Skip to main content

Comparative Aspects of Barrel Structure and Development

  • Chapter
The Barrel Cortex of Rodents

Part of the book series: Cerebral Cortex ((CECO,volume 11))

Abstract

Cytoarchitectonic irregularities in layer IV in the cerebral cortex of the mouse, rat, and guinea pig were observed in several studies conducted in the first half of this century (DeVries, 1911, 1912; Droogleever Fortuyn, 1911, 1914; Rose, 1912, 1929; Lorente de Nó, 1922; Van Erp Taalman Kip, 1938). Considerable interest in these irregularities was kindled in the late 1960s when Woolsey (1967) found that in the mouse they formed an extended network that partially coincided with the primary somatosensory cortex (SI) as delineated by the low-resolution evoked potential technique. The significance of this network became apparent when Woolsey and Van der Loos (1970) subsequently prepared serial Nissl-stained sections that were cut parallel to the overlying pial surface (Fig. 1). They observed that layer IV contained a tangentially distributed array of cylindrical or oval-shaped multineuronal units that they dubbed “barrels.” Recognizing that the array was similar to that of the vibrissae on the mystacial pad, they hypothesized that the barrels were the “cortical correlates of the mystacial vibrissae” and that “one barrel represents one vibrissa.” They also hypothesized that the barrels

Photomicrographs of three 50-µm-thick serial, Nissl-stained sections cut tangentially through the SI cortex of a celloidin-embedded mouse brain. Small arrows indicate blood vessels used for aligning the sections. Because of the orientation, layer IV was encountered first in the anterolateral part of the barrel field which is occupied by the small round barrels observed in sections A and B. In section B, rows of cell-dense patches (broad arrowhead) in deep layer III foreshadow the appearance of the rows of larger, oval-shaped barrels in the posteromedial portion of the barrel field. Bar = 2 mm uncorrected for shrinkage. Adapted and reproduced with permission from Woolsey and Van der Loos (1970).

were a morphological manifestation in layer IV of functional cortical columns which had recently been described in the somatosensory cortex of the cat and monkey (Mountcastle, 1957; Powell and Mountcastle, 1959).

This chapter is dedicated in loving memory of my mentor and friend Hendrik Van der Loos and my colleague and friend Jan Arvidsson. This chapter is also dedicated to Dan Willi and his heroic progress in recovering from spinal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers, R. M., and Killackey, H. P., 1978, Organization of corticocortical connections in the parietal cortex of the rat, J Comp. Nenrol. 81:513–538.

    Google Scholar 

  • Al-Ghoul, W. M., and Miller, M. W., 1993, Development of the principal sensory nucleus of the trigeminal nerve of the rat and evidence for a transient synaptic field in the trigeminal sensory tract, J. Comp. Nenrol. 330:476–490.

    CAS  Google Scholar 

  • Andrés, F. L., 1989, Removal and reimplantation of the parietal cortex of mice during the first nine days of life: Consequences for the barrel field, J. Neural Transplant. 1:11–22.

    PubMed  Google Scholar 

  • Andrés, F. L., and Van der Loos, H., 1985, Removal and reimplantation of the parietal cortex of the neonatal mouse: Consequences for the barrel field, Dev. Brain Res. 20:115–121.

    Google Scholar 

  • Andrés, K. H., 1966, Uber die Feinstruktur der Rezeptoren on sinushaaren, Z. Zellforsch. 75:335–365.

    Google Scholar 

  • Armstrong-James, M., and Callahan, C. A., 1991, Thalamocortical processing of vibrissal information in the rat. II. Spatiotemporal convergence in the thalamic ventroposterior medial nucleus, VPm, and its relevance to generation of receptive fields of SI cortical “barrel” neurones, J. Comp. Nenrol. 303:211–224.

    CAS  Google Scholar 

  • Armstrong-James, M., and Fox, K., 1987, Spatiotemporal convergence and divergence in the rat SI “barrel” cortex, J. Comp. Nenrol. 263:265–281.

    CAS  Google Scholar 

  • Armstrong-James, M., Callahan, C. A., and Friedman, M. A., 1991, Thalamocortical processing of vibrissal information in the rat. I. Intracortical origins of surround but not centre-receptive fields of layer IV neurones in the rat SI barrel field cortex, J. Comp. Nenrol. 303:193–210.

    CAS  Google Scholar 

  • Armstrong-James, M., Fox, K., and Das-Gupta, A., 1992, Flow of excitation within rat barrel cortex on striking a single vibrissa, J. Neurophysiol. 68:1345–1358.

    PubMed  CAS  Google Scholar 

  • Arvidsson, J., 1982, Somatotopic organization of vibrissae afferents in the trigeminal sensory nuclei of the rat studied by transganglionic transport of HRP, J. Comp. Neurol. 211:84–92.

    PubMed  CAS  Google Scholar 

  • Arvidsson, J., and Rice, F. L., 1991, Central projections of primary sensory neurons innervating different parts of the vibrissae follicles and intervibrissal skin on the mystacial pad of the rat, J. Comp. Neurol. 309:1–16.

    PubMed  CAS  Google Scholar 

  • Bates, C. A., and Killackey, H. P., 1985, The organization of the neonatal rat’s brainstem trigeminal complex and its role in the formation of central trigeminal patterns, J. Comp. Neurol. 240:265–287.

    PubMed  CAS  Google Scholar 

  • Bates, C. A., Erzurumlu, R. S., and Killackey, H. P., 1982, Central correlates of peripheral alterations in the trigeminal system of the rat. III. Neurons of the principal sensory nucleus, Dev. Brain Res. 5:108–113.

    Google Scholar 

  • Belford, G. R., and Killackey, H. P., 1979, Vibrissae representation in subcortical trigeminal centers of the neonatal rat, J. Comp. Neurol. 183:305–322.

    PubMed  CAS  Google Scholar 

  • Belford, G. R., and Killackey, H. P., 1980, The sensitive period in the development of the trigeminal system of the neonatal rat, J. Comp. Neurol. 193:335–350.

    PubMed  CAS  Google Scholar 

  • Bennett-Clarke, C. A., Chiaia, N. L., Crissman, R. S., and Rhoades, R. W., 1991, The source of the transient serotonergic input to the developing visual and somatosensory cortices in rat, Neuro-science. 43:163–183.

    CAS  Google Scholar 

  • Bennett-Clarke, C. A., Chiaia, N. L., Jacquin, M. F., and Rhoades, R. W., 1992, Parvalbumin and calbindin immunocytochemistry reveal functionally distinct cell groups and vibrissa-related patterns in the trigeminal brainstem complex of the adult rat, J. Comp. Neurol. 320:323–338.

    PubMed  CAS  Google Scholar 

  • Bennett-Clarke, C. A., Leslie, M. J., Chiaia, N. L., and Rhoades, R. W., 1993, Serotonin Bl receptors in the developing somatosensory and visual cortices are located on thalamocortical axons, Proc. Natl. Acad. Sa. USA. 90:153–157.

    CAS  Google Scholar 

  • Bernardo, K. L., and Woolsey, T. A., 1987, Axonal trajectories between mouse somatosensory thalamus and cortex, J. Comp. Neurol. 258:542–564.

    PubMed  CAS  Google Scholar 

  • Bernardo, K. L., McCasland, J. S., Woolsey, T. A., and Strominger, R. N., 1990, Local intra-and interlaminar connections in mouse barrel cortex, J. Comp. Neurol. 291:231–255.

    PubMed  CAS  Google Scholar 

  • Berry, M., and Hollingsworth, T., 1973, Development of isolated neocortex, Experientia. 29:204–207.

    PubMed  CAS  Google Scholar 

  • Berry, M., and Rogers, A. W., 1965, The migration of neuroblasts in the developing cerebral cortex, J.Anat. 99:691–709.

    PubMed  CAS  Google Scholar 

  • Biemesderfer, D., Munger, B. L., Binck, J., and Dubner, R., 1978, The pilo-Ruffini complex: A non-sinus hair associated slowly-adapting mechanoreceptor in primate facial skin, Brain Res. 142:197–222.

    PubMed  CAS  Google Scholar 

  • Blue, M. E., Erzurumlu, R. S., and Jhaveri, S., 1991, A comparison of pattern formation by thalamocortical and serotonergic afferents in the rat barrel field, Cereb. Cortex. 1:380–389.

    PubMed  CAS  Google Scholar 

  • Boissonade, F. M., Sharkey, K. A., and Lucier, G. E., 1993, Trigeminal nuclear complex of the ferret: Anatomical and immunohistochemical studies, J. Comp. Neurol. 329:291–312.

    PubMed  CAS  Google Scholar 

  • Brizzee, K. R., and Jacobs, L. A., 1959, Early postnatal changes in neuron packing density and volumetric relationships in the cerebral cortex of the white rat, Growth. 23:337–347.

    PubMed  CAS  Google Scholar 

  • Bronchti, G., Schonenberger, N., Welker, E., and Van der Loos, H., 1992, Barrel field expansion after neonatal eye removal in mice, Neuroreport. 3:489–492.

    PubMed  CAS  Google Scholar 

  • Bruce, L. L., McHaffie, J. G., and Stein, B. E., 1987, The organization of trigeminotectal and trigeminothalamic neurons in rodents: A double-labeling study with fluorescent dyes, J. Comp. Neurol. 262:315–330.

    PubMed  CAS  Google Scholar 

  • Carvell, G. E., and Simons, D. J., 1987, Thalamic and corticocortical connections of the second somatic sensory area of the mouse, J. Comp. Neurol. 265:409–427.

    PubMed  CAS  Google Scholar 

  • Carvell, G. E., Simons, D. J., Lichtenstein, S. H., and Bryant, P., 1991, Electromyographic activity of mystacial pad musculature during whisking behavior in the rat, Somatosens. Mot. Res. 8:159–164.

    PubMed  CAS  Google Scholar 

  • Catalano, S. M., Robertson, R. T., and Killackey, H. P., 1991, Early ingrowth of thalamocortical afferents to the neocortex of the prenatal rat, Proc. Natl. Acad. Sci. USA. 88:2999–3003.

    PubMed  CAS  Google Scholar 

  • Caviness, V. S., 1975, Architectonic map of neocortex of the normal mouse, J Comp. Neurol. 164:247–264.

    PubMed  Google Scholar 

  • Celio, M. R., 1986, Parvalbumin in most y-aminobutyric acid-containing neurons of the rat cerebral cortex, Science. 231:995–997.

    PubMed  CAS  Google Scholar 

  • Celio, M. R., 1990, Calbindin D-28k and parvalbumin in the rat nervous system, Neuroscience. 35:375–475.

    PubMed  CAS  Google Scholar 

  • Chapin, J. K., 1986, Laminar differences in sizes, shapes, and response profiles of cutaneous receptive fields in the rat SI cortex, Exp. Brain Res. 62:549–559.

    PubMed  CAS  Google Scholar 

  • Chapin, J. K., and Lin, C.-S., 1984, Mapping the body representation in the SI cortex of anesthetized and awake rats, J Comp. Neurol. 229:199–213.

    PubMed  CAS  Google Scholar 

  • Chapin, J. K., and Lin, C.-S., 1990, The somatic sensory cortex of the rat, in: The Cerebral Cortex of the Rat (B. Kolb and R.C. Tees, eds.), MIT Press, Cambridge, MA, pp. 341–380.

    Google Scholar 

  • Chapin, J. K., Sadeq, M., and Guise, J. L. U., 1987, Corticocortical connections within the primary somatosensory cortex of the rat, J Comp. Neurol. 263:326–346.

    PubMed  CAS  Google Scholar 

  • Chiaia, N. L., Hess, P. R., Hosoi, M., and Rhoades, R. W., 1987, Morphological characteristics of low-threshold primary afferents in the trigeminal subnuclei interpolaris and caudalis, the medullary dorsal horn, of the golden hamster, J. Comp. Neurol. 264:527–546.

    PubMed  CAS  Google Scholar 

  • Chiaia, N. L., Bennett-Clarke, C. A., and Rhoades, R. W., (1991a), Effects of cortical and thalamic lesions upon primary afferent terminations, distributions of projection neurons, and the cyto-chrome oxidase pattern in the trigeminal brainstem complex, J. Comp. Neurol. 303:600–616.

    PubMed  CAS  Google Scholar 

  • Chiaia, N. L., Rhoades, R. W., Bennett-Clarke, C. A. Fish, S. E., and Killackey, H. P., (1991b), Thalamic processing of vibrissal information in the rat: I. Afferent input to the medial ventral posterior and posterior nuclei, J. Comp. Neurol. 314:201–216.

    PubMed  CAS  Google Scholar 

  • Chiaia, N. L., Rhoades, R. W., Fish, S. E., and Killackey, H. P., (1991c), Thalamic processing of vibrissal information in the rat: II. Morphological and functional properties of medial ventral posterior nucleus neurons, J. Comp. Neurol. 314:217–236.

    PubMed  CAS  Google Scholar 

  • Chiaia, N. L., Bauer, W. R., Zhang, S., King, T A., Wright, P. C, Hobler, S. C, and Freeman, K. A., (1992a), Effects of neonatal transection of the intraorbital nerve upon the structural and functional organization or the ventral posteromedial nucleus in the rat, J. Comp. Neurol. 326:561–579.

    PubMed  CAS  Google Scholar 

  • Chiaia, N. L., Bennett-Clarke, C. A., Eck, M., White, F. A., Crissman, R. S., and Rhoades, R. W., (1992b), Evidence for prenatal competition among the central arbors of trigeminal primary afferent neurons, J. Neurosci. 12:62–76.

    PubMed  CAS  Google Scholar 

  • Chiaia, N. L., Bennett-Clarke, C. A., and Rhoades, R. W, (1992c), Differential effects of peripheral damage on vibrissa-related patterns in trigeminal nucleus principalis, subnucleus interpolaris, and subnucleus caudalis, Neuroscience. 49:141–156.

    PubMed  CAS  Google Scholar 

  • Chiaia, N. L., Fish, S. E., Bauer, W. R., Bennett-Clarke, C. A., and Rhoades, R. W, (1992d), Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissa-related patterns in the rat’s somatosensory cortex, Dev. Brain Res. 66:244–250.

    CAS  Google Scholar 

  • Chmielowska, J., Kossut, M., and Chmielowski, M., 1986, Single vibrissal cortical column in the mouse labeled with 2-deoxyglucose, Exp. Brain Res. 63:606–619.

    Google Scholar 

  • Chmielowska, J., Carvell, G. E., and Simons, D. J., 1989, Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex, J. Comp. Neurol. 285:325–338.

    PubMed  CAS  Google Scholar 

  • Cooper, N. G. F., and Steindler, D. A., (1986a), Lectins demarcate the barrel subfield in the somatosensory cortex of the early postnatal mouse, J. Comp. Neurol. 249:157–169.

    PubMed  CAS  Google Scholar 

  • Cooper, N. G. F., and Steindler, D. A., (1986b), Monoclonal antibody to glial fibrillary acidic protein reveals a parcellation of individual barrels in the early postnatal mouse somatsensory cortex, Brain Res. 380:341–348.

    PubMed  CAS  Google Scholar 

  • Crandall, J. E., and Caviness, V. S., jr., 1984, Thalamocortical connections in newborn mice, J. Comp. Neurol. 228:542–556.

    PubMed  CAS  Google Scholar 

  • Crandall, J. E., Whitcomb, J. M., and Caviness, V. S., Jr., 1985, Development of the spinal-medullary projection from the mouse barrel field, J. Comp. Neurol. 239:205–215.

    PubMed  CAS  Google Scholar 

  • Crandall, J. E., Misson, J.-P., and Butler, D., 1990, The development of radial glia and radial dendrites during barrel formation in mouse somatosensory cortex, Dev. Brain Res. 55:87–94.

    CAS  Google Scholar 

  • Crissman, R. S., Warden, R. J., Sicilino, D. A., Klein, B. G., Renehan, W. E., Jacquin, M. F., and Rhoades, R. W., 1991, Numbers of axons innervating mystacial vibrissa follicles in newborn and adult rats, Somatosens. Mot. Res. 8:103–109.

    PubMed  CAS  Google Scholar 

  • Crossin, K. L., Hoffman, S., Seong-Seng, T., and Edelman, G. M., 1989, Cytotactin and its proteogly-can ligand mark structural and functional boundaries in somatosensory cortex of the early postnatal mouse, Dev. Biol. 136:381–392.

    PubMed  CAS  Google Scholar 

  • D’Amato, R. J., Blue, M. E., Largent, B. L., Lynch, I. R., Ledbetter, D. J., Molliver, M. E., and Snyder, S. H., 1987, Ontogeny of the serotonergic projection to rat neocortex: Transient expression of a dense innervation to primary sensory areas, Proc. Natl. Acad. Sci. USA. 84:4322–4326.

    PubMed  Google Scholar 

  • Davies, A. M., and Lumsden, A. G. S., 1986, Fasciculation in the early mouse trigeminal nerve is not ordered in relation to the emerging pattern of whisker follicles, J. Comp. Neurol. 253:13–24.

    PubMed  CAS  Google Scholar 

  • Davies, J. A., Cook, G. M. W., Stern, C. D., and Keynes, R. J., 1990, Isolation from chick somites of a glycoprotein fraction that causes the collapse of dorsal root growth cones, Neuron. 4:11–20.

    PubMed  CAS  Google Scholar 

  • Dawson, D. R., and Killackey, H. P., 1985, Distinguishing topography and somatotopy in the thalamocortical projections of the developing rat, Dev. Brain Res. 17:309–313.

    Google Scholar 

  • Dawson, D. R., and Killackey, H. P., 1987, The organization and mutability of the forepaw and hindpaw representations in the somatosensory cortex of the neonatal rat, J. Comp. Neurol. 256:246–256.

    PubMed  CAS  Google Scholar 

  • Dehay, C. J., Kennedy, J., and Bullier, J., 1988, Characterization of transient cortical projections from auditory, somatosensory, and motor cortices to visual areas 17, 18, and 19 in the kitten, J. Comp. Neurol. 272:68–89.

    PubMed  CAS  Google Scholar 

  • De Vries, I., 1911, De Cellulaire Bouw der Croate Hersenschors van de Muis en de Veranderungen daarin na Doornijding van het Corpus Callosum, De Waal, Groningen.

    Google Scholar 

  • De Vries, L, 1912, Über die Zytoarchitektonik der Grosshirnrinde der Maus und über die Beziehungen der einzelnen Zellschichten zum Corpus Callosum auf Grund von experimentellen Läsionen, Folia Neuro-biol. 6:288–322.

    Google Scholar 

  • Diamond, M. E., Armstrong-James, M., Budway, M. J., and Ebner, F. F., (1992a), Somatic sensory responses in the rostral sector of the posterior group, POm, and in the ventral posterior medial nucleus, VPM, of the rat thalamus: Dependence on the barrel field cortex, J. Comp. Neurol. 319:66–84.

    PubMed  CAS  Google Scholar 

  • Diamond, M. E., Armstrong-James, M., and Ebner, F. F., (1992b), Somatic sensory responses in the rostral sector of the posterior group, POm, and in the ventral posterior medial nucleus, VPM, of the rat thalamus, J. Comp. Neurol. 318:462–476.

    PubMed  CAS  Google Scholar 

  • Dietrich, W. D., Durham, D., Lowry, O. H., and Woolsey, T. A., 1981, Quantitative histochemical effects of whisker damage on single identified cortical barrels in the adult mouse, J. Neurosci. 1:929–935.

    PubMed  CAS  Google Scholar 

  • Dietrich, W. D., Durham, D., Lowry, O. H., and Woolsey, T. A., 1982, Increased sensory stimulation leads to changes in energy-related enzymes in the brain, J. Neurosci. 2:1608–1613.

    PubMed  CAS  Google Scholar 

  • Donaldson, L., Hand, P. J., and Morrison, A. R., 1975, Corticothalamic relationships in the rat, Exp. Neurol. 47:448–458.

    PubMed  CAS  Google Scholar 

  • Donoghue, J. P., and Ebner, F. F., 1981, The organization of thalamic projections to the parietal cortex of the Virginia opossum, J. Comp. Neurol. 198:365–388.

    PubMed  CAS  Google Scholar 

  • Donoghue, J. P., Kerman, K. L., and Ebner, F. F., 1979, Evidence for two organizational plans within the somatic sensory-motor cortex of the rat, J. Comp. Neurol. 183:647–664.

    PubMed  CAS  Google Scholar 

  • Dörfl, J., 1985, The innervation of the mystacial region of the white mouse, J. Anat. 142:173–184.

    PubMed  Google Scholar 

  • Dräger, U. C, and Hubel, D. H., 1976, Topography of visual and somatosensory projections to the mouse superior colliculus, J. Neurophysiol. 39:91–101.

    PubMed  Google Scholar 

  • Droogleever Fortuyn, A. B., 1911, De Cytoarchitectonie der Groote Hersenschors van eenige Knaagdieren, Scheltema en Holkema, Amsterdam.

    Google Scholar 

  • Droogleever Fortuyn, A. B., 1914, Cortical cell-lamination of the hemispheres of some rodents, Arch. Neurol. Psychiatry (Mott’s). 5:221–354.

    Google Scholar 

  • Dunn-Meynell, A. A., Benowitz, L. I., and Levin, B. E., 1992, Vibrissectomy, induced changes in GAP-43 immunoreactivity in the adult rat barrel cortex, J. Comp. Neurol. 315:160–170.

    PubMed  CAS  Google Scholar 

  • Durham, D., and Woolsey, T. A., 1977, Barrels and columnar cortical organization: Evidence from 2-deoxyglucose, 2-DG, experiments, Brain Res. 137:169–174.

    PubMed  CAS  Google Scholar 

  • Durham, D., and Woolsey, T. A., 1984, Effects of neonatal whisker lesions on mouse central trigeminal pathways, J. Comp. Neurol. 223:424–447.

    PubMed  CAS  Google Scholar 

  • Durham, D., Woolsey, T. A., and Kruger, L., 1981, Cellular localization of 2-(3H) deoxy-glucose from paraffin-embedded brains, J. Neurosci. 1:519–526.

    PubMed  CAS  Google Scholar 

  • Dykes, R. W., 1975, Afferent fibers from mystacial vibrissae of cats and seals, J. Neurophysiol. 38:650–662.

    PubMed  CAS  Google Scholar 

  • Dykes, R. W., 1983, Parallel processing of somatosensory information: A theory, Brain Res. Rev. 6:47–115.

    Google Scholar 

  • Dykes, R. W, Dudar, J. D., Tanji, D. G., and Publicover, N. G., 1977, Somatotopic projections of the mystacial vibrissae upon the cerebral cortex of cats, J. Neurophysiol. 40:997–1014.

    PubMed  CAS  Google Scholar 

  • Dykes, R. W., Rasmusson, D. D., and Hoeltzell, P., 1980, Organization of the primary somatosensory cortex in the cat, J. Neurophysiol. 43:1527–1546.

    PubMed  CAS  Google Scholar 

  • Dykes, R. W., Herron, P., and Lin, C.-S., 1986, Ventroposterior thalamic regions projecting to cytoarchitectonie areas 3a and 3b in the cat, J. Neurophysiol. 56:1521–1541.

    PubMed  CAS  Google Scholar 

  • Ebner, F. F., and Armstrong-James, M. A., 1990, Intracortical processes regulating the integration of sensory information, Prog. Brain Res. 86:129–141.

    PubMed  CAS  Google Scholar 

  • Erzurumlu, R. S., and Ebner, F. F., 1988, Maintenance of discrete somatosensory maps in subcortical relay nuclei is dependent on an intact sensory cortex, Dev. Brain Res. 44:302–308.

    CAS  Google Scholar 

  • Erzurumlu, R. S., and Jhaveri, S., 1990, Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex, Dev. Brain Res. 56:229–234.

    CAS  Google Scholar 

  • Erzurumlu, R. S., and Jhaveri, S., 1992, Trigeminal ganglion cell processes are spatially ordered prior to the differentiation of the vibrissa pad, J. Neurosci. 12:3946–3955.

    PubMed  CAS  Google Scholar 

  • Erzurumlu, R. S., and Killackey, H.P., 1980, Diencephalic projections of the subnucleus interpolaris of the brainstem trigeminal complex in the rat, Neuroscience. 5:1891–1901.

    PubMed  CAS  Google Scholar 

  • Erzurumlu, R. S., and Killackey, H. P., 1982, Order in the developing rat trigeminal nerve, Dev. Brain Res. 3:305–310.

    Google Scholar 

  • Erzurumlu, R. S., and Killackey, R. P., 1983, Development of order in the rat trigeminal system, J. Comp. Neurol. 213:365–380.

    PubMed  CAS  Google Scholar 

  • Erzurumlu, R. S., Bates, C. A., and Killackey, H. P., 1980, Differential organization of thalamic projection cells in the brain stem trigeminal complex of the rat, Brain Res. 198:427–433.

    PubMed  CAS  Google Scholar 

  • Erzurumlu, R. S. Jhaveri, S., and Benowitz, L. L, 1990, Transient patterns of GAP-43 expression during the formation of barrels in the rat somatosensory cortex, J. Comp. Neurol. 292:443–456.

    PubMed  CAS  Google Scholar 

  • Escobar, M. I., Pimienta, H., Caviness, V. S., Jr., Jacobson, M., Crandall, J. E., and Kosik, K. S., 1986, Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems, Neuro-science. 17:975–989.

    CAS  Google Scholar 

  • Fabri, M., and Burton, H., 1991, Ipsilateral cortical connections of primary somatic sensory cortex in rats, J. Comp. Neurol. 311:405–424.

    PubMed  CAS  Google Scholar 

  • Favorov, O. V., and Diamond, M. E., 1990, Demonstration of discrete place-defined columns—segregates-in the cat SI, J. Comp. Neurol. 298:97–112.

    PubMed  CAS  Google Scholar 

  • Favorov, O. V., Diamond, M. E., and Whitsel, B. L., 1987, Evidence for a mosaic representation of the body surface in area 3b of the somatic cortex of cat, Proc. Natl. Acad. Sci. USA. 84:6606–6610.

    PubMed  CAS  Google Scholar 

  • Felleman, D. J., Wall, J. T, Cusick, C. G., and Kaas, J. H., 1983, The representation of the body surface in S-I of cats, J. Neurosci. 3:1648–1669.

    PubMed  CAS  Google Scholar 

  • Finlay, B. L., and Slattery, M., 1983, Local differences in the amount of early cell death in neocortex predict adult local specializations, Science. 219:1349–1351.

    PubMed  CAS  Google Scholar 

  • Fox, K., 1992, A critical period for experience-dependent synaptic plasticity in rat barrel cortex, J. Neurosci. 12:1826–1838.

    PubMed  CAS  Google Scholar 

  • Friede, R. L., 1966, Topographic Brain Chemistry, Academic Press, New York, pp. 48–53.

    Google Scholar 

  • Frost, D. O., and Caviness, V. S., Jr., 1980, Radial organization of thalamic projections to the neocortex in the mouse, J. Cornp. Neural. 194:369–393.

    CAS  Google Scholar 

  • Fujimiya, M., Kimura, H., and Maeda, T., 1986, Postnatal development of serotonin nerve fibers in the somatsensory cortex of mice studied by immunohistochemistry, J. Cornp. Nenrol. 246:191–201.

    CAS  Google Scholar 

  • Fukushima, T., and Kerr, F. W. L., 1979, Organization of trigeminothalamic tracts and other thalamic afferent systems of the brainstem in the rat: Presence of gelatinosa neurons with thalamic connections, J. Cornp. Neural. 183:169–184.

    CAS  Google Scholar 

  • Fundin, B. T., Rice, F.L., Pf aller, K., and Arvidsson, J., 1994, The innervation of the mystacial pad in the adult rat studied by anterograde transport of HRP-conjugates, Exp. Brain Res. in press.

    Google Scholar 

  • Ghosh, A., and Shatz, C. J., 1992, Pathfinding and target selection by developing geniculocortical axons, J. Neurosci. 12:39–51.

    PubMed  CAS  Google Scholar 

  • Gibson, J. M., and Welker, W. I., 1983a, Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. I. Receptive field properties and threshold distributions, Somatosens. Res. 1:51–67.

    PubMed  CAS  Google Scholar 

  • Gibson, J. M., and Welker, W. I., (1983b), Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters, Somatosens. Res. 1:95–117.

    PubMed  CAS  Google Scholar 

  • Gonzalez, M. F., and Sharp, F. R., 1985, Vibrissae tactile stimulation: [1.4C]2-deoxyglucose uptake in rat brainstem, thalamus, and cortex, J. Camp. Neural. 231:457–472.

    CAS  Google Scholar 

  • Gottschaldt, K.-M., Iggo, A., and Young, D.W., 1973, Functional characteristics of mechanoreceptors in sinus hair follicles of the cat, J. Physiol. (London). 235:287–315.

    CAS  Google Scholar 

  • Gould, H. J., III, 1986, Body surface maps in the somatosensory cortex of rabbit, J. Camp. Neural. 243:207–233.

    Google Scholar 

  • Gould, H. J., III, and Kaas, J. H., 1981, The distribution of commissural terminations in somatosensory areas I and II of the grey squirrel, J. Camp. Neural. 196:489–504.

    Google Scholar 

  • Gould, H. J., III, Whitworth, R. H., Jr., and LeDoux, M. S., 1989, Thalamic and extrathalamic connections of the dysgranular unresponsive zone in the grey squirrel (Seiurus carolinensis), J. Camp. Neural. 287:38–63.

    Google Scholar 

  • Greenough, W. T., and Chang, F.-L. F., 1988, Dendritic pattern formation involves both oriented regression and oriented growth in the barrels of mouse somatosensory cortex, Dev. Brain Res. 43:148–152.

    Google Scholar 

  • Greiner, J. V., and Weidman, T A., 1981, Histogenesis of ferret retina, Exp. Eye Res. 33:315–332.

    PubMed  CAS  Google Scholar 

  • Halata, Z., and Munger, B. L., 1980, Sensory nerve endings in the rhesus monkey sinus hair, J. Camp. Neural. 192:645–663.

    CAS  Google Scholar 

  • Hand, P. J., 1981, The 2-deoxyglucose method, in: Neuroanatomical Tract-Tracing Methods (L. Heimer and M. J. Robards, eds.), Plenum Press, New York, pp. 511–538.

    Google Scholar 

  • Harris, R. M., and Woolsey, T. A., 1981, Dendritic plasticity in mouse barrel cortex following postnatal vibrissa follicle damage, J. Camp. Neural. 196:357–376.

    CAS  Google Scholar 

  • Harris, R. M., and Woolsey, T. A., 1983, Computer-assisted analyses of barrel neuron axons and their putative synaptic contacts, J. Camp. Neural. 220:63–79.

    CAS  Google Scholar 

  • Hassler, R., and Muhs-Clement, K., 1964, Architektonischer autbaii des sensomotorischen und parietalen Cortex der Katze, J. Hirnforsch. 6:377–420.

    Google Scholar 

  • Hayashi, H., 1980, Distribution of vibrissa afferent fiber collaterals in the trigeminal nuclei as revealed by intraaxonal injection of horseradish peroxidase, Brain Res. 183:442–446.

    PubMed  CAS  Google Scholar 

  • Hayashi, H., 1982, Differential terminal distribution of single large cutaneous afferent fibers in the spinal trigeminal nucleus and in the cervical spinal dorsal horn, Brain Res. 244:173–177.

    PubMed  CAS  Google Scholar 

  • Hayashi, H., (1985a), Morphology of central terminations of intraaxonally stained large, myelinated primary afferent fibers from facial skin in the rat, J. Camp. Neural. 237:195–215.

    CAS  Google Scholar 

  • Hayashi, H., (1985b), Morphology of terminations of small and large myelinated trigeminal primary afferent fibers in the cat, J. Camp. Neural. 240:71–89.

    CAS  Google Scholar 

  • Henderson, T. A., Woolsey, T. A., and Jacquin, M. F., 1992, Infraorbital nerve blockade from birth does not disrupt central trigeminal pattern formation in the rat, Dev. Brain Res. 66:146–152.

    CAS  Google Scholar 

  • Hicks, S. P., and D’Amato, C. J., 1968, Migrations to the isocortex in the rat, Anat. Rec. 160:619–634.

    PubMed  CAS  Google Scholar 

  • Hollis, D. E., and Lyne, A. G., 1974, Innervation of vibrissa follicles in the marsupial, Trichosurus vulpecula, Aust. J. Zool. 22:263–276.

    Google Scholar 

  • Hoogland, P. V., Welker, F., and Van der Loos, H., 1987, Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP, Exp. Brain Res. 68:73–87.

    PubMed  CAS  Google Scholar 

  • Hoogland, P. V., Welker, F., Van der Loos, H., and Wouterlood, F. G., 1988, The organization and structure of the thalamic afferents from the barrel cortex in the mouse; a PHA-L study, in: Cellular Thalamic Mechanisms (M. Bentivoglio and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 151–162.

    Google Scholar 

  • Innocenti, G. M., 1982, Development of interhemispheric connections, Neurosci. Res. Program Bull. 20:532–540.

    PubMed  CAS  Google Scholar 

  • Isseroff, A., Schwartz, M. L., Decker, J. J., and Goldman-Rakic, P. S., 1984, Columnar organization of callosal and associational projections from rat frontal cortex, Brain Res. 293:213–223.

    PubMed  CAS  Google Scholar 

  • Ito, M., 1985, Processing of vibrissa sensory information within the rat neocortex, J. Neurophysiol. 54:479–490.

    PubMed  CAS  Google Scholar 

  • Ito, M., 1992, Simultaneous visualization of cortical barrels and horseradish peroxidase-injected layer 5b vibrissa neurones in the rat, J. Physiol. (London). 454:247–265.

    CAS  Google Scholar 

  • Ito, M., and Seo, M. L., 1983, Avoidance of neonatal cortical lesions by developing somatosensory barrels, Nature. 310:600–602.

    Google Scholar 

  • Ivy, G. O., and Killackey, H. P., 1981, The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex, J. Comp. Neurol. 195:367–389.

    PubMed  CAS  Google Scholar 

  • Ivy, G. O., and Killackey, H. P., 1982a, Ephemeral cellular segmentation in the thalamus of the neonatal rat, Dev. Brain Res. 2:1–17.

    Google Scholar 

  • Ivy, G. O., and Killackey, H. P., (1982b), Ontogenetic changes in the projections of neocortical neurons, J. Neurosci. 2:735–743.

    PubMed  CAS  Google Scholar 

  • Ivy, G. O., Akers, R. M., and Killackey, H. P., 1979, Differential distribution of callosal projection neurons in the neonatal and adult rat, Brain Res. 173:532–537.

    PubMed  CAS  Google Scholar 

  • Iwata, K., Kenshalo, D. R., Jr., Dubner, R., and Nahin, R. L., 1992, Diencephalic projections from the superficial and deep laminae of the medullary dorsal horn in the rat, J. Comp. Neurol. 321:404–420.

    PubMed  CAS  Google Scholar 

  • Jackson, C. A., and Hickey, T. L., 1985, Use of ferrets in studies of the visual system, Lab. Anim. Sci. 35:211–215.

    PubMed  CAS  Google Scholar 

  • Jackson, C. A., Peduzzi, J. D., and Hickey, T. L., 1989, Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons, J. Neurosci. 9:1242–1253.

    PubMed  CAS  Google Scholar 

  • Jacquin, M. F., and Rhoades, R. W., 1983, Central projections of the normal and “regenerate” infraorbital nerve in adult rats subjected to neonatal infraorbital lesions: A transganglionic horseradish peroxidase study, Brain Res. 269:137–144.

    PubMed  CAS  Google Scholar 

  • Jacquin, M. F., and Rhoades, R. W., 1985, Effects of neonatal infraorbital lesions upon central trigeminal primary afferent projections in rat and hamster, J. Comp. Neurol. 235:129–143.

    PubMed  CAS  Google Scholar 

  • Jacquin, M. F., and Rhoades, R. W., 1987, Development and plasticity in hamster trigeminal primary afferent projections, Dev. Brain Res. 31:161–175.

    Google Scholar 

  • Jacquin, M. F., Mooney, R. D., and Rhoades, R. W., 1984, Axon arbors of functionally distinct whisker afferents are similar in medullary dorsal horn, Brain Res. 298:175–180.

    PubMed  CAS  Google Scholar 

  • Jacquin, M. F., Mooney, R. D., and Rhoades, R. W., (1986a), Morphology, response properties, and collateral projections of trigeminothalamic neurons in brainstem subnucleus interpolaris of rat, Exp. Brain Res. 61:457–468.

    PubMed  CAS  Google Scholar 

  • Jacquin, M. F., Renehan, W. F., Mooney, R. D., and Rhoades, R. W., (1986b), Structure-function relationships in rat medullary and cervical dorsal horns. I. Trigeminal primary afferents, J. Neurophysiol. 55:1153–1186.

    PubMed  CAS  Google Scholar 

  • Jacquin, M. F., Woerner, D., Szczepanik, A. M., Rieker, V., Mooney, R. D., and Rhoades, R. W., (1986c), Structure-function relationships in rat brainstem subnucleus interpolaris. I. Vibrissa primary afferents, J. Comp. Neurol. 243:266–279.

    PubMed  CAS  Google Scholar 

  • Jacquin, M. F., Golden, J., and Panneton, W. M., (1988a), Structure and function of barrel ‘precursor’ cells in trigeminal nucleus principalis, Dev. Brain Res. 43:309–314.

    Google Scholar 

  • Jacquin, M. F., Stennett, R. A., Renehan, W. E., and Rhoades, R. W., (1988b), Structure-function relationships in the rat brainstem subnucleus interpolaris: II. Low and high threshold trigeminal primary afferents, J. Comp. Neurol. 267:107–130.

    PubMed  CAS  Google Scholar 

  • Jacquin, M. F., Barcia, M., and Rhoades, R. W., 1989, Structure-function relationships in rat brainstem subnucleus interpolaris: IV. Projection neurons, J. Comp. Neurol. 282:45–62.

    PubMed  CAS  Google Scholar 

  • Jacquin, M. F., McCasland, J. S., Henderson, T A., Rhoades, R. W., and Woolsey, T. A., (1993a), 2-DG uptake patterns related to single vibrissae during exploratory behaviors in hamster trigeminal system, J. Comp. Neurol. 332:38–58.

    PubMed  CAS  Google Scholar 

  • Jacquin, M. F., Renehan, W. E., Rhoades, R. W., and Panneton, W. M., (1993b), Morphology and topography of identified primary afferents in rat trigeminal subnuclei principalis and oralis, J. Neurophysiol. 70:1911–1936.

    PubMed  CAS  Google Scholar 

  • Jeanmonod, D., Rice, F. L., and Van der Loos, H., 1977, Mouse somatsensory cortex: Development of the alterations in the barrel field which are caused by injury of the vibrissal follicles, Neurosci. Lett. 6:151–156.

    PubMed  CAS  Google Scholar 

  • Jeanmonod, D., Rice, F. L., and Van der Loos, H., 1981, Mouse somatosensory cortex: Alterations in the barrel field following receptor injury at different early postnatal ages, Neuroscience. 6:1503–1535.

    PubMed  CAS  Google Scholar 

  • Jensen, K. F., and Killackey, H. P., (1987a), Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents, J. Neurosci. 7:3529–3543.

    PubMed  CAS  Google Scholar 

  • Jensen, K. F., and Killackey, H. P., (1987b), Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. II. The altered morphology of thalamocortical afferents following neonatal infraorbital nerve cut, J. Neurosci. 7:3544–3553.

    PubMed  CAS  Google Scholar 

  • Jhaveri, S., Erzurumlu, R. S., and Crossin, K., 1991, Barrel construction in rodent neocortex: Role of thalamic afferents versus extracellular matrix molecules, Proc. Natl. Acad. Sci. USA. 88:4489–4493.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H., 1983, What, if anything, is SI? Organization of first somatosensory area of cortex, Physiol. Rev. 63:206–230.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H., Nelson, R. J., Sur, M., and Merzenich, M., 1979, Multiple representations of the body within the primary somatosensory cortex of primates. Science. 204:521–523.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H., Sur, M., Nelson, R. J., and Merzenich, M. M., 1981, Multiple representations of the body in the postcentral somatosensory cortex of primates, in: Cortical Sensory Organization, Multiple Somatic Areas, Vol. 1 (C. N. Woolsey, ed.), Humana, Clifton, NJ, pp. 29–45.

    Google Scholar 

  • Keller, A., White, E. L., and Cipolloni, P. B., 1985, The identification of thalamocortical axon terminals in barrels of mouse SmI cortex using immunohistochemistry of anterograde transported lectin (Phaseolus vulgara-leucoagglutinin), Brain Res. 343:159–165.

    PubMed  CAS  Google Scholar 

  • Kennedy, H., Bullier, J., and Dehay, C, 1989, Transient projection from the superior temporal sulcus to area 17 in the newborn macaque monkey, Proc. Natl. Acad. Sci. USA. 86:8093–8097.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., 1973, Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat, Brain Res. 51:326–331.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., 1987, Three phases in the vulnerability of the somatosensory system to peripheral nerve damage, in: Effects of Injury on Trigeminal and Spinal Somatosensory Systems (L. Pubols and B. Sessle, eds.), Liss, New York, pp. 363–370.

    Google Scholar 

  • Killackey, H. P., and Belford, G. R., 1979, The formation of afferent patterns in the somatosensory cortex of the neonatal rat, J. Cornp. Neurol. 183:285–304.

    CAS  Google Scholar 

  • Killackey, H. P., and Belford, G. R., 1980, Central correlates of peripheral pattern alterations in the trigeminal system of the rat, Brain Res. 183:205–210.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., and Fleming, K., 1985, The role of the principal sensory nucleus in central trigeminal pattern formation, Dev. Brain Res. 22:141–145.

    Google Scholar 

  • Killackey, H. P., and Leshin, S., 1975, The organization of specific thalamocortical projections to the posteromedial barrel subfield of the rat somatic sensory cortex, Brain Res. 86:469–472.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., and Shinder, A., 1981, Central correlates of peripheral pattern alterations in the tngeminal system of the rat. II. The effect of nerve section, Dev. Brain Res. 1:121–26.

    Google Scholar 

  • Killackey, H. P., Belford, G., Ryugo, R., and Ryugo, R. K., 1976, Anomalous organization of thalamocortical projections consequent to vibrissae removal in the newborn rat and mouse, Brain Res. 104:309–315.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., Ivy, G. O., and Cunningham, T. J., 1978, Anomalous organization of SMI so-matotopic map consequent to vibrissal removal in the newborn rat, Brain Res. 155:136–140.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., Koralek, K.-A., Chiaia, N. L., and Rhoades, R. W., 1989, Laminar and areal differences in the origin of the subcortical projection neurons of the rat somatosensory cortex, J. Comp. Neurol. 282:428–445.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., Jacquin, M. F., and Rhoades, R. W., 1990, Development of somatosensory system structures, in: Development of Sensory Systems in Mammals (J. R. Coleman, ed.), Wiley, New York, pp. 403–429.

    Google Scholar 

  • Klein, B. G., Renehan, W. E., Jacquin, M. F., and Rhoades, R. W., 1988, Anatomical consequences of neonatal infraorbital nerve transection upon the trigeminal ganglion and vibrissal follicle nerves in the adult rat, J. Comp. Neurol, 268:469–488.

    PubMed  CAS  Google Scholar 

  • Koralek, K.-A., and Killackey, H. P., 1990, Callosal projections in rat somatosensory cortex are altered by early removal of afferent input, Proc. Natl, Acad, Sci USA. 87:1396–1400.

    CAS  Google Scholar 

  • Koralek, K.-A., Jensen, K. F., and Killackey, H. P., 1988, Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex, Brain Res. 463:346–351.

    PubMed  CAS  Google Scholar 

  • Koralek, K.-A., Olavarria, J., and Killackey, H. P., 1990, Areal and laminar organization or cor-ticocortical projections in the rat somatsensory cortex, J. Comp. Neurol. 299:133–150.

    PubMed  CAS  Google Scholar 

  • Kossut, M., 1992, Effects of sensory deprivation upon a single cortical vibrissal column: A 2DG study, Exp. Brain Res. 90:639–642.

    PubMed  CAS  Google Scholar 

  • Kossut, M., Hand, P., Greenberg, J., and Hand, C. L., 1988, Single vibrissal cortical column in SI cortex of rat and its alterations in neonatal and adult vibrissa-deafferented animals: A quantitative 2DG study, J. Neurophysiol. 60:829–852.

    PubMed  CAS  Google Scholar 

  • Krieg, W. J., 1946, Connections of the cerebral cortex. I. The albino rat. B. Structure of the cortical areas, J. Comp. Neurol. 84:277–324.

    PubMed  CAS  Google Scholar 

  • Kristt, D. A., 1978, Neuronal differentiation in somatosensory cortex of the rat. I. Relationship to synaptogenesis in the first postnatal week, Brain Res. 150:467–486.

    PubMed  CAS  Google Scholar 

  • Kristt, D. A., and Molliver, M. E., 1976, Synapses in newborn rat cerebral cortex: A quantitative ultrastructural study, Brain Res. 108:180–186.

    PubMed  CAS  Google Scholar 

  • Krubitzer, L. A., and Calford, M. B., 1992, Five topographically organized fields in the somatosensory cortex of the flying fox: Microelectrode maps, myeloarchitecture, and cortical modules, J. Comp. Neurol. 317:1–30.

    PubMed  CAS  Google Scholar 

  • Krubitzer, L. A., and Kaas, J. H., 1987, Thalamic connections of three representations of the body surface in somatosensory cortex of gray squirrels, J. Comp. Neurol. 265:549–580.

    PubMed  CAS  Google Scholar 

  • Krubitzer, L. A., and Kaas, J. H., 1990, The organization and connections of somatosensory cortex in marmosets, J. Neurosci. 10:952–974.

    PubMed  CAS  Google Scholar 

  • Krubitzer, L. A., Sesma, M. A., and Kaas, J. H., 1986, Microelectrode maps, myeloarchitecture and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels, J. Comp. Neurol. 250:403–430.

    PubMed  CAS  Google Scholar 

  • Krubitzer, L. A., Manger, P. R., and Pettigrew, D. J., 1991, Organization and connections of somatosensory cortex in monotremes, Soc. Neurosci. Abstr. 17:838.

    Google Scholar 

  • Krubitzer, L. A., Calford, M. B., and Schmid, L. M., 1993, Connections of somatosensory cortex in megachiropteran bats: The evolution of cortical fields in mammals, J. Comp. Neurol. 327:473–506.

    PubMed  CAS  Google Scholar 

  • Labedsky, L., and Eierse, W., 1968, Die Entwicklung der Succinodehydrogenaseaktivität im Gehirn der Maus während de Postnatalzeit, Histochemie. 12:130–151.

    PubMed  CAS  Google Scholar 

  • LaMantia, A.-S., and Rakic, P., 1990, Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey, J. Neurosci. 10:2156–2175.

    PubMed  CAS  Google Scholar 

  • Land, P. W., and Simons, D. J., 1985, Cytochrome oxidase staining in the rat SmI barrel cortex, J. Comp. Neurol. 238:225–235.

    PubMed  CAS  Google Scholar 

  • Leclerc, S. S., Rice, F. L., Dykes, R. W., Pourmoghadam, K., and Gomez, C. M., 1993, Electro-physiological examination of the representation of the face in the suprasylvian gyrus of the ferret: A correlative study with cytoarchitecture, Somatosens. Mot. Res. 10:133–159.

    PubMed  CAS  Google Scholar 

  • Leclerc, S. S., Avendano, C, Dykes, R. W., Waters, R. S., and Salimi, I., 1994, Reevaluation of area 3B in the cat based upon architectonic and electrophysiological studies: Regional variability with functional and anatomical consistencies, J. Comp. Neurol. 341:357–374.

    PubMed  CAS  Google Scholar 

  • Ledoux, J. E., Buggiero, D. A., Forest, R., Stornetta, R., and Reis, D. J., 1987, Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat, J. Comp. Neurol. 264:123–146.

    PubMed  CAS  Google Scholar 

  • Lee, K. J., and Woolsey, T. A., 1975, A proportional relationship between peripheral innervation density and cortical neuron number in the somatosensory system of the mouse, Brain Res. 99:349–353.

    PubMed  CAS  Google Scholar 

  • Lende, R. A., 1963, Motor representation in the cerebral cortex of the opossum (Didelhpis virginiana), J. Comp. Neurol. 121:405–415.

    PubMed  CAS  Google Scholar 

  • Leuba, G., Heumann, D., and Rabinowicz, T, 1977, Postnatal development of the mouse cerebral neocortex. I. Quantitative cytoarchitecture of some motor and sensory areas, J. Hirnforsch. 18:461–481.

    PubMed  CAS  Google Scholar 

  • Leuba, G., Heumann, D., and Rabinowicz, T, 1978, Postnatal development of the mouse cerebral cortex. III. Some dynamical aspects, J. Hirnforsch. 19:301–312.

    PubMed  CAS  Google Scholar 

  • Levin, B. E., and Dunn-Meynell, A., 1991, Adult rat barrel cortex plasticity occurs at 1 week but not at 1 day after vibrissectomy as demonstrated by the 2-deoxyglucose method, Exp. Neurol. 113:237–248.

    PubMed  CAS  Google Scholar 

  • Lichtenstein, S. H., Carvell, G. E., and Simons, D. J., 1990, Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions, Somatosens. Mot. Res. 7:47–65.

    PubMed  CAS  Google Scholar 

  • Linden, D. C, Guillery, R. W., and Cucchiaro, J., 1981, The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development, J. Comp. Neurol. 203:189–211.

    PubMed  CAS  Google Scholar 

  • Lorente de Nó, R., 1922, La corteza cerebral del raton, Trab. Lab. Invest. Biol, (Madrid). 20:41–78.

    Google Scholar 

  • Lu, S.-M., and Lin, R. C.-S., 1993, Thalamic afferents of the rat barrel cortex: A light-and electron-microscope study using Phaseolus vulgans leucoagglutinin as an anterograde tracer, Somatosens. Mot. Res. 10:1–16.

    PubMed  CAS  Google Scholar 

  • Luskin, M. B., and Shatz, C. J., 1985, Neurogenesis of the cat’s primary visual cortex, J. Comp. Neurol. 242:611–631.

    PubMed  CAS  Google Scholar 

  • Ma, P. M., 1991, The barrelettes—Architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. I. Normal structural organization, J. Comp. Neurol. 309:161–199.

    PubMed  CAS  Google Scholar 

  • Ma, P. M., 1993, Barrelettes-Architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. II. Normal postnatal development, J. Comp. Neurol. 327:376–397.

    PubMed  CAS  Google Scholar 

  • Ma, P. M., and Woolsey, T. A., 1984, Cytoarchitectonic correlates of the vibrissae in the medullary trigeminal complex of the mouse, Brain Res. 306:374–379.

    PubMed  CAS  Google Scholar 

  • McCandlish, C, Waters, R. S., and Cooper, N. G. F., 1989, Early development of the representation of the body surface in SI cortex barrel field in neonatal rats as demonstrated with peanut agglutinin binding: Evidence for differential development within the rattunculus, Exp. Brain Res. 77:425–431.

    PubMed  CAS  Google Scholar 

  • McCasland, J. S., and Woolsey, T. A., 1988, High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex, J. Comp. Neurol. 278:555–569.

    PubMed  CAS  Google Scholar 

  • Marotte, L. R., Rice, F. L., and Waite, P. M. E., 1992, The morphology and innervation of facial vibrissae in the tammar wallaby, Macropus eugenii, J. Anat. 180:401–417.

    Google Scholar 

  • McMullen, N. T., Snelser, C. B., and Rice, F. L., 1994, Expression of parvalbumen in the indistinct barrels of the rabbit SI cortex, Brain Res, in press.

    Google Scholar 

  • Melaragno, H. P., and Montagna, W., 1953, The tactile hair follicle of the mouse, Anat. Rec. 115:129–149.

    PubMed  CAS  Google Scholar 

  • Miller, B., Chou, L., and Finlay, B. L., 1993, The early development of thalamocortical and corticothalamic projections, J. Comp. Neurol. 335:16–41.

    PubMed  CAS  Google Scholar 

  • Molnár, Z., and Blakemore, C, 1990, Relationships of corticofugal and corticopetal projections in the prenatal establishment of projections from thalamic nuclei to specific cortical areas in the rat, Proc. Physiol. Soc. (London) 430:104P.

    Google Scholar 

  • Mosconi, T. M., and Rice, F. L., 1991, Sensory innervation of the mystacial pad für of the ferret, Neurosci. Lett. 121:199–202.

    PubMed  CAS  Google Scholar 

  • Mosconi, T. M., and Rice, F. L., 1993, Sequential differentiation of sensory innervation in the mystacial pad of the ferret, J. Comp. Neurol. 333:309–325.

    PubMed  CAS  Google Scholar 

  • Mosconi, T. M., Rice, F. L., and Song, M. R., 1993, Sensory innervation in the inner conical body of the vibrissal follicle-sinus complex of the rat, J. Comp. Neurol. 328:232–251.

    PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of cat’s somatic sensory cortex, J. Neurophysiol. 20:408–434.

    PubMed  CAS  Google Scholar 

  • Munger, B. L., and Rice, F. L., 1986, Successive waves of differentiation of cutaneous afferents in rat mystacial skin, J. Comp. Neurol. 252:404–414.

    PubMed  CAS  Google Scholar 

  • Myasnikov, A. A., Dykes, R. W., and Avendano, C, 1993, Cytoarchitecture and responsiveness of the medial ansäte region of the cat primary somatosensory cortex, J. Comp. Neurol. submitted for publication.

    Google Scholar 

  • Nomura, S., Itoh, K., Sugimoto, T., Yasui, Y., Kamiya, H., and Mizuno, N., 1986, Mystacial representation within the trigeminal sensory nuclei of the cat, J. Comp. Neurol. 253:121–33.

    PubMed  CAS  Google Scholar 

  • Norris, C. R., and Kalil, K., 1992, Development of callosal connections in the sensorimotor cortex of the hamster, J. Comp. Neurol. 326:121–132.

    PubMed  CAS  Google Scholar 

  • Nothias, F., Peschanski, M., and Besson, J.-M., 1988, Somatotopic reciprocal connections between the somatosensory cortex and the thalamic Po nucleus in the rat, Brain Res. 447:169–174.

    PubMed  CAS  Google Scholar 

  • Nussbaumer, J.-C, and Van der Loos, H., 1985, An electrophysiological and anatomical study of projections to the mouse cortical barrel field and its surroundings, J. Neurophysiol. 53:686–698.

    PubMed  CAS  Google Scholar 

  • Olavarria, J., Van Sluyters, R. C, and Killackey, H. P., 1984, Evidence for the complementary organization of callosal and thalamic connections within rat somatosensory cortex, Brain Res. 291:364–368.

    PubMed  CAS  Google Scholar 

  • O’Leary, D. D. M., and Stanfield, B. B., 1986, Transient pyramidal tract projection from the visual cortex in the hamster and its removal by selective collateral elimination, Dev. Brain Res. 27:87–99.

    Google Scholar 

  • O’Leary, D. D., Stanfield, B. B., and Cowan, W. M., 1981, Evidence that the early potential restriction of the cells of origin in the callosal projections is due to elimination of open collaterals rather than to death of neurons, Dev. Brain Res. 1:607–617.

    Google Scholar 

  • Pasternak, J. F., and Woolsey, T. A., 1975, The number, size and spatial distribution of neurons in lamina IV of the mouse SmI neocortex, J. Comp. Neurol. 160:291–306.

    PubMed  CAS  Google Scholar 

  • Patel-Vaidya, J., 1985, Ultrastructural organization of posterior and anterior barrels in the so-matosensory cortex of rat, J. Neurosci. Res. 14:357–371.

    PubMed  CAS  Google Scholar 

  • Peschanski, M., 1984, Trigeminal afferents to the diencephalon in the rat, Neuroscience. 12:465–487.

    PubMed  CAS  Google Scholar 

  • Peters, A., and Feldman, M., 1973, The cortical plate and the molecular layer of the later rat fetus, Z. Anat. Entwicklungsgesch. 141:3–37.

    PubMed  CAS  Google Scholar 

  • Pidoux, B., and Verley, R., 1979, Projections of the cortical somatic I barrel subfield from ipsilateral vibrissae in adult rodents, Electroencephalog. Clin. Neurophysiol. 46:715–726.

    CAS  Google Scholar 

  • Pidoux, B., Diebler, M. F., Savy, C, Farkas, E., and Verley, R., 1980, Cortical organization of the postero-medial barrel-subfield in mice and its reorganization after destruction of vibrissal follicles after birth, Neuropathol. Appl. Neurobiol. 6:93–107.

    PubMed  CAS  Google Scholar 

  • Powell, T. P. S., and Mountcastle, V. B., 1959, Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: A correlation of findings obtained in single unit analysis with cytoarchitecture, Bull. Johns Hopkins Hosp. 105:133–162.

    PubMed  CAS  Google Scholar 

  • Pubols, B. H., Jr., Donovick, P. J., and Pubols, L. M., 1973, Opossum trigeminal afferents associated with vibrissal and rhinal mechanoreceptors, Brain Behav. Evol. 7:360–381.

    PubMed  Google Scholar 

  • Pubols, B. H., Pubols, L. M., Dipette, D. J., and Sheely, J. C, 1976, Opossum somatic sensory cortex: A microelectrode mapping study, J. Cornp. Neurol. 165:229–246.

    Google Scholar 

  • Rakic, P., and Riley, K. P., 1983, Overproduction and elimination of retinal axons in fetal rhesus monkey, Science. 219:1441–1444.

    PubMed  CAS  Google Scholar 

  • Ramoa, A. S., Campbell, G., and Shatz, C. J., 1989, Retinal ganglion ß cells project transiently to the superior colliculus during development, Proc. Natl. Acad. Sci. USA. 86:2061–2065.

    PubMed  CAS  Google Scholar 

  • Rapisadra, C, Palmeri, A., Aicardi, S., and Sapienza, S., 1990, Multiple representations of the body and input-output relationships in the agranular and granular cortex of the chronic awake guinea pig, Somatosens. Mot. Res. 7:289–314.

    Google Scholar 

  • Renehan, W. E., and Munger, B. L., 1986, Degeneration and regeneration in the rat trigeminal system. I. Identification and characterization of the multiple afferent innervation of the mystacial vibrissae, J.Comp. Neurol, 249:129–145.

    Google Scholar 

  • Rhoades, R. W., Bennett-Clarke, C. A., Chiaia, N. L., White, F. A., MacDonald, G. J., Haring, J. H., and Jacquin, M. F., (1990a), Development of lesion induced reorganization of the cortical representation of the rat’s body surface as revealed by immunocytochemistry for serotonin, J. Comp. Neurol. 293:190–207.

    PubMed  CAS  Google Scholar 

  • Rhoades, R. W., Chiaia, N. L., and MacDonald, G. T., (1990b), Topographic organization of the peripheral projections of the trigeminal ganglion in fetal rat, Somatosens. Mot. Res. 7:67–84.

    PubMed  CAS  Google Scholar 

  • Rhoades, R. W., Killackey, H. P., Chiaia, N. L., and Jacquin, M. F., 1990c, Physiological development and plasticity of somatosensory neurons, in: Development of Sensory Systems in Mammals (J. R. Coleman, ed.), Wiley, New York, pp. 431–459.

    Google Scholar 

  • Rice, F. L., 1984, Neonatal facial nerve extirpations fail to produce alterations in the barrel field in the primary somatosensory cortex of mice, Brain Res. 322:393–395.

    PubMed  CAS  Google Scholar 

  • Rice, F. L., 1985a, An attempt to find vibrissa-related barrels in the primary somatosensory cortex of the cat, Neurosci, Lett, 53:169–172.

    CAS  Google Scholar 

  • Rice, F. L., (1985b), Gradual changes in the structure of the barrels during maturation of the primary somatosensory cortex in the rat, J. Comp. Neurol. 236:496–503.

    PubMed  CAS  Google Scholar 

  • Rice, F. L., and Munger, B. L., 1986, A comparative light microscopic analysis of the mystacial pad. II. The common für between the vibrissae, J. Comp. Neurol. 252:186–205.

    PubMed  CAS  Google Scholar 

  • Rice, F. L., and Van der Loos, H., 1977, Development of the barrels and barrel field in the somatosensory cortex of the mouse, J. Comp. Neurol. 171:545–560.

    PubMed  CAS  Google Scholar 

  • Rice, F. L., Gomez, C, Barstow, C, Burnet, A., and Sands, P., 1985, A comparative analysis of the development of the primary somatosensory cortex: Interspecies similarities during barrel and laminar development, J. Comp. Neurol. 236:477–495.

    PubMed  CAS  Google Scholar 

  • Rice, F. L., Mance, A., and Munger, B. L., (1986a), A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes, J. Comp. Neurol. 252:154–174.

    PubMed  CAS  Google Scholar 

  • Rice, F. L., Mosconi, T., and Munger, B. L., 1986b, Interspecies variations in vibrissal innervation: The whisking proprioceptors, Soc. Neurosci. Abstr. 12:336.

    Google Scholar 

  • Rice, F. L., Gomez, C. M., Leclerc, S. S., Dykes, R. W., Moon, J. S., and Pourmoghadam, K., 1993a, Cytoarchitecture of the ferret suprasylvian gyrus correlated with areas containing multiunit response elicited by stimulation of the face, Somatosens. Mot. Res. 10:161–88.

    PubMed  CAS  Google Scholar 

  • Rice, F. L., Kinnman, E., Aldskogius, H., Johansson, O., and Arvidsson, J., (1993b), The innervation of the mystacial pad of the rat as revealed by PGP 9.5 immunofluorescence, J. Comp. Neurol. 337:366–385.

    PubMed  CAS  Google Scholar 

  • Rice, F. L., Snelser, C. B., and McMullen, N. T., 1993c, Expression of parvalbumen in the indistinct barrels of the rabbit SI cortex, Soc. Neurosci. Abstr. 19:107.

    Google Scholar 

  • Rice, F. L., Hawkes, R., and Colonier, M., 1994a, A rapid onset of synaptogenesis throughout the neocortex of the rat as revealed by an anti-synatophysin Mab, in preparation.

    Google Scholar 

  • Rice, F. L., Pourmoghadan, K., Mosconi, T., Stobbe, G., Ledere, S., and Carrasaco, N., 1994b, Rapid and simultaneous differentiation of cytoarchitectonic laminae throughout the neocortex of the ferret, in preparation.

    Google Scholar 

  • Riddle, D., Richards, A., Zsuppan, F., and Purves, D., 1992, Growth of the rat somatic sensory cortex and its constituent parts during postnatal development, J. Neurosci. 12:3509–3524.

    PubMed  CAS  Google Scholar 

  • Robertson, B., and Arvidsson, J., 1985, Transganglionic transport of wheat germ agglutinin-HRP and choleragenoid-HRP in rat trigeminal primary sensory neurons, Brain Res. 348:44–51.

    PubMed  CAS  Google Scholar 

  • Rose, M., 1912, Histologische Lokalisation der Grosshirnrinde bei kleinen Säugetieren, Rodentia, Insectivora, Chiroptera, J. Psychol. Neurol. 19:389–479.

    Google Scholar 

  • Rose, M., 1929, Cytoarchitektonischer Atlas der (Trosshirnrinde der Maus, J.Psychol. Neurol. 40: 1–51.

    Google Scholar 

  • Sanchez, M. P., Frassoni, C, Alvarez-Bolado, G., Spreafico, R., and Fairen, A., 1992, Distribution of calbindin and parvalbumin in the developing somatosensory cortex and its primordium in the rat: An immunocytochemical study, J. Neurocytol. 21:717–736.

    PubMed  CAS  Google Scholar 

  • Sandell, J. H., 1984, The distribution of hexokinase compared to cytochrome oxidase and acetylcho-linesterase in the somatosensory cortex and the superior colliculus of the rat, Brain Res. 290:384–389.

    PubMed  CAS  Google Scholar 

  • Sanderson, K. J., Welker, W., and Shambes, G. M., 1984, Reevaluation of motor cortex and of sensorimotor overlap in cerebral cortex of albino rats, Brain Res. 292:251–260.

    PubMed  CAS  Google Scholar 

  • Schade, J. P., and Baxter, G. F., 1960, Changes during growth in the volume and surface area of cortical neurons in the rabbit, Exp. Neurol. 2:158–178.

    PubMed  CAS  Google Scholar 

  • Schade, J. P., Van Backer, H., and Colon, E., 1964, Quantitative analysis of neuronal parameters in the maturing cerebral cortex, Prog. Brain Res. 45:150–175.

    Google Scholar 

  • Schlaggar, B. L., and O’Leary, D. D. M., 1991, Potential of visual cortex to develop an array of functional units unique to somatosensory cortex, Science. 252:1556–1560.

    PubMed  CAS  Google Scholar 

  • Schultz, W., Galbraith, G. C, Gottschaldt, K.-M., and Creutzfeldt, O. D., 1976, A comparison of primary afferent and cortical neuron activity coding sinus hair movements in the cat, Exp. Brain Res. 24:365–381.

    PubMed  CAS  Google Scholar 

  • Senft, S. L., and Woolsey, T. A., (1991a), Computer-aided analyses of thalamocortical afferent ingrowth, Cereb. Cortex. 1:336–347.

    PubMed  CAS  Google Scholar 

  • Senft, S. L., and Woolsey, T. A., (1991b), Growth of thalamic afferent into mouse barrel cortex, Cereb. Cortex. 1:308–335.

    PubMed  CAS  Google Scholar 

  • Senft, S. L., and Woolsey, T. A., (1991c), Mouse barrel cortex viewed as Dirichlet domains, Cereb. Cortex. 1:348–363.

    PubMed  CAS  Google Scholar 

  • Seo, M. L., and Ito, M., 1987, Reorganization of rat vibrissa barrel field as studied by cortical lesioning on different postnatal days, Exp. Brain Res. 65:251–260.

    PubMed  CAS  Google Scholar 

  • Sharp, F. R., Gonzalez, M. F., Morgan, C. W., Morton, M. T., and Sharp, J. W., 1988, Common für and mystacial vibrissae parallel sensory pathways: 14C-2-deoxyglucose and WGA-HRP studies in the rat, J. Comp. Neurol. 270:446–469.

    PubMed  CAS  Google Scholar 

  • Shatz, C. J., 1983, The prenatal development of the cat’s retinogeniculate pathway, J.Neurosci., 3:482–499.

    PubMed  CAS  Google Scholar 

  • Shigenaga, Y., Otani, K., and Suemune, S., 1990, Morphology of central terminations of low-threshold trigeminal primary afferents from facial skin in the cat-intra-axonal staining with HRP, Brain Res. 523:23–50.

    PubMed  CAS  Google Scholar 

  • Shimada, M., and Langman, J., 1970, Cell proliferation, migration, and differentiation in the cerebral cortex of the golden hamster, J. Comp. Neurol. 139:227–244.

    PubMed  CAS  Google Scholar 

  • Sikich, L., Woolsey, T A., and Johnson, E. M., Jr., 1986, Effect of a uniform partial denervation of the periphery on the peripheral and central vibrissal system in guinea pigs, J. Neurosci. 6:1227–1240.

    PubMed  CAS  Google Scholar 

  • Silverman, J. D., and Kruger, L., 1985, Projections of the rat trigeminal sensory nuclear complex demonstrated by multiple fluorescent dye retrograde transport, Brain Res. 361:383–388.

    PubMed  CAS  Google Scholar 

  • Simons, D. J., 1978, Response properties of vibrissa units in the rat SI somatosensory neocortex, J. Neurophysiol. 41:615–635.

    Google Scholar 

  • Simons, D. J., 1983, Multi-whisker stimulation and its effects on vibrissal units in rat SmI barrel cortex, Brain Res. 276:178–182.

    PubMed  CAS  Google Scholar 

  • Simons, D. J., 1985, Temporal and spatial integration in the rat SI vibrissa cortex, J.Neurophysiol. 54:615–635.

    PubMed  CAS  Google Scholar 

  • Simons, D. J., and Carvell, G. E., 1989, Thalamocortical response transformation in the rat vi-brissa/barrel system, J. Neurophysiol. 61:311–330.

    PubMed  CAS  Google Scholar 

  • Simons, D. J., and Woolsey, T. A., 1979, Functional organization in the mouse barrel cortex, Brain Res. 165:327–332.

    PubMed  CAS  Google Scholar 

  • Simons, D. J., and Woolsey, T. A., 1984, Morphology of Golgi-Cox-impregnated barrel neurons in rat SmI cortex, J. Comp. Nenrol. 230:119–132.

    CAS  Google Scholar 

  • Simons, D. J., Carvell, G. E., Hershey, A. E., and Bryant, D. P., 1992, Responses of barrel cortex neurons in awake rats and effects of urethane anesthesia, Exp. Brain Res. 91:259–272.

    PubMed  CAS  Google Scholar 

  • Smart, I. H. M., 1973, Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: A pilot study based on recording the number, location, and plane of cleavage of mitotic figures, J. Anat. 116:67–91.

    PubMed  CAS  Google Scholar 

  • Smart, I. H. M., and McSherry, G. M., 1982, Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production, J. Anat. 134:417–442.

    Google Scholar 

  • Smith, R. L., 1975, The ascending fiber projections from the principal sensory trigeminal nucleus in the rat, J. Comp. Nenrol. 148:423–446.

    Google Scholar 

  • Snow, P. J., and Wilson, P., 1991, Plasticity and the mystacial vibrissae of rodents, in: Progress in Sensory Physiology, Vol. 11 (H. Autrum, D. Ottoson, E. R. Perl, R. F. Schmidt, H. Shimazu, and W. D. Willis, eds.), Springer-Verlag, Berlin, pp. 58–116.

    Google Scholar 

  • Stanfield, B. B., O’Leary, D. D. M., and Fricks, C., 1982, Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurons, Nature. 298:371–373.

    PubMed  CAS  Google Scholar 

  • Steffen, H., and Van der Loos, H., 1980, Early lesions of mouse vibrissal follicles: Their influence on dendrite orientation in the cortical barrel field, Exp. Brain Res. 40:419–431.

    PubMed  CAS  Google Scholar 

  • Steindler, D. A., 1985, Trigeminocerebeller, trigeminotectal, and trigeminothalamic projections: A double retrograde axonal tracing study in the mouse, J. Comp. Neurol. 237:155–175.

    PubMed  CAS  Google Scholar 

  • Steindler, D. A. O’Brien, T. F., Laywell, E., Harrington, K., Faissner, A., and Schachner, M., 1990, Boundaries during normal and abnormal brain development: In vivo and in vitro studies of glia and glycoconjugates, Exp. Neurol. 109:35.

    PubMed  CAS  Google Scholar 

  • Stensaas, L. J., (1967a), The development of hippocampal and dorsolateral palliai regions of the cerebral hemisphere in fetal rabbits. V. Sixty millimeter stage, glial cell morphology, J. Comp. Neurol. 131:423–436.

    PubMed  CAS  Google Scholar 

  • Stensaas, L. J., (1967b), The development of hippocampal and dorsolateral palliai regions of the cerebral hemisphere in fetal rabbits. VI. Ninety millimeter stage, cortical differentiation, J. Comp. Neurol. 132:93–108.

    Google Scholar 

  • Sur, M., Nelson, R. J., and Kaas, J. H., 1978, The representation of the body surface in somatosensory area I of the grey squirrel, J. Comp. Neurol. 179:425–450.

    PubMed  CAS  Google Scholar 

  • Sur, M., Nelson, R. J., and Kaas, J. H., (1980a), The representation of the body surface in somatic koniocortex in the prosimian galago, J. Comp. Neurol. 189:381–402.

    PubMed  CAS  Google Scholar 

  • Sur, M., Weller, R. E., and Kaas, J. H., (1980b), Representation of the body surface in somatosensory area I of tree shrews, Tupaia glis, J. Comp. Neurol. 194:71–95.

    CAS  Google Scholar 

  • Swadlow, H. A., 1989, Efferent neurons and suspected interneurons in S-I vibrissa cortex of the awake rabbit: Receptive fields and axonal properties, J. Neurophysiol. 62:288–308.

    PubMed  CAS  Google Scholar 

  • Téllo, P. F., 1923, Genese des terminaisons motrices et sensitives. II. Terminaisons dans les pois de la souris blanche, Trav. Lab. Rech. Biol. Univ. Madrid. 21:257–284.

    Google Scholar 

  • Vahle-Hinz, C., and Gottschaldt, K.-M., 1983, Principal differences in the organization of the thalamic face representation in rodents and felids, in: Somatosensory Integration in the Thalamus (G. Macchi, A. Rusitoni, and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 125–145.

    Google Scholar 

  • Van der Loos, H., 1976, Barreloids in the mouse somatosensory thalamus, Neurosci. Lett. 7:23–30.

    Google Scholar 

  • Van der Loos, H., and Woolsey, T. A., 1973, Somatosensory cortex: Structural alterations following early injury to sense organs, Science. 179:395–398.

    PubMed  Google Scholar 

  • Van Erp Taalman Kip, M. J., 1938, Lichaansgrootte en Hersenschors, Noordhoff, Groningen.

    Google Scholar 

  • Vincent, S. B., 1913, The tactile hair of the white rat, J. Comp. Neurol. 23:1–36.

    Google Scholar 

  • Voigt, T., de Lima, A. D., and Beckmann, M., 1993, Synaptophysin immunohistochemistry reveals inside-out pattern of early synaptogenesis in ferret cerebral cortex, J. Comp. Neurol. 330:48–64.

    PubMed  CAS  Google Scholar 

  • Waite, P. M. E., 1973, The responses of cells in the rat thalamus to mechanical movements of the whiskers, J. Physiol. (London). 228:541–561.

    CAS  Google Scholar 

  • Waite, P. M. E., 1976, Nerve fibres in the barrels of the cerebral cortex of immature and adult mice, Proc. Univ. Otago Med. Sch. 54:58–60.

    Google Scholar 

  • Waite, P. M. E., and Cragg, B. G., 1979, The effect of destroying the whisker follicle in mice on the sensory nerve, the thalamocortical radiation, and cortical barrel development, Proc. R. Soc. (London). 204:41–55.

    CAS  Google Scholar 

  • Waite, P. M. E., and Jacquin, M. F., 1992, Dual innervation of the rat vibrissa: Responses of trigeminal ganglion cells projecting through deep or superficial nerves, J Comp. Neurol. 322:233–245.

    PubMed  CAS  Google Scholar 

  • Waite, P. M. E., Marotte, L. R., and Mark, R. F., 1991, Development of whisker representation in the cortex of the tammar wallaby Macropus eugeni, Dev. Brain Res. 58:35.

    CAS  Google Scholar 

  • Wallace, M. N., 1987, Histochemical demonstration of sensory maps in the rat and mouse cerebral cortex, Brain Res. 418:178–182.

    PubMed  CAS  Google Scholar 

  • Waters, R. S., McCandlish, C. A., and Cooper, N. G. F., 1990, Early development of SI cortical barrel subfield representation of forelimb in normal and deafferented neonatal rat as delineated by peroxidase conjugated lectin, peanut agglutinin, PNA, Exp. Brain Res. 81:234–240.

    PubMed  CAS  Google Scholar 

  • Welker, C, 1971, Microelectrode delineation of fine grain somatotopic organization of SmI cerebral neocortex in albino rat, Brain Res. 26:259–275.

    PubMed  CAS  Google Scholar 

  • Welker, C, 1973, Organization of somatosensory cerebral neocortex in micrencephalic rat, Anat. Rec. 175:467–468.

    Google Scholar 

  • Welker, C, 1976, Receptive fields of barrels in the somatosensory neocortex of the rat, J. Comp. Neurol. 166:173–190.

    PubMed  CAS  Google Scholar 

  • Welker, C, and Woolsey, T. A., 1974, Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse, J. Clomp. Neurol. 158:437–454.

    CAS  Google Scholar 

  • Welker, E., and Van der Loos, H., 1986, Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: A comparative study in six strains of mice bred for different patterns of mystacial vibrissae, J. Neurosci. 6:3355–3373.

    PubMed  CAS  Google Scholar 

  • Welker, E., Hoogland, P. V., and Van der Loos, H., 1988, Organization of feedback and feedforward projections of the barrel cortex: A PHA-L study in the mouse, Exp. Brain Res. 73:411–435.

    PubMed  CAS  Google Scholar 

  • Welker, E., Rao, S. B., Dörfl, J., Melzer, P., and Van der Loos, H., 1992, Plasticity in the barrel cortex of the adult mouse: Effects of chronic stimulation upon deoxyglucose uptake in the behaving animal, J. Neurosa. 12:153–170.

    CAS  Google Scholar 

  • Welker, W. I., 1964, Analysis of sniffing in the albino rat, Behavior. 22:223–244.

    Google Scholar 

  • Welker, W. I., and Seidenstein, S., 1959, Somatic sensory representations in the cerebral cortex of the raccoon (Procyon lotor), J. Comp. Neurol. 111:469–502.

    PubMed  CAS  Google Scholar 

  • Welker, W., Sanderson, K.J., and Shambes, G. M., 1984, Patterns of afferent projections to transitional zones in the somatic sensorimotor cerebral cortex of albino rats, Brain Res. 292:261–267.

    PubMed  CAS  Google Scholar 

  • Weiler, W. L., 1972, Barrels in somatic sensory neocortex of the marsupial Trichosurus vulpecula, brush-tailed opossum, Brain Res. 43:11–24.

    Google Scholar 

  • Werner, G., and Whitsel, B. L., 1968, Topology of the body representation in the somatosensory area of primates, J. Neurophysiol. 31:856–869.

    PubMed  CAS  Google Scholar 

  • White, E. L., 1979, Thalamocortical synaptic relations: A review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex, Brain Res. Rev. 1:275–311.

    Google Scholar 

  • White, E. L., and DeAmicis, R. A., 1977, Afferent and efferent projections of the region in mouse SmI cortex which contains the posteromedial barrel subfield, J. Comp. Neurol. 175:455–482.

    PubMed  CAS  Google Scholar 

  • White, E. L., and Hersch, S. M., 1982, A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex, J. Neuro-cytol. 11:137–157.

    CAS  Google Scholar 

  • White, E. L., and Peters, A., 1993, Cortical modules in the posteromedial barrel subfield, SmI, of the mouse, J. Comp. Neurol. 334:86–96.

    PubMed  CAS  Google Scholar 

  • White, E. L., and Rock, M. P., 1981, A comparison of thalamocortical and other synaptic inputs to dendrites of two non-spiny neurons in a single barrel of mouse SmI cortex, J. Comp. Neurol. 195:265–277.

    PubMed  CAS  Google Scholar 

  • Wineski, L. E., 1983, Movements of the cranial vibrissae in the golden hamster (Mesocricetus auratus), J. Zool. 200:261–280.

    Google Scholar 

  • Wise, S. P., and Jones, E. G., 1976, Organization and postnatal development of the commissural projection of the rat somatic sensory cortex, J. Comp. Neurol. 168:313–343.

    PubMed  CAS  Google Scholar 

  • Wise, S. P., and Jones, E. G., 1978, Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex, J. Comp. Neurol. 178:187–208.

    PubMed  CAS  Google Scholar 

  • Wise, S. P., Fleshman, J. W., and Jones, E. G., 1979, Maturation of pyramidal cell form in relation to developing afferent and efferent connections of rat somatic sensory cortex, Neuroscience. 4:1275–1298.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M. T. T., and Welt, C, 1980, Cytochrome oxidase histochemical changes in cortical barrels following vibrissal removal in neonatal and adult mice, Proc. Natl. Acad. Sci. USA. 77:2333–2337.

    PubMed  CAS  Google Scholar 

  • Woolsey, C. N., 1958, Organization of somatic sensory and motor areas of the cerebral cortex, in: Biological and Biochemical Bases of Behavior (H. F. Harlow and C. N. Woolsey, eds.), University of Wisconsin Press, Madison, pp. 63–81.

    Google Scholar 

  • Woolsey, C. N., and Fairman, D., 1946, Contralateral, ipsilateral, and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep, and other mammals, Surgery. 19:684–702.

    PubMed  CAS  Google Scholar 

  • Woolsey, C. N., and Le Messurier, D. H., 1948, The pattern of cutaneous representation in the rat’s cerebral cortex, Fed. Proc. 7:137–138.

    PubMed  CAS  Google Scholar 

  • Woolsey, T. A., 1967, Somatosensory, auditory and visual cortical areas of the mouse, Johns Hopkins Med.J. 121:91–112.

    PubMed  CAS  Google Scholar 

  • Woolsey, T. A., 1990, Peripheral alteration and somatosensory development, in: Development of Sensory Systems in Mammals (J. R. Coleman, ed.), Wiley, New York, pp. 461–503.

    Google Scholar 

  • Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region, SI, of mouse cerebral cortex, Brain Res. 17:205–242.

    PubMed  CAS  Google Scholar 

  • Woolsey, T. A., and Wann, J. R., 1976, Areal changes in mouse cortical barrels following vibrissal damage at different postnatal ages, J. Comp. Neurol. 170:53–66.

    PubMed  CAS  Google Scholar 

  • Woolsey, T. A., Dierker, M. L., and Wann, D. F., (1975a), Mouse SmI cortex: Qualitative and quantitative classification of Golgi-impregnated barrel neurons, Proc. Natl. Acad. Sei. USA. 72:2165–2169.

    CAS  Google Scholar 

  • Woolsey, T. A., Welker, C, and Schwartz, R. H., (1975b), Comparative anatomical studies of the SmI face cortex with special reference to the occurrence of “barrels” in layer IV, J. Comp. Neurol. 164:95–104.

    Google Scholar 

  • Woolsey, T. A., Anderson, J. R., Wann, J. R., and Stanfield, B. B., 1979, Effects of early vibrissae damage on neurons in the ventrobasal, VB, thalamus of the mouse, J. Comp. Neurol. 184:363–380.

    PubMed  CAS  Google Scholar 

  • Yamakado, M., 1985, Postnatal development of the barreloid neuropils in the ventrobasal complex of the mouse: A histochemical study for cytochrome oxidase, Brain Nerve. 37:497–506.

    PubMed  CAS  Google Scholar 

  • Yip, V. S., Zhang, W.-P., Woolsey, T. A., and Lowry, H. O., 1987, Quantitative histochemical and microchemical changes in the adult mouse central nervous system after section of the infraorbital and optic nerves, Brain Res. 406:157–170.

    PubMed  CAS  Google Scholar 

  • Yohro, Y, 1977, Structure of the sinus hair follicle in the big-clawed shrew, Sorex unguiculatus, J. Morphol. 153:333–354.

    PubMed  CAS  Google Scholar 

  • Yuste, R., Peinado, A., and Katz, L. C, 1992, Neuronal domains in developing neocortex, Science. 257:665–668.

    PubMed  CAS  Google Scholar 

  • Ziltzer, R. J., and Rice, F. L., 1985, Structural alterations in the barrels of the rat subsequent to peripheral manipulations during adolescence, Anat. Rec. 211:221A.

    Google Scholar 

  • Zucker, E., and Welker, W. I., 1969, Coding of somatic sensory input by vibrissal neurons in the rat’s trigeminal ganglion, Brain Res. 12:138–156.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rice, F.L. (1995). Comparative Aspects of Barrel Structure and Development. In: Jones, E.G., Diamond, I.T. (eds) The Barrel Cortex of Rodents. Cerebral Cortex, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9616-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9616-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9618-6

  • Online ISBN: 978-1-4757-9616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics