Advertisement

Selective Proteolytical Cleavage of the Ligand-Binding Chains of the IL-2-Receptor and IL-6-Receptor by Neutrophil-Derived Proteases

  • U. Bank
  • D. Reinhold
  • D. Kunz
  • S. Ansorge
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 421)

Abstract

Soluble forms of usually membrane bound molecules were identified in blood or other body fluids. Among these soluble forms of membrane proteins, which have been found to lack the transmembrane and the intracellular domain, the soluble cytokine receptors are of interest, because they have been found to be capable of binding the ligand and of influencing the biological activity of the cytokines1,2.

Keywords

Acute Pancreatitis Serine Protease U937 Cell Cytokine Receptor Human Neutrophil Elastase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rose-John, St. and Heirich, P.C. (1994) Soluble receptors for cytokines and growth factors: generation and biological function. Biochem. J., 300, 281–290Google Scholar
  2. 2.
    Fernandez-Botran, R. (1991) Soluble cytokine receptors: their role in immunoregulation. FASEB J. 5, 2567–2574PubMedGoogle Scholar
  3. 3.
    Femadez-Botran, R and Viletta, E.S. (1990) Proc. Natl. Sci. U.S.A. 87, 4202–4206Google Scholar
  4. 4.
    Goodwin, R.G., Friend, D., Ziegler, S.F., Jerzy, R., Falk, B.A., Gimple, S., Cosman, D., Dower. S.K., March, C.J., Namen, A.E. and Park, L.S. (1990) Cell 60„ 941–951Google Scholar
  5. 5.
    Müllberg, J., Schooltink, H., Stojan, T., Gunter, M., Graeve, L., Buse. G., Mackiewicz, A., Heinrich P.C. and Rose-John, St. (1993) The soluble IL-6- receptor is generated by shedding. Eut J. Immunol. 23, 473–480Google Scholar
  6. 6.
    Bazil, V. and Strominger, J.L. (1991) Shedding is a mechanism of down modulation of CD 14 on stimulated human monocytes.. J. Immunol. 147 /5, 1567–1574PubMedGoogle Scholar
  7. 7.
    Arribas, J., Coodly, L., Vollmer, P., Kishimoto, T.K., Rose-John, St. and Massague. J. (1996) Diverse cell surface protein ectodomains are shed by a system sensitive to metalloproteinase inhibitors. J. Biol. Chem. 271 /19, 11376–11382PubMedCrossRefGoogle Scholar
  8. 8.
    Ching-Hon Pui (1989)Serum interleukin-2-receptor: clinical and biological implications. Leukemia, 3/5, 323–327Google Scholar
  9. 9.
    Van Zee, K.J., Kohno, T., Fischer, E., Rock, C.S., Moldawer, L.L. and Lowry, S.F. (1992) Tumor necrosis factor soluble receptors circulate during experimental and clinical imflammation and can protect against excessive tumor necrosis factor in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 89, 4845–4849Google Scholar
  10. 10.
    Frieling, J.T.M., Sauerwein, R.W., Wijdenes, J., Hendriks, T., and van der Linden, G.J. (1994) Soluble Interleukin 6 receptor in biological fluids from human origin. Cytokine 6, 376–381PubMedCrossRefGoogle Scholar
  11. I I. Fritz, S., Striggow, F., Reinhold D., Schluter, T., Schonfeld, P.. Ansorge. S. Bohnensack. R. (1996) Phorbol ester-induced shedding of intercellular adhesion molecule-1 (ICAM-I) on erythroleukemic K 562 cells. Biochim-Biophys-Acta. 1312 /3, 255–261PubMedCrossRefGoogle Scholar
  12. 12.
    Galve-de-Rochemonteix, B., Ntcod, L.P., Dayer J.M. (1996) Tumor necrosis factor soluble receptor 75: the principal receptor form released by human alveolar macrophages and monocytes in the presence of interferon(gamma). Am. J. Respir. Cell. Mol. Biol. 14 /3, 279–87PubMedCrossRefGoogle Scholar
  13. 13.
    Porteu, F., Brockhaus, M., Wallach, D., Engelmann, H. and Nathan, C.F. (1991) Human neutrophil elastase releases a ligand-binding fragment from the 75-kDa Tumor Necrosis Factor (TNF) receptor. J. Biol. Chem. 266/28,18846/-18853Google Scholar
  14. 14.
    Kayagaki, N., Kawasaki, A., Ebate, T., Ohmoto, H., Ikeda, S., Inoue, S., Yoshino, K., Okomura. K. and Yagita, H. (1995) Metalloproteinase-mediated release of human Fas-ligand J. Exp. Med. 182 1777–1783Google Scholar
  15. 15.
    Crowe, P., Walter, B.N., Mohler, K.M., Otten-Evans, C., Black, R.A., Ware, C.F. (1995) A metalloproteinase inhibitor blocks shedding of 80kD TNF receptor and TNF processing in t-lymphocytes. J. Exp. Med. 181. 1205–1210Google Scholar
  16. 16.
    Müllberg, J., Durie, F.H., Otten-Evans, C. Alderson, M.R., Rose,-John, St., Cosman, D., Black. R.A. and Mohler, K., M. (1995) A metalloproteinase inhibitor blocks the shedding of then 1L-6 receptor and the TNF receptor. J. Immunol. 155, 5198–5205Google Scholar
  17. 17.
    Campbell, E.J., Cury, J.D., Shapiro, S.D., Goldberg, G.I. and Welgus, H.G. (1991) Neutral proteinases of human mononuclear phagocytes, J. Immunol. 146, 1286–1293PubMedGoogle Scholar
  18. 18.
    Trabandt, A., Gay, R.E., Fassbender, H.-G. and Gay, S. (1991) Cathepsin B in synovial cells at the site of joint destruction in rheumatoid arthritis. Arthritis and Rheumatism 34, 1444–1451PubMedCrossRefGoogle Scholar
  19. 19.
    Nadel, J.A. (1991) Role of mast cell and neutrophil proteases in airway secretion. Am. Rev. Respir. Dis. 144, 48–51CrossRefGoogle Scholar
  20. 20.
    Olssen, I. and Venge, S. 1974) Cationic proteins of human granulocytes. 11. Separation of the cationic proteins of granules of leukemic myeloid cells. Blood 44, 235–246 (1974)Google Scholar
  21. 21.
    Travis, J (1978) Neutral proteinases of human polymorhonuclear leukocytes, Biochemistry, physiology and clinical significance. Eds. Havemann, K., Janoff, A. Urban & Schwartzenberg Baltimore 118–1128Google Scholar
  22. 22.
    Johnson, D and Travis. J. (1978) The oxidative inactivation of human a,-protemase inhibitor. Further evidence for methionine at the reactive center. J. Biol. Chem. 254, 4022–4026Google Scholar
  23. 23.
    Chidwick, K., Winyard. P.G., Zhang, Z., Farrell. A.D., Blake, D.R. (1991) Inactivation of the elastase inhibitory activity of ai-antìtrypsin in fresh samples of synovial fluid from patients with rheumatoid arthritis. Ann. Rheumat. Dis. 50, 915–916Google Scholar
  24. 24.
    Michaelis, J., Vissers, M.C.M. and Winterbourn, C.C. (1990) Human neutrophil collagenase cleaves a,-antitrypsin. Biochem. J. 270, 809–814Google Scholar
  25. 25.
    Janusz, M.J., Doherty, N.S.: Degradation of cartilage matrix proteoglycan by human neutrophils involves both elastase and cathepsin G. J. Immunol. 146, 3922–3928 (1991)PubMedGoogle Scholar
  26. 26.
    Eckle, I., Seitz, R., Egbring, R., Kolb, G. and Havemann, K. (1991) Protein C degradation in vitro by neutrophil elastase. Biol. Chem. Hoppe-Seyler 372, 1007–1013Google Scholar
  27. 27.
    Turkington, S.T. (1991) Degradation of human factor X by human polymorphonuclear leucocyte cathepsin G and elastase. Hämostasis 21, 111–116Google Scholar
  28. 28.
    Padrines, M. Wolf, M., Walz, A. and Baggiolini, M. (1994) Interleukin-8 processing by neutrophil diastase, cathepsin G and proteinase-3. FEBS Letters 352, 23I - 235Google Scholar
  29. 29.
    Hannah, S. and Ryle, A.S. (1991) Proteolysis of lung elasttn by human neutrophil elastase. Biochemical Society Transactions 19, 294Google Scholar
  30. 30.
    Eckle, I., Kolb. G. and Havemann. K. (1991) inhibition of neutrophil chernotaxis by elastase-generated IgG fragments. Scand. J. Immunol 34. 359–364Google Scholar
  31. 31.
    Kanayama, N., Terao, ‘F.. Inactivation of human tumor cell pro-urokinase by granulocyte elastase. Jpn. J. Cancer Res. 81. 994–1002 (1990)PubMedGoogle Scholar
  32. 32.
    Janotf, A (1985) Elastase to tissue injury. Ann. Rev. Med. 36, 207–216Google Scholar
  33. 33.
    Brown, D.M., Brown, G.M., Macnee, W. and Donaldson, K. (1992) Activated human peripheral blood neutrophils produce epithelial injury and fibronectin breakdown in vitro. Inflammation 16. 21–30PubMedCrossRefGoogle Scholar
  34. 34.
    Jochum. M., Gippner-Steppert. C., Machleidt, W. and Fritz, H. (1994) The role of phagocyte protemases and proteinase inhibitors in multiple organ failure. Am. J. Cru. Care Med. 150. 5123–130Google Scholar
  35. 35.
    Johnstone, R.M. (1996) Cleavage of the transferrin receptor by human granulocytes: differential proteolysis of the exosome-bound TFR. J. Cell. Physiol. 168 /2, 333–345PubMedCrossRefGoogle Scholar
  36. 36.
    Bjornberg, F., Lantz, M., Gullberg, U. (1995) Metalloproteases and serineproteases are involved in the cleavage of the two tumour necrosis factor (TNF) receptors to soluble forms in the myeloid cell Imes 0937 and THP-1. Scand-J-Immunol. 42 /4. 418–24PubMedCrossRefGoogle Scholar
  37. 37.
    Nakajima, K., Power, J.C., Ashe. B.M. and Zimmermann, M. (1979) Mapping the extended substrate binding site of cathepsin G and human leukocyte elastase. J. Biol.Chem. 254. 4027–4032Google Scholar
  38. 38.
    Leonhard, W.J., Deppner. J.M., Crabtree, G.R., Rudikoff, S., Pumphrey, J.. Robb. R.J., Kronke. M.. Svetlik, P.B.. Pfeffer, N.J., Waldmann, T.A. (1994) Molecular cloning and expression of cDNA for the human interleukin-2 receptor. Nature 311, 626–631CrossRefGoogle Scholar
  39. 39.
    Cosman, D. Cerreti, D.P., Larsen, A., Park, L., March, C., Dower, S., Gillis, S. and Urdal, D. (1984) Cloning, sequence and expression of the human interleukin-2 receptor. Nature 312, 768–771PubMedCrossRefGoogle Scholar
  40. 40.
    Nikaido. T., Shimizu, A., Ishida, N., Sabe, H., Teshigwara, K., Maeda, M.. Uchiyama.. Yodoi, J., Honlo. (1984) Molecular cloning of cDNA encoding human interelukin-2 receptor. Nature 311, 631–135CrossRefGoogle Scholar
  41. 41.
    Yamasaki, K., Taga, T., Hirata, Y, Yamata, H., Kawanishi, Y., Seed, B., Taniguchi, T., Hirano, T., Kishimoto, T. (1988) Cloning and expression of the human interleukin-6 (BSF-2/IFN-l32) receptor Science 241 825–828Google Scholar
  42. 42.
    Döring, G., Frank, F., Boucher, C., Herbert, Silvia, Fleischer, B. and Bellon, G. (1995) Cleavage of the lymphocyte surface antigens CD2, CD4, and CD8 by polymorphonuclear leukocyte elastase and cathepsin G in Patients with cystic fibrosis. J. Immunol. 154, 4842–4850PubMedGoogle Scholar
  43. 43.
    Ugnotz, R.A., Kelly, B., Davis, R.J. and Massague, J. (1986) Biologically active prccursorfor transforming growzh factor type alpha released by retroviral transformed cells. Proc. Natl. Acad. Sci. 83 /17 6307–6311CrossRefGoogle Scholar
  44. 44.
    Hibi, M., Murakami, M., Saito, M., Hirano, T., Taga, T. and Kishimoto, T. (1990) Molecular cloning and expression of an IL-6 signal transducer, gp 130. Cell 63, 1149–1157PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • U. Bank
    • 1
  • D. Reinhold
    • 1
  • D. Kunz
    • 2
  • S. Ansorge
    • 1
  1. 1.Institute of Experimental Internal MedicineCenter of Internal MedicineMagdeburgGermany
  2. 2.Institute of Clinical ChemistryOtto-von-Guericke-University MagdeburgMagdeburgGermany

Personalised recommendations