Advertisement

Activation-Dependent Induction of T Cell Alanyl Aminopeptidase and Its Possible Involvement in T Cell Growth

  • U. Lendeckel
  • T. Wex
  • D. Reinhold
  • M. Arndt
  • A. Ittenson
  • K. Frank
  • S. Ansorge
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 421)

Abstract

Membrane alanyl aminopeptidase (APN, EC 3.4.1 1.2) is a 150-kDa metalloprotease which has been identified as the leukocyte surface differentiation antigen CD131. In humans the APN gene is located on the long arm of chromosome 15 (ql 1-gter)2 with the coding part of the gene encoded by 20 exons3. Within the haematopoetic system APN is dominantely expressed in cells of the myelo-monocytic lineage and is used, therefore, as a standard marker in the diagnosis of leukaemia. Aminopeptidase N of leukocytes is supposed to be involved in the degradation of neuropeptides4–7 and cytokines8,9, but its function remains to be fully elucidated. APN may function as a corona virus receptor10–13 and seems to contribute in tumor invasion and matrix degradation14–15. APN is also implicated in antigen processing16. Furthermore, anti-CD13 monoclonal antibodies have been shown to neutralize CMV17. In recent years evidence accumulated showing that malignant B and T cells18–23 as well as activated T cells24–26 are capable of expressing APN on the cell surface. A similar mechanism of induction may underlie the CD13 surface expression of tumor infiltrating T cells27, or T cells28 and NK cells29 derived from local sites of inflammation.

Keywords

Acute Lymphoblastic Leukemia Aminopeptidase Activity CD13 Surface Expression Corona Virus Aminopeptidase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Look, A.T., Ashmun, R.A., Shapiro, L.H., and Peiper, S.C. (1989). Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N. J. Clin. Invest. 83, 1299–1307.CrossRefGoogle Scholar
  2. 2.
    Watt, V.M. and Willard, H.F. (1990). The human aminopeptidase N gene: isolation, chromosome localization, and DNA polymorphism analysis. Hum. Genet. 85, 651–654.Google Scholar
  3. 3.
    Lerche, C., Vogel, L.K., Shapiro, L.H., Noren, O., and Sjöström, H (1996). Human aminopeptidase N is encoded by 20 exons. Mammalian Genome 7, 712–713.CrossRefGoogle Scholar
  4. 4.
    Furuhashi, M., Mizutani, S., Kurauchi, O., Kasugai, M., Narita, O., and Tomoda, Y. (1988). In vitro degradation of opioid peptides by human placental aminopeptidase M. Exp. Clin. Endocrinol. 92, 235–237.PubMedCrossRefGoogle Scholar
  5. 5.
    Giros, B., Gros, C., Solhonne, B., and Schwartz, J.C. (1986). Characterization of amino-peptidases responsible for inactivating endogenous (MetS)enkephalin in brain slices using peptidase inhibitors and anti-aminopeptidase M antibodies. Mol. Pharmacol. 29, 281–287.PubMedGoogle Scholar
  6. 6.
    Ahmad, S., Wang, L., and Ward, P.E. (1992). Dipeptidyl(amino)peptidase IV and aminopeptidase M metabolize circulating substance P in vivo. J. Pharmacol. Exp. Ther. 260, 1257–1261.PubMedGoogle Scholar
  7. 7.
    Shimamura, M., Hazato, T., and Iwaguchi, T. (1991). Enkephalin-degrading aminopeptidase in the longitudinal muscle layer of guinea pig small intestine: its properties and action on neuropeptides. J. Biochem. Tokyo./09, 492–497.Google Scholar
  8. 8.
    Kanayama, N., Kajiwara, Y.. Goto, J.. el Maradny, E., Maehara, K., Andou, K., and Terao, T. (1995). Inactivation of interleukin-8 by aminopeptidase N (CD13). J. Leukoc. Biol. 57, 129–134.PubMedGoogle Scholar
  9. 9.
    Hoffmann, T., Faust, J., Neubert, K., and Ansorge, S. (1993). Dipeptidyl peptidase IV (CD 26) and aminopeptidase N (CD 13) catalyzed hydrolysis of cytokines and peptides with N-terminal cytokine sequences. FEBS Lett. 336, 61–64.Google Scholar
  10. 10.
    Delmas, B., Gelfi, J., L’Haridon, R., Vogel, L.K., Sjöström, H., Noren, O., and Laude, H. (1992). Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357, 417–420.Google Scholar
  11. 11.
    Delmas, B., Gelfi, J., Sjöström, H., Noren, O., and Laude, H. (1993). Further characterization of aminopeptidase-N as a receptor for coronaviruses. Adv. Exp. Med. Biol. 342, 293–298.PubMedCrossRefGoogle Scholar
  12. 12.
    Delmas, B., Gelfi, J., Kut, E., Sjöström, H., Noren, O., and Laude, H. (1994). Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site. J. Virol. 68, 5216–5224.PubMedGoogle Scholar
  13. 13.
    Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., and Holmes, K.V. (1992). Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357, 420–422.Google Scholar
  14. 14.
    Saiki, I., Fujii, H., Yoneda, J., Abe, E, Nakajima, M., Tsuruo, T., and Azuma, 1. (1993). Role ofaminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation. Int. J. Cancer 54, 137–143.Google Scholar
  15. 15.
    Fujii, H., Nakajima, M., Saiki, I., Yoneda, J., Azuma, 1., and Tsuruo, T. (1995). Human melanoma invasion and metastasis enhancement by high expression of aminopeptidase N/CDI3. Clin. Exp. Metastasis 13, 337–344.Google Scholar
  16. 16.
    Hansen, A.S., Noren, O., Sjöström, H., and Werdelin, O. (1993). A mouse aminopeptidase N is a marker for antigen-presenting cells and appears to be co-expressed with major histocompatibility complex class II molecules. Eur. J. Immunol. 23, 2358–2364.Google Scholar
  17. 17.
    Giugni, T.D., Söderberg, C., Ham, D.J., Bautista, R.M., Hedlund, K.-O., Möller, E., and Zaia, J.A. (1996). Neutralization of human cytomegalovirus by human CD13-specific antibodies. The Journal of Infectious Diseases 173, 1062–1071.PubMedCrossRefGoogle Scholar
  18. 18.
    Hsu, P.N., Tien, H.F., Wang, C.H., Chen, Y.C., Shen, M.C., Lin, D.T., Lin, K.H., Liang, D.C., and Lin, K.S. (1991). A subset of acute lymphoblastic leukemia with co-expression of myeloid antigens: prevalence and clinical significance. J. Formos. Med. Assoc. 90, 225–231.PubMedGoogle Scholar
  19. 19.
    Hara, J., Kawa Ha, K., Yumura Yagi, K., Kurahashi, H., Tawa, A., Ishihara, S., Inoue, M., Murayama, N., and Okada, S. (1991). In vivo and in vitro expression of myeloid antigens on B-lineage acute lymphoblastic leukemia cells. Leukemia 5, 19–25.PubMedGoogle Scholar
  20. 20.
    Ferrara, F., De Rosa, C., Fasanaro, A., Mele, G., Finizio, O.. Schiavone, E.M., Spada, O.A., Rametta, V., and Del Vecchio, L. (1990), Myeloid antigen expression in adult acute lymphoblastic leukemia: clinicohematological correlations and prognostic relevance. Hematol. Pathol. 4, 93–98.Google Scholar
  21. 21.
    Drexler, H.G., Thiel, E., and Ludwig, W.-D. (1991), Review of the incidence and clinical relevance of myeloid antigen-positive acute lymphoblastic leukemia. Leukemia 5, 637–645.PubMedGoogle Scholar
  22. 22.
    Dreno, B., Bureau, B., Stalder, J.F., and Litoux, P. (1990). MY7 monoclonal antibody for diagnosis of cutaneous T-cell lymphoma. Arch. Dermatol. 126, 1454–1456.PubMedCrossRefGoogle Scholar
  23. 23.
    Dixon, J., Kaklamanis, L., Turley, H., Hickson, I.D., Leek, R.D., Harris, A.L., and Latter, K.C. (1994). Expression of aminopeptidase-n (CD 13) in normal tissues and malignant neoplasms of epithelial arid lymphoid origin. J. Clin. Pathol. 47, 43–47.PubMedCrossRefGoogle Scholar
  24. 24.
    Kunz, D., Bühling, F.. Hütter, H.J., Aoyagi, T., and Ansorge, S. (1993). Aminopeptidase N (CD13, EC 3.3.4.11.2) occurs on the surface of resting and concanavalin A-stimulated lymphocytes. Biol. Chem Hoppe Seyler 374, 291–296.Google Scholar
  25. 25.
    Lendeckel, U., Wex, T., Reinhold, D., Kähne, T.. Frank, K., Faust, J., Neubert. K., and Ansorge, S… (1996) Biochem. J. 319, 817–821.PubMedGoogle Scholar
  26. 26.
    Ansorge, S., Schön, E., and Kunz, D. (1991). Membrane-bound peptidases of lymphocytes: functional implications. Biomed. Biochtm, Acta 50, 799–807.Google Scholar
  27. 27.
    Riemann, D., Göhring, B., and Langner, J. (1994). Expression of aminopeptidase N/CD13 in tumour-infiltrating lymphocytes from human renal cell carcinoma. Immunol. Lett. 42, 19–23.PubMedCrossRefGoogle Scholar
  28. 28.
    Riemann, D., Schwachula, A., Hentschel, M., and Langner, J. (1993). Demonstration of CD13/aminopeptidase N on synovial fluid T cells from patients with different forms of joint effusions. tmmunobiology /57, 24–35.Google Scholar
  29. 29.
    Bühling, F., Kunz, D., Lendeckel, U.. Reinhold, D., and Ansorge. S. (1992). Aminopeptidase N (APN; CDI3) on natural killer cells from peripheral blood and synovial fluid. Immunobiology 186, 157–158.Google Scholar
  30. 30.
    Lendeckel, U., Wex, T., Kähne, T., Frank, K., Reinhold, D., and Ansorge, S. (1994). Expression of the aminopeptidase N (CDI3) gene in the human T cell lines HuT78 and H9. Cell. Immunol. 153. 214–226.Google Scholar
  31. 31.
    Wex, T., Lendeckel, U., Wex, H., Frank, K., and Ansorge, S. (1995). Quantification of aminopcptidase N mRNA in T cells by competitive PCR. FEBS Lett. 374, 341–344.CrossRefGoogle Scholar
  32. 32.
    Ino K., Goto S., Kosaki A., Nomura S., Asada E., Misawa T., Furuhashi Y.. Mizutani S.. and Tomoda Y. (1991). Groth inhibitory effect of bestatin on choriocarcinoma cell lines in vitro. Biotherapy 3. 351–357.Google Scholar
  33. 33.
    no, K., Isobe, K., Goto, S., Nakashima, I., and Tomoda, Y. (1992). Inhibitory effect of bestatin on the growth of human lymphocytes. lmmunophannacology 23, 163–171Google Scholar
  34. 34.
    Ino, K., Goto, S., Okamoto, T., Nomura, S., Nawa, A., Isobe, K.. Mizutani, S., and Tomoda, Y. (1994). Expression of aminopcptidase N on human choriocarcinoma cells and cell growth suppression by the inhibition of aminopeptidase N activity. Jpn. J. Cancer Res. 85. 927–933.Google Scholar
  35. 35.
    Sakurada K., Imamura M., Kobayashi M., Tachibana N., Abe K., Tanaka M., Okabe M., Morioka M.. Kasai M., and Sugiura T. (1990). Inhibitory effect of bestatin on the growth of human leukemic cells. Acta Oncologica 29, 799–802.CrossRefGoogle Scholar
  36. 36.
    Tieku, S. and Hooper, N.M. (1992). Inhibition of aminopeptidases N, A, and W. Biochemical Pharmacology 44, 1725–1730.PubMedCrossRefGoogle Scholar
  37. 37.
    Aoyagi T., Yoshida S., Nakamura Y., Shigihara Y., Hamada M., and Takeuchi T. (1990). Probestin, a new inhibitor of aminopeptidase M, produced by streptomyces azureus MH663–2F6. The Journal of Antibiotics XL111, 143–148.Google Scholar
  38. 38.
    Yoshida S., Nakamura Y., Naganawa H., Aoyagi T., and Takeuchi T. (1990). Probestin. a new inhibitor of aminopeptidase M, produced by streptomyces azureus MH663–2F6. The Journal of Antibiotics XL111, 149–156.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • U. Lendeckel
    • 1
  • T. Wex
    • 1
  • D. Reinhold
    • 1
  • M. Arndt
    • 1
  • A. Ittenson
    • 1
  • K. Frank
    • 1
  • S. Ansorge
    • 1
  1. 1.Institute of Experimental Internal Medicine Center of Internal MedicineOtto-von-Guericke University MagdeburgMagdeburgGermany

Personalised recommendations