. Killackey, H. P., Belford, G., Ryugo, R., and Ryugo, R. K., 1976, Anomalous organization of thalamocortical projections consequent to vibrissae removal in the newborn rat and mouse, Brain Res. 104:309–315.PubMedGoogle Scholar
  171. Killackey, H. P., Ivy, G. O., and Cunningham, T. J., 1978, Anomalous organization of SMI so-matotopic map consequent to vibrissal removal in the newborn rat, Brain Res. 155:136–140.PubMedGoogle Scholar
  172. Killackey, H. P., Koralek, K.-A., Chiaia, N. L., and Rhoades, R. W., 1989, Laminar and areal differences in the origin of the subcortical projection neurons of the rat somatosensory cortex, J. Comp. Neurol. 282:428–445.PubMedGoogle Scholar
  173. Killackey, H. P., Jacquin, M. F., and Rhoades, R. W., 1990, Development of somatosensory system structures, in: Development of Sensory Systems in Mammals (J. R. Coleman, ed.), Wiley, New York, pp. 403–429.Google Scholar
  174. Klein, B. G., Renehan, W. E., Jacquin, M. F., and Rhoades, R. W., 1988, Anatomical consequences of neonatal infraorbital nerve transection upon the trigeminal ganglion and vibrissal follicle nerves in the adult rat, J. Comp. Neurol, 268:469–488.PubMedGoogle Scholar
  175. Koralek, K.-A., and Killackey, H. P., 1990, Callosal projections in rat somatosensory cortex are altered by early removal of afferent input, Proc. Natl, Acad, Sci USA. 87:1396–1400.Google Scholar
  176. Koralek, K.-A., Jensen, K. F., and Killackey, H. P., 1988, Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex, Brain Res. 463:346–351.PubMedGoogle Scholar
  177. Koralek, K.-A., Olavarria, J., and Killackey, H. P., 1990, Areal and laminar organization or cor-ticocortical projections in the rat somatsensory cortex, J. Comp. Neurol. 299:133–150.PubMedGoogle Scholar
  178. Kossut, M., 1992, Effects of sensory deprivation upon a single cortical vibrissal column: A 2DG study, Exp. Brain Res. 90:639–642.PubMedGoogle Scholar
  179. Kossut, M., Hand, P., Greenberg, J., and Hand, C. L., 1988, Single vibrissal cortical column in SI cortex of rat and its alterations in neonatal and adult vibrissa-deafferented animals: A quantitative 2DG study, J. Neurophysiol. 60:829–852.PubMedGoogle Scholar
  180. Krieg, W. J., 1946, Connections of the cerebral cortex. I. The albino rat. B. Structure of the cortical areas, J. Comp. Neurol. 84:277–324.PubMedGoogle Scholar
  181. Kristt, D. A., 1978, Neuronal differentiation in somatosensory cortex of the rat. I. Relationship to synaptogenesis in the first postnatal week, Brain Res. 150:467–486.PubMedGoogle Scholar
  182. Kristt, D. A., and Molliver, M. E., 1976, Synapses in newborn rat cerebral cortex: A quantitative ultrastructural study, Brain Res. 108:180–186.PubMedGoogle Scholar
  183. Krubitzer, L. A., and Calford, M. B., 1992, Five topographically organized fields in the somatosensory cortex of the flying fox: Microelectrode maps, myeloarchitecture, and cortical modules, J. Comp. Neurol. 317:1–30.PubMedGoogle Scholar
  184. Krubitzer, L. A., and Kaas, J. H., 1987, Thalamic connections of three representations of the body surface in somatosensory cortex of gray squirrels, J. Comp. Neurol. 265:549–580.PubMedGoogle Scholar
  185. Krubitzer, L. A., and Kaas, J. H., 1990, The organization and connections of somatosensory cortex in marmosets, J. Neurosci. 10:952–974.PubMedGoogle Scholar
  186. Krubitzer, L. A., Sesma, M. A., and Kaas, J. H., 1986, Microelectrode maps, myeloarchitecture and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels, J. Comp. Neurol. 250:403–430.PubMedGoogle Scholar
  187. Krubitzer, L. A., Manger, P. R., and Pettigrew, D. J., 1991, Organization and connections of somatosensory cortex in monotremes, Soc. Neurosci. Abstr. 17:838.Google Scholar
  188. Krubitzer, L. A., Calford, M. B., and Schmid, L. M., 1993, Connections of somatosensory cortex in megachiropteran bats: The evolution of cortical fields in mammals, J. Comp. Neurol. 327:473–506.PubMedGoogle Scholar
  189. Labedsky, L., and Eierse, W., 1968, Die Entwicklung der Succinodehydrogenaseaktivität im Gehirn der Maus während de Postnatalzeit, Histochemie. 12:130–151.PubMedGoogle Scholar
  190. LaMantia, A.-S., and Rakic, P., 1990, Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey, J. Neurosci. 10:2156–2175.PubMedGoogle Scholar
  191. Land, P. W., and Simons, D. J., 1985, Cytochrome oxidase staining in the rat SmI barrel cortex, J. Comp. Neurol. 238:225–235.PubMedGoogle Scholar
  192. Leclerc, S. S., Rice, F. L., Dykes, R. W., Pourmoghadam, K., and Gomez, C. M., 1993, Electro-physiological examination of the representation of the face in the suprasylvian gyrus of the ferret: A correlative study with cytoarchitecture, Somatosens. Mot. Res. 10:133–159.PubMedGoogle Scholar
  193. Leclerc, S. S., Avendano, C, Dykes, R. W., Waters, R. S., and Salimi, I., 1994, Reevaluation of area 3B in the cat based upon architectonic and electrophysiological studies: Regional variability with functional and anatomical consistencies, J. Comp. Neurol. 341:357–374.PubMedGoogle Scholar
  194. Ledoux, J. E., Buggiero, D. A., Forest, R., Stornetta, R., and Reis, D. J., 1987, Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat, J. Comp. Neurol. 264:123–146.PubMedGoogle Scholar
  195. Lee, K. J., and Woolsey, T. A., 1975, A proportional relationship between peripheral innervation density and cortical neuron number in the somatosensory system of the mouse, Brain Res. 99:349–353.PubMedGoogle Scholar
  196. Lende, R. A., 1963, Motor representation in the cerebral cortex of the opossum (Didelhpis virginiana), J. Comp. Neurol. 121:405–415.PubMedGoogle Scholar
  197. Leuba, G., Heumann, D., and Rabinowicz, T, 1977, Postnatal development of the mouse cerebral neocortex. I. Quantitative cytoarchitecture of some motor and sensory areas, J. Hirnforsch. 18:461–481.PubMedGoogle Scholar
  198. Leuba, G., Heumann, D., and Rabinowicz, T, 1978, Postnatal development of the mouse cerebral cortex. III. Some dynamical aspects, J. Hirnforsch. 19:301–312.PubMedGoogle Scholar
  199. Levin, B. E., and Dunn-Meynell, A., 1991, Adult rat barrel cortex plasticity occurs at 1 week but not at 1 day after vibrissectomy as demonstrated by the 2-deoxyglucose method, Exp. Neurol. 113:237–248.PubMedGoogle Scholar
  200. Lichtenstein, S. H., Carvell, G. E., and Simons, D. J., 1990, Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions, Somatosens. Mot. Res. 7:47–65.PubMedGoogle Scholar
  201. Linden, D. C, Guillery, R. W., and Cucchiaro, J., 1981, The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development, J. Comp. Neurol. 203:189–211.PubMedGoogle Scholar
  202. Lorente de Nó, R., 1922, La corteza cerebral del raton, Trab. Lab. Invest. Biol, (Madrid). 20:41–78.Google Scholar
  203. Lu, S.-M., and Lin, R. C.-S., 1993, Thalamic afferents of the rat barrel cortex: A light-and electron-microscope study using Phaseolus vulgans leucoagglutinin as an anterograde tracer, Somatosens. Mot. Res. 10:1–16.PubMedGoogle Scholar
  204. Luskin, M. B., and Shatz, C. J., 1985, Neurogenesis of the cat’s primary visual cortex, J. Comp. Neurol. 242:611–631.PubMedGoogle Scholar
  205. Ma, P. M., 1991, The barrelettes—Architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. I. Normal structural organization, J. Comp. Neurol. 309:161–199.PubMedGoogle Scholar
  206. Ma, P. M., 1993, Barrelettes-Architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. II. Normal postnatal development, J. Comp. Neurol. 327:376–397.PubMedGoogle Scholar
  207. Ma, P. M., and Woolsey, T. A., 1984, Cytoarchitectonic correlates of the vibrissae in the medullary trigeminal complex of the mouse, Brain Res. 306:374–379.PubMedGoogle Scholar
  208. McCandlish, C, Waters, R. S., and Cooper, N. G. F., 1989, Early development of the representation of the body surface in SI cortex barrel field in neonatal rats as demonstrated with peanut agglutinin binding: Evidence for differential development within the rattunculus, Exp. Brain Res. 77:425–431.PubMedGoogle Scholar
  209. McCasland, J. S., and Woolsey, T. A., 1988, High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex, J. Comp. Neurol. 278:555–569.PubMedGoogle Scholar
  210. Marotte, L. R., Rice, F. L., and Waite, P. M. E., 1992, The morphology and innervation of facial vibrissae in the tammar wallaby, Macropus eugenii, J. Anat. 180:401–417.Google Scholar
  211. McMullen, N. T., Snelser, C. B., and Rice, F. L., 1994, Expression of parvalbumen in the indistinct barrels of the rabbit SI cortex, Brain Res, in press.Google Scholar
  212. Melaragno, H. P., and Montagna, W., 1953, The tactile hair follicle of the mouse, Anat. Rec. 115:129–149.PubMedGoogle Scholar
  213. Miller, B., Chou, L., and Finlay, B. L., 1993, The early development of thalamocortical and corticothalamic projections, J. Comp. Neurol. 335:16–41.PubMedGoogle Scholar
  214. Molnár, Z., and Blakemore, C, 1990, Relationships of corticofugal and corticopetal projections in the prenatal establishment of projections from thalamic nuclei to specific cortical areas in the rat, Proc. Physiol. Soc. (London) 430:104P.Google Scholar
  215. Mosconi, T. M., and Rice, F. L., 1991, Sensory innervation of the mystacial pad für of the ferret, Neurosci. Lett. 121:199–202.PubMedGoogle Scholar
  216. Mosconi, T. M., and Rice, F. L., 1993, Sequential differentiation of sensory innervation in the mystacial pad of the ferret, J. Comp. Neurol. 333:309–325.PubMedGoogle Scholar
  217. Mosconi, T. M., Rice, F. L., and Song, M. R., 1993, Sensory innervation in the inner conical body of the vibrissal follicle-sinus complex of the rat, J. Comp. Neurol. 328:232–251.PubMedGoogle Scholar
  218. Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of cat’s somatic sensory cortex, J. Neurophysiol. 20:408–434.PubMedGoogle Scholar
  219. Munger, B. L., and Rice, F. L., 1986, Successive waves of differentiation of cutaneous afferents in rat mystacial skin, J. Comp. Neurol. 252:404–414.PubMedGoogle Scholar
  220. Myasnikov, A. A., Dykes, R. W., and Avendano, C, 1993, Cytoarchitecture and responsiveness of the medial ansäte region of the cat primary somatosensory cortex, J. Comp. Neurol. submitted for publication.Google Scholar
  221. Nomura, S., Itoh, K., Sugimoto, T., Yasui, Y., Kamiya, H., and Mizuno, N., 1986, Mystacial representation within the trigeminal sensory nuclei of the cat, J. Comp. Neurol. 253:121–33.PubMedGoogle Scholar
  222. Norris, C. R., and Kalil, K., 1992, Development of callosal connections in the sensorimotor cortex of the hamster, J. Comp. Neurol. 326:121–132.PubMedGoogle Scholar
  223. Nothias, F., Peschanski, M., and Besson, J.-M., 1988, Somatotopic reciprocal connections between the somatosensory cortex and the thalamic Po nucleus in the rat, Brain Res. 447:169–174.PubMedGoogle Scholar
  224. Nussbaumer, J.-C, and Van der Loos, H., 1985, An electrophysiological and anatomical study of projections to the mouse cortical barrel field and its surroundings, J. Neurophysiol. 53:686–698.PubMedGoogle Scholar
  225. Olavarria, J., Van Sluyters, R. C, and Killackey, H. P., 1984, Evidence for the complementary organization of callosal and thalamic connections within rat somatosensory cortex, Brain Res. 291:364–368.PubMedGoogle Scholar
  226. O’Leary, D. D. M., and Stanfield, B. B., 1986, Transient pyramidal tract projection from the visual cortex in the hamster and its removal by selective collateral elimination, Dev. Brain Res. 27:87–99.Google Scholar
  227. O’Leary, D. D., Stanfield, B. B., and Cowan, W. M., 1981, Evidence that the early potential restriction of the cells of origin in the callosal projections is due to elimination of open collaterals rather than to death of neurons, Dev. Brain Res. 1:607–617.Google Scholar
  228. Pasternak, J. F., and Woolsey, T. A., 1975, The number, size and spatial distribution of neurons in lamina IV of the mouse SmI neocortex, J. Comp. Neurol. 160:291–306.PubMedGoogle Scholar
  229. Patel-Vaidya, J., 1985, Ultrastructural organization of posterior and anterior barrels in the so-matosensory cortex of rat, J. Neurosci. Res. 14:357–371.PubMedGoogle Scholar
  230. Peschanski, M., 1984, Trigeminal afferents to the diencephalon in the rat, Neuroscience. 12:465–487.PubMedGoogle Scholar
  231. Peters, A., and Feldman, M., 1973, The cortical plate and the molecular layer of the later rat fetus, Z. Anat. Entwicklungsgesch. 141:3–37.PubMedGoogle Scholar
  232. Pidoux, B., and Verley, R., 1979, Projections of the cortical somatic I barrel subfield from ipsilateral vibrissae in adult rodents, Electroencephalog. Clin. Neurophysiol. 46:715–726.Google Scholar
  233. Pidoux, B., Diebler, M. F., Savy, C, Farkas, E., and Verley, R., 1980, Cortical organization of the postero-medial barrel-subfield in mice and its reorganization after destruction of vibrissal follicles after birth, Neuropathol. Appl. Neurobiol. 6:93–107.PubMedGoogle Scholar
  234. Powell, T. P. S., and Mountcastle, V. B., 1959, Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: A correlation of findings obtained in single unit analysis with cytoarchitecture, Bull. Johns Hopkins Hosp. 105:133–162.PubMedGoogle Scholar
  235. Pubols, B. H., Jr., Donovick, P. J., and Pubols, L. M., 1973, Opossum trigeminal afferents associated with vibrissal and rhinal mechanoreceptors, Brain Behav. Evol. 7:360–381.PubMedGoogle Scholar
  236. Pubols, B. H., Pubols, L. M., Dipette, D. J., and Sheely, J. C, 1976, Opossum somatic sensory cortex: A microelectrode mapping study, J. Cornp. Neurol. 165:229–246.Google Scholar
  237. Rakic, P., and Riley, K. P., 1983, Overproduction and elimination of retinal axons in fetal rhesus monkey, Science. 219:1441–1444.PubMedGoogle Scholar
  238. Ramoa, A. S., Campbell, G., and Shatz, C. J., 1989, Retinal ganglion ß cells project transiently to the superior colliculus during development, Proc. Natl. Acad. Sci. USA. 86:2061–2065.PubMedGoogle Scholar
  239. Rapisadra, C, Palmeri, A., Aicardi, S., and Sapienza, S., 1990, Multiple representations of the body and input-output relationships in the agranular and granular cortex of the chronic awake guinea pig, Somatosens. Mot. Res. 7:289–314.Google Scholar
  240. Renehan, W. E., and Munger, B. L., 1986, Degeneration and regeneration in the rat trigeminal system. I. Identification and characterization of the multiple afferent innervation of the mystacial vibrissae, J.Comp. Neurol, 249:129–145.Google Scholar
  241. Rhoades, R. W., Bennett-Clarke, C. A., Chiaia, N. L., White, F. A., MacDonald, G. J., Haring, J. H., and Jacquin, M. F., (1990a), Development of lesion induced reorganization of the cortical representation of the rat’s body surface as revealed by immunocytochemistry for serotonin, J. Comp. Neurol. 293:190–207.PubMedGoogle Scholar
  242. Rhoades, R. W., Chiaia, N. L., and MacDonald, G. T., (1990b), Topographic organization of the peripheral projections of the trigeminal ganglion in fetal rat, Somatosens. Mot. Res. 7:67–84.PubMedGoogle Scholar
  243. Rhoades, R. W., Killackey, H. P., Chiaia, N. L., and Jacquin, M. F., 1990c, Physiological development and plasticity of somatosensory neurons, in: Development of Sensory Systems in Mammals (J. R. Coleman, ed.), Wiley, New York, pp. 431–459.Google Scholar
  244. Rice, F. L., 1984, Neonatal facial nerve extirpations fail to produce alterations in the barrel field in the primary somatosensory cortex of mice, Brain Res. 322:393–395.PubMedGoogle Scholar
  245. Rice, F. L., 1985a, An attempt to find vibrissa-related barrels in the primary somatosensory cortex of the cat, Neurosci, Lett, 53:169–172.Google Scholar
  246. Rice, F. L., (1985b), Gradual changes in the structure of the barrels during maturation of the primary somatosensory cortex in the rat, J. Comp. Neurol. 236:496–503.PubMedGoogle Scholar
  247. Rice, F. L., and Munger, B. L., 1986, A comparative light microscopic analysis of the mystacial pad. II. The common für between the vibrissae, J. Comp. Neurol. 252:186–205.PubMedGoogle Scholar
  248. Rice, F. L., and Van der Loos, H., 1977, Development of the barrels and barrel field in the somatosensory cortex of the mouse, J. Comp. Neurol. 171:545–560.PubMedGoogle Scholar
  249. Rice, F. L., Gomez, C, Barstow, C, Burnet, A., and Sands, P., 1985, A comparative analysis of the development of the primary somatosensory cortex: Interspecies similarities during barrel and laminar development, J. Comp. Neurol. 236:477–495.PubMedGoogle Scholar
  250. Rice, F. L., Mance, A., and Munger, B. L., (1986a), A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes, J. Comp. Neurol. 252:154–174.PubMedGoogle Scholar
  251. Rice, F. L., Mosconi, T., and Munger, B. L., 1986b, Interspecies variations in vibrissal innervation: The whisking proprioceptors, Soc. Neurosci. Abstr. 12:336.Google Scholar
  252. Rice, F. L., Gomez, C. M., Leclerc, S. S., Dykes, R. W., Moon, J. S., and Pourmoghadam, K., 1993a, Cytoarchitecture of the ferret suprasylvian gyrus correlated with areas containing multiunit response elicited by stimulation of the face, Somatosens. Mot. Res. 10:161–88.PubMedGoogle Scholar
  253. Rice, F. L., Kinnman, E., Aldskogius, H., Johansson, O., and Arvidsson, J., (1993b), The innervation of the mystacial pad of the rat as revealed by PGP 9.5 immunofluorescence, J. Comp. Neurol. 337:366–385.PubMedGoogle Scholar
  254. Rice, F. L., Snelser, C. B., and McMullen, N. T., 1993c, Expression of parvalbumen in the indistinct barrels of the rabbit SI cortex, Soc. Neurosci. Abstr. 19:107.Google Scholar
  255. Rice, F. L., Hawkes, R., and Colonier, M., 1994a, A rapid onset of synaptogenesis throughout the neocortex of the rat as revealed by an anti-synatophysin Mab, in preparation.Google Scholar
  256. Rice, F. L., Pourmoghadan, K., Mosconi, T., Stobbe, G., Ledere, S., and Carrasaco, N., 1994b, Rapid and simultaneous differentiation of cytoarchitectonic laminae throughout the neocortex of the ferret, in preparation.Google Scholar
  257. Riddle, D., Richards, A., Zsuppan, F., and Purves, D., 1992, Growth of the rat somatic sensory cortex and its constituent parts during postnatal development, J. Neurosci. 12:3509–3524.PubMedGoogle Scholar
  258. Robertson, B., and Arvidsson, J., 1985, Transganglionic transport of wheat germ agglutinin-HRP and choleragenoid-HRP in rat trigeminal primary sensory neurons, Brain Res. 348:44–51.PubMedGoogle Scholar
  259. Rose, M., 1912, Histologische Lokalisation der Grosshirnrinde bei kleinen Säugetieren, Rodentia, Insectivora, Chiroptera, J. Psychol. Neurol. 19:389–479.Google Scholar
  260. Rose, M., 1929, Cytoarchitektonischer Atlas der (Trosshirnrinde der Maus, J.Psychol. Neurol. 40: 1–51.Google Scholar
  261. Sanchez, M. P., Frassoni, C, Alvarez-Bolado, G., Spreafico, R., and Fairen, A., 1992, Distribution of calbindin and parvalbumin in the developing somatosensory cortex and its primordium in the rat: An immunocytochemical study, J. Neurocytol. 21:717–736.PubMedGoogle Scholar
  262. Sandell, J. H., 1984, The distribution of hexokinase compared to cytochrome oxidase and acetylcho-linesterase in the somatosensory cortex and the superior colliculus of the rat, Brain Res. 290:384–389.PubMedGoogle Scholar
  263. Sanderson, K. J., Welker, W., and Shambes, G. M., 1984, Reevaluation of motor cortex and of sensorimotor overlap in cerebral cortex of albino rats, Brain Res. 292:251–260.PubMedGoogle Scholar
  264. Schade, J. P., and Baxter, G. F., 1960, Changes during growth in the volume and surface area of cortical neurons in the rabbit, Exp. Neurol. 2:158–178.PubMedGoogle Scholar
  265. Schade, J. P., Van Backer, H., and Colon, E., 1964, Quantitative analysis of neuronal parameters in the maturing cerebral cortex, Prog. Brain Res. 45:150–175.Google Scholar
  266. Schlaggar, B. L., and O’Leary, D. D. M., 1991, Potential of visual cortex to develop an array of functional units unique to somatosensory cortex, Science. 252:1556–1560.PubMedGoogle Scholar
  267. Schultz, W., Galbraith, G. C, Gottschaldt, K.-M., and Creutzfeldt, O. D., 1976, A comparison of primary afferent and cortical neuron activity coding sinus hair movements in the cat, Exp. Brain Res. 24:365–381.PubMedGoogle Scholar
  268. Senft, S. L., and Woolsey, T. A., (1991a), Computer-aided analyses of thalamocortical afferent ingrowth, Cereb. Cortex. 1:336–347.PubMedGoogle Scholar
  269. Senft, S. L., and Woolsey, T. A., (1991b), Growth of thalamic afferent into mouse barrel cortex, Cereb. Cortex. 1:308–335.PubMedGoogle Scholar
  270. Senft, S. L., and Woolsey, T. A., (1991c), Mouse barrel cortex viewed as Dirichlet domains, Cereb. Cortex. 1:348–363.PubMedGoogle Scholar
  271. Seo, M. L., and Ito, M., 1987, Reorganization of rat vibrissa barrel field as studied by cortical lesioning on different postnatal days, Exp. Brain Res. 65:251–260.PubMedGoogle Scholar
  272. Sharp, F. R., Gonzalez, M. F., Morgan, C. W., Morton, M. T., and Sharp, J. W., 1988, Common für and mystacial vibrissae parallel sensory pathways: 14C-2-deoxyglucose and WGA-HRP studies in the rat, J. Comp. Neurol. 270:446–469.PubMedGoogle Scholar
  273. Shatz, C. J., 1983, The prenatal development of the cat’s retinogeniculate pathway, J.Neurosci., 3:482–499.PubMedGoogle Scholar
  274. Shigenaga, Y., Otani, K., and Suemune, S., 1990, Morphology of central terminations of low-threshold trigeminal primary afferents from facial skin in the cat-intra-axonal staining with HRP, Brain Res. 523:23–50.PubMedGoogle Scholar
  275. Shimada, M., and Langman, J., 1970, Cell proliferation, migration, and differentiation in the cerebral cortex of the golden hamster, J. Comp. Neurol. 139:227–244.PubMedGoogle Scholar
  276. Sikich, L., Woolsey, T A., and Johnson, E. M., Jr., 1986, Effect of a uniform partial denervation of the periphery on the peripheral and central vibrissal system in guinea pigs, J. Neurosci. 6:1227–1240.PubMedGoogle Scholar
  277. Silverman, J. D., and Kruger, L., 1985, Projections of the rat trigeminal sensory nuclear complex demonstrated by multiple fluorescent dye retrograde transport, Brain Res. 361:383–388.PubMedGoogle Scholar
  278. Simons, D. J., 1978, Response properties of vibrissa units in the rat SI somatosensory neocortex, J. Neurophysiol. 41:615–635.Google Scholar
  279. Simons, D. J., 1983, Multi-whisker stimulation and its effects on vibrissal units in rat SmI barrel cortex, Brain Res. 276:178–182.PubMedGoogle Scholar
  280. Simons, D. J., 1985, Temporal and spatial integration in the rat SI vibrissa cortex, J.Neurophysiol. 54:615–635.PubMedGoogle Scholar
  281. Simons, D. J., and Carvell, G. E., 1989, Thalamocortical response transformation in the rat vi-brissa/barrel system, J. Neurophysiol. 61:311–330.PubMedGoogle Scholar
  282. Simons, D. J., and Woolsey, T. A., 1979, Functional organization in the mouse barrel cortex, Brain Res. 165:327–332.PubMedGoogle Scholar
  283. Simons, D. J., and Woolsey, T. A., 1984, Morphology of Golgi-Cox-impregnated barrel neurons in rat SmI cortex, J. Comp. Nenrol. 230:119–132.Google Scholar
  284. Simons, D. J., Carvell, G. E., Hershey, A. E., and Bryant, D. P., 1992, Responses of barrel cortex neurons in awake rats and effects of urethane anesthesia, Exp. Brain Res. 91:259–272.PubMedGoogle Scholar
  285. Smart, I. H. M., 1973, Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: A pilot study based on recording the number, location, and plane of cleavage of mitotic figures, J. Anat. 116:67–91.PubMedGoogle Scholar
  286. Smart, I. H. M., and McSherry, G. M., 1982, Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production, J. Anat. 134:417–442.Google Scholar
  287. Smith, R. L., 1975, The ascending fiber projections from the principal sensory trigeminal nucleus in the rat, J. Comp. Nenrol. 148:423–446.Google Scholar
  288. Snow, P. J., and Wilson, P., 1991, Plasticity and the mystacial vibrissae of rodents, in: Progress in Sensory Physiology, Vol. 11 (H. Autrum, D. Ottoson, E. R. Perl, R. F. Schmidt, H. Shimazu, and W. D. Willis, eds.), Springer-Verlag, Berlin, pp. 58–116.Google Scholar
  289. Stanfield, B. B., O’Leary, D. D. M., and Fricks, C., 1982, Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurons, Nature. 298:371–373.PubMedGoogle Scholar
  290. Steffen, H., and Van der Loos, H., 1980, Early lesions of mouse vibrissal follicles: Their influence on dendrite orientation in the cortical barrel field, Exp. Brain Res. 40:419–431.PubMedGoogle Scholar
  291. Steindler, D. A., 1985, Trigeminocerebeller, trigeminotectal, and trigeminothalamic projections: A double retrograde axonal tracing study in the mouse, J. Comp. Neurol. 237:155–175.PubMedGoogle Scholar
  292. Steindler, D. A. O’Brien, T. F., Laywell, E., Harrington, K., Faissner, A., and Schachner, M., 1990, Boundaries during normal and abnormal brain development: In vivo and in vitro studies of glia and glycoconjugates, Exp. Neurol. 109:35.PubMedGoogle Scholar
  293. Stensaas, L. J., (1967a), The development of hippocampal and dorsolateral palliai regions of the cerebral hemisphere in fetal rabbits. V. Sixty millimeter stage, glial cell morphology, J. Comp. Neurol. 131:423–436.PubMedGoogle Scholar
  294. Stensaas, L. J., (1967b), The development of hippocampal and dorsolateral palliai regions of the cerebral hemisphere in fetal rabbits. VI. Ninety millimeter stage, cortical differentiation, J. Comp. Neurol. 132:93–108.Google Scholar
  295. Sur, M., Nelson, R. J., and Kaas, J. H., 1978, The representation of the body surface in somatosensory area I of the grey squirrel, J. Comp. Neurol. 179:425–450.PubMedGoogle Scholar
  296. Sur, M., Nelson, R. J., and Kaas, J. H., (1980a), The representation of the body surface in somatic koniocortex in the prosimian galago, J. Comp. Neurol. 189:381–402.PubMedGoogle Scholar
  297. Sur, M., Weller, R. E., and Kaas, J. H., (1980b), Representation of the body surface in somatosensory area I of tree shrews, Tupaia glis, J. Comp. Neurol. 194:71–95.Google Scholar
  298. Swadlow, H. A., 1989, Efferent neurons and suspected interneurons in S-I vibrissa cortex of the awake rabbit: Receptive fields and axonal properties, J. Neurophysiol. 62:288–308.PubMedGoogle Scholar
  299. Téllo, P. F., 1923, Genese des terminaisons motrices et sensitives. II. Terminaisons dans les pois de la souris blanche, Trav. Lab. Rech. Biol. Univ. Madrid. 21:257–284.Google Scholar
  300. Vahle-Hinz, C., and Gottschaldt, K.-M., 1983, Principal differences in the organization of the thalamic face representation in rodents and felids, in: Somatosensory Integration in the Thalamus (G. Macchi, A. Rusitoni, and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 125–145.Google Scholar
  301. Van der Loos, H., 1976, Barreloids in the mouse somatosensory thalamus, Neurosci. Lett. 7:23–30.Google Scholar
  302. Van der Loos, H., and Woolsey, T. A., 1973, Somatosensory cortex: Structural alterations following early injury to sense organs, Science. 179:395–398.PubMedGoogle Scholar
  303. Van Erp Taalman Kip, M. J., 1938, Lichaansgrootte en Hersenschors, Noordhoff, Groningen.Google Scholar
  304. Vincent, S. B., 1913, The tactile hair of the white rat, J. Comp. Neurol. 23:1–36.Google Scholar
  305. Voigt, T., de Lima, A. D., and Beckmann, M., 1993, Synaptophysin immunohistochemistry reveals inside-out pattern of early synaptogenesis in ferret cerebral cortex, J. Comp. Neurol. 330:48–64.PubMedGoogle Scholar
  306. Waite, P. M. E., 1973, The responses of cells in the rat thalamus to mechanical movements of the whiskers, J. Physiol. (London). 228:541–561.Google Scholar
  307. Waite, P. M. E., 1976, Nerve fibres in the barrels of the cerebral cortex of immature and adult mice, Proc. Univ. Otago Med. Sch. 54:58–60.Google Scholar
  308. Waite, P. M. E., and Cragg, B. G., 1979, The effect of destroying the whisker follicle in mice on the sensory nerve, the thalamocortical radiation, and cortical barrel development, Proc. R. Soc. (London). 204:41–55.Google Scholar
  309. Waite, P. M. E., and Jacquin, M. F., 1992, Dual innervation of the rat vibrissa: Responses of trigeminal ganglion cells projecting through deep or superficial nerves, J Comp. Neurol. 322:233–245.PubMedGoogle Scholar
  310. Waite, P. M. E., Marotte, L. R., and Mark, R. F., 1991, Development of whisker representation in the cortex of the tammar wallaby Macropus eugeni, Dev. Brain Res. 58:35.Google Scholar
  311. Wallace, M. N., 1987, Histochemical demonstration of sensory maps in the rat and mouse cerebral cortex, Brain Res. 418:178–182.PubMedGoogle Scholar
  312. Waters, R. S., McCandlish, C. A., and Cooper, N. G. F., 1990, Early development of SI cortical barrel subfield representation of forelimb in normal and deafferented neonatal rat as delineated by peroxidase conjugated lectin, peanut agglutinin, PNA, Exp. Brain Res. 81:234–240.PubMedGoogle Scholar
  313. Welker, C, 1971, Microelectrode delineation of fine grain somatotopic organization of SmI cerebral neocortex in albino rat, Brain Res. 26:259–275.PubMedGoogle Scholar
  314. Welker, C, 1973, Organization of somatosensory cerebral neocortex in micrencephalic rat, Anat. Rec. 175:467–468.Google Scholar
  315. Welker, C, 1976, Receptive fields of barrels in the somatosensory neocortex of the rat, J. Comp. Neurol. 166:173–190.PubMedGoogle Scholar
  316. Welker, C, and Woolsey, T. A., 1974, Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse, J. Clomp. Neurol. 158:437–454.Google Scholar
  317. Welker, E., and Van der Loos, H., 1986, Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: A comparative study in six strains of mice bred for different patterns of mystacial vibrissae, J. Neurosci. 6:3355–3373.PubMedGoogle Scholar
  318. Welker, E., Hoogland, P. V., and Van der Loos, H., 1988, Organization of feedback and feedforward projections of the barrel cortex: A PHA-L study in the mouse, Exp. Brain Res. 73:411–435.PubMedGoogle Scholar
  319. Welker, E., Rao, S. B., Dörfl, J., Melzer, P., and Van der Loos, H., 1992, Plasticity in the barrel cortex of the adult mouse: Effects of chronic stimulation upon deoxyglucose uptake in the behaving animal, J. Neurosa. 12:153–170.Google Scholar
  320. Welker, W. I., 1964, Analysis of sniffing in the albino rat, Behavior. 22:223–244.Google Scholar
  321. Welker, W. I., and Seidenstein, S., 1959, Somatic sensory representations in the cerebral cortex of the raccoon (Procyon lotor), J. Comp. Neurol. 111:469–502.PubMedGoogle Scholar
  322. Welker, W., Sanderson, K.J., and Shambes, G. M., 1984, Patterns of afferent projections to transitional zones in the somatic sensorimotor cerebral cortex of albino rats, Brain Res. 292:261–267.PubMedGoogle Scholar
  323. Weiler, W. L., 1972, Barrels in somatic sensory neocortex of the marsupial Trichosurus vulpecula, brush-tailed opossum, Brain Res. 43:11–24.Google Scholar
  324. Werner, G., and Whitsel, B. L., 1968, Topology of the body representation in the somatosensory area of primates, J. Neurophysiol. 31:856–869.PubMedGoogle Scholar
  325. White, E. L., 1979, Thalamocortical synaptic relations: A review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex, Brain Res. Rev. 1:275–311.Google Scholar
  326. White, E. L., and DeAmicis, R. A., 1977, Afferent and efferent projections of the region in mouse SmI cortex which contains the posteromedial barrel subfield, J. Comp. Neurol. 175:455–482.PubMedGoogle Scholar
  327. White, E. L., and Hersch, S. M., 1982, A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex, J. Neuro-cytol. 11:137–157.Google Scholar
  328. White, E. L., and Peters, A., 1993, Cortical modules in the posteromedial barrel subfield, SmI, of the mouse, J. Comp. Neurol. 334:86–96.PubMedGoogle Scholar
  329. White, E. L., and Rock, M. P., 1981, A comparison of thalamocortical and other synaptic inputs to dendrites of two non-spiny neurons in a single barrel of mouse SmI cortex, J. Comp. Neurol. 195:265–277.PubMedGoogle Scholar
  330. Wineski, L. E., 1983, Movements of the cranial vibrissae in the golden hamster (Mesocricetus auratus), J. Zool. 200:261–280.Google Scholar
  331. Wise, S. P., and Jones, E. G., 1976, Organization and postnatal development of the commissural projection of the rat somatic sensory cortex, J. Comp. Neurol. 168:313–343.PubMedGoogle Scholar
  332. Wise, S. P., and Jones, E. G., 1978, Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex, J. Comp. Neurol. 178:187–208.PubMedGoogle Scholar
  333. Wise, S. P., Fleshman, J. W., and Jones, E. G., 1979, Maturation of pyramidal cell form in relation to developing afferent and efferent connections of rat somatic sensory cortex, Neuroscience. 4:1275–1298.PubMedGoogle Scholar
  334. Wong-Riley, M. T. T., and Welt, C, 1980, Cytochrome oxidase histochemical changes in cortical barrels following vibrissal removal in neonatal and adult mice, Proc. Natl. Acad. Sci. USA. 77:2333–2337.PubMedGoogle Scholar
  335. Woolsey, C. N., 1958, Organization of somatic sensory and motor areas of the cerebral cortex, in: Biological and Biochemical Bases of Behavior (H. F. Harlow and C. N. Woolsey, eds.), University of Wisconsin Press, Madison, pp. 63–81.Google Scholar
  336. Woolsey, C. N., and Fairman, D., 1946, Contralateral, ipsilateral, and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep, and other mammals, Surgery. 19:684–702.PubMedGoogle Scholar
  337. Woolsey, C. N., and Le Messurier, D. H., 1948, The pattern of cutaneous representation in the rat’s cerebral cortex, Fed. Proc. 7:137–138.PubMedGoogle Scholar
  338. Woolsey, T. A., 1967, Somatosensory, auditory and visual cortical areas of the mouse, Johns Hopkins Med.J. 121:91–112.PubMedGoogle Scholar
  339. Woolsey, T. A., 1990, Peripheral alteration and somatosensory development, in: Development of Sensory Systems in Mammals (J. R. Coleman, ed.), Wiley, New York, pp. 461–503.Google Scholar
  340. Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region, SI, of mouse cerebral cortex, Brain Res. 17:205–242.PubMedGoogle Scholar
  341. Woolsey, T. A., and Wann, J. R., 1976, Areal changes in mouse cortical barrels following vibrissal damage at different postnatal ages, J. Comp. Neurol. 170:53–66.PubMedGoogle Scholar
  342. Woolsey, T. A., Dierker, M. L., and Wann, D. F., (1975a), Mouse SmI cortex: Qualitative and quantitative classification of Golgi-impregnated barrel neurons, Proc. Natl. Acad. Sei. USA. 72:2165–2169.Google Scholar
  343. Woolsey, T. A., Welker, C, and Schwartz, R. H., (1975b), Comparative anatomical studies of the SmI face cortex with special reference to the occurrence of “barrels” in layer IV, J. Comp. Neurol. 164:95–104.Google Scholar
  344. Woolsey, T. A., Anderson, J. R., Wann, J. R., and Stanfield, B. B., 1979, Effects of early vibrissae damage on neurons in the ventrobasal, VB, thalamus of the mouse, J. Comp. Neurol. 184:363–380.PubMedGoogle Scholar
  345. Yamakado, M., 1985, Postnatal development of the barreloid neuropils in the ventrobasal complex of the mouse: A histochemical study for cytochrome oxidase, Brain Nerve. 37:497–506.PubMedGoogle Scholar
  346. Yip, V. S., Zhang, W.-P., Woolsey, T. A., and Lowry, H. O., 1987, Quantitative histochemical and microchemical changes in the adult mouse central nervous system after section of the infraorbital and optic nerves, Brain Res. 406:157–170.PubMedGoogle Scholar
  347. Yohro, Y, 1977, Structure of the sinus hair follicle in the big-clawed shrew, Sorex unguiculatus, J. Morphol. 153:333–354.PubMedGoogle Scholar
  348. Yuste, R., Peinado, A., and Katz, L. C, 1992, Neuronal domains in developing neocortex, Science. 257:665–668.PubMedGoogle Scholar
  349. Ziltzer, R. J., and Rice, F. L., 1985, Structural alterations in the barrels of the rat subsequent to peripheral manipulations during adolescence, Anat. Rec. 211:221A.Google Scholar
  350. Zucker, E., and Welker, W. I., 1969, Coding of somatic sensory input by vibrissal neurons in the rat’s trigeminal ganglion, Brain Res. 12:138–156.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Frank L. Rice
    • 1
  1. 1.Department of Pharmacology and ToxicologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations