γ-Glutamyl Transpeptidase, a Blood-Brain Barrier Associated Membrane Protein

Splitting Peptides to Transport Amino Acids
  • Sabine Wolf
  • H. G. Gassen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 421)


In all vertebrates, the blood circulation not only represents the main transport system of nutrients, gases, ions, water, and metabolic products but also of hormones and components of the cellular and humoral immune system. Among the blood vessels, venoles, capillaries, and arteriols (the microcapillary system) have the smallest diameter but they are of greatest significance for the well function of any tissue. In humans, the number of capillaries is estimated to be 40×109, corresponding to an exchange area of about 600 m2. Whereas the large blood vessels transport the above mentioned compounds to the organs, the microcapillary system penetrates through every tissue and supplies the individual cells with the nutrients necessary. Three types of capillaries can be distinguished: the fenestrated, the discontinuous, and the continuous type. In the continuous type the endothelial cells, which cover the inner surface of the brain capillaries, build up a dense surface. In consequence, there is no possibility for free exchange of blood solutes to the central nervous system.


Amino Acid Transport Retrograde Transport Amino Acid Uptake Brain Capillary Mercapturic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ehrlich, P.(I885) “Das Sauerstoffbedürfnis des Oraganismus” in “Eine farbanlytische Studie’. p.69–72. A. Hirschwald, Berlin.Google Scholar
  2. 2.
    Goldmann. E. E. (1919) “Vitalfärbung am Zentralnervensytem”, Abh. Preuss. Akad. Wiss. Phys. Math. I. 1–660.Google Scholar
  3. 3.
    Reese. T. S. and Karnowsky. M. J. (1967) “Fine structural localization of a blood-brain barrier to exogenous peroxidase”, J. Cell. Biol. 34, 207–217.Google Scholar
  4. 4.
    Brightman, M. W. and Reese, T. S. (1969) “Junctions between intimated apposed cell membranes in the vertebrate brain”, J. Cell. Biol. 40, 648–677.Google Scholar
  5. 5.
    Weiler-Güttler, H., Zinke, H., Möckel, B., Frey, A. and Gassen, H. G. (1989) “cDNA Cloning and Scquence Analysis of the Glucose Transporter from Porcine Blood-Brain Barrier”. Biol. Chem. Hoppe-Seyler 370, 467–473.Google Scholar
  6. 6.
    Greenwood, J. (1992) “Characterization of a rat retinal endothelial cell culture and the expression of P-glycoprotein in brain and retinal endothelium in vitro”, J. Neuroimmunol. 39, 123–132.PubMedCrossRefGoogle Scholar
  7. 7.
    Frey, A. (1993) “Gamma-Glutamyl Transpeptidase: Molecular Cloning and Structural and Functional Features of a Blood-Brain Barrier Marker Protein” in: The Blood-Brain Barrier: Cellular and Molecular Biology (ed. Pardridge. W. M.). Raven Press Ltd., New York, p. 339–368.Google Scholar
  8. 8.
    Goldstein. G. W., Wolinsky, J. S. Csejtey, J. and Diamond, 1 (1975) “Isolation of metabolically active capillaries from rat brain”, J. Neurochem. 25, 715–717.CrossRefGoogle Scholar
  9. 9.
    Ghandour, M. S., Langley, O. K. and Varga, V. (1980) “Immunological localization ofy-glutamyl transpeptidase in cerebellum at light and electron microscope levels”, Neurosci. Lett. 20, 125–129.Google Scholar
  10. 10.
    Frey, A., Meckelein, B., Weiler,-Güttler, H., Möckel, B. Flach, R. and Gassen H.G. (1991) “Pericytes of the brain microvasculature express y-glutamyl transpeptidase”, Eur. J. Biochem. 202, 42l - 429.CrossRefGoogle Scholar
  11. 11.
    Risau, W., Dingier, A., Albrecht, U., Dehouck, M. P. and Cecchelli, R. (1992) “Blood-Brain Barrier Pericytes Are the Main Source of y-Glutamyltranspeptidase Activity in Brain Capillaries”, J. Neurochem. 58. 667–672.PubMedCrossRefGoogle Scholar
  12. 12.
    Sanchez del Pino, M. M., Hawkins, R. A. and Peterson, D. R. (1995) “Biochemical Discrimination between Luminal and Abluminal Enzyme and Transport Activities of the Blood-Brain Barrier”. J. Biol. Chem. 270, 14907–14912.Google Scholar
  13. 13.
    Orlowsky, M. and Meister, A. (1970) “The y-Glutamyl Cycle: A Possible Transport System for Amino Acids”, Proc. Natl. Acad. Sci. USA 67, 1248–1255.Google Scholar
  14. 14.
    Meister, A., Tate, S. S. and Griffith, O. W. (1981) “The y-Glutamyl-Transpeptidase”, Methods. Enzymol. 77, 237–253.Google Scholar
  15. 15.
    Griffith, O., Bridges, R. and Meister, A. (1979) “Transport of y-glutamyl amino acids: Role of glutathione and y-glutamyl transpeptidase”, Proc. Natl. Acad. Sci. USA 76, 6319–6322.Google Scholar
  16. 16.
    Griffith, O. and Meister, A. (1979) “Translocation of intracellular glutathione to membrane bound y-glutamyl transpeptidase as a discrete step in the y-glutamyl cycle: Glutathionuria after inhibition of the transpeptidase”, Proc. Natl. Acad. Sci. USA 76, 268–272.Google Scholar
  17. 17.
    Vina, J. R., Puertes, 1. R., Hernandez, R. and Vina, J. (1989) “Role of y-glutamyl cycle in the regulation of amino acid translocation”, Am. J. Physiol. 257, 916–922.Google Scholar
  18. 18.
    Meister A. and Anderson, M. E. (1983) “Glutathione”, Annu. Rev. Biochem. 52, 711–760.Google Scholar
  19. 19.
    Tate, S.S., Ross, L.R. and Meister, A. (1973) “The y-Glutamyl Cycle in the Choroid Plexus: Its possible Function in Amino Acid Transport”, Proc. Natl. Acad. Sci. USA 70, 1447–1493.Google Scholar
  20. 20.
    Van der Werf, P., Orlowski, M, and Meister, A. (1971) “Enzymatic Conversion of 5-Oxo-L-Proline to L-glutamate Coupled with Cleavage of Adenosine Triphosphate, a Reaction in the y-Glutamyl Cycle”, Proc. Natl. Acad. Sci. USA 68, 2982–2985.Google Scholar
  21. 21.
    Hill, D. W., Walters, F. H., Wilson, T. D. and Stuart, J. D. (1979) “High Performance Liquid Chromatographic Determination of Amino Acids in the Picomole Range”., Anal. Chem. 51, 1338–1341.Google Scholar
  22. 22.
    Lindroth, P. and Mopper, K. (1979) “High Performance Liquid Chromatographic Determination of Subpicomole Amounts of Amino Acids by Precolumn Fluorescence Derivatisation with o-Phthaldialdehyde”, Anal. Chem. 5I, 1667–1674.Google Scholar
  23. 23.
    Orlowski, M. and Meister, A. (1963) “The y-Glutamyl-p-Nitroanilid: A new convenient substrate for determination and study of L-and D-y-glutamyl transpeptidase activities”, Biochim. Biophys. Acta 73,679–683Google Scholar
  24. 24.
    Kannan, R.. Kuhlenkamp, J. F., Ookhtens, M. and Kaplowitz, N. (1992) “Transport of Glutathione at the Blood-brain Barrier of the Rat: Inhibition by Glutathione Analogs and Age-Dependence”,.I. Exp. Pharm. Ther. 263(3), 964 970.Google Scholar
  25. 25.
    Aigner, A., Wolf, S. and Gassen, H.G. (1997) “Transport und Entgiftung: Grundlagen, Ansätze und Perspektiven für die Blut-Hirn-Schranke-Forschung”, Angewandte, in press.Google Scholar
  26. 26.
    Aigner, A., Jäger, M., Weber. P. and Wolf, S. (1994) “A Nonradioactive Assay for Microsomal Cysteine-SConjugate N-Acetyltransferase Activity by High-Pressure Liuid Chromatography”. Anal. Biochem. 223, 227–231.Google Scholar
  27. 27.
    Aigner, A., Jäger, M., Pasternack, R.. Weber, P., Wienke, D. und Wolf, S. (1996), “Purification and characterization of cystcine-S-conjugate N-acetyltransferase from pig kidney”, Biochem. J. 317, 213–218.Google Scholar
  28. 28.
    Baba, T., Black, K. L. Ikezaki, K., Chen, K. and Becker, D. P. ( 1991i “Intracaroid Infusion of Leukotriene (.4 Selectively Increases Blood-Brain-Barrier Permeability after Focal Ischemia in Rats”, J. Cereb Blood Flow Metab. 1 1 (4), 638–643.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Sabine Wolf
    • 1
  • H. G. Gassen
    • 1
  1. 1.Institute for BiochemistryTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations