Advertisement

Mechanisms of Noradrenergic Modulation of Dentate Gyrus Long-Term Plasticity

  • P. K. Stanton
  • U. Heinemann

Abstract

Since D. O. Hebb (1949) inaugurated the search for cellular mechanisms underlying brain function and behavioral plasticity, many strategies and model systems have been employed. One fruitful strategy has been the search for specific chemical transmitters able to modulate firing patterns of neurons in specific pathways for long periods of time. A promising model system has arisen from the discovery that brief, high-frequency stimulation of afferent pathways in the hippocampus leads to long-lasting enhancements of neuronal excitability whose persistence approach that of conditioned behavior (Bliss and Gardner-Medwin, 1973; Douglas and Goddard, 1975). The enhancement of evoked potentials after one such tetanus has been termed long-term potentiation (LTP; Bliss and Lømo, 1973; Schwartzkroin and Wester, 1975; Alger and Teyler, 1976), and repeated application of such stimulation yields the seizure state known as kindled epilepsy (Goddard et al., 1969). In both cases, the location of such long-lasting plasticity in a brain structure implicated in memory processes (Milner, 1972; Berger, 1984), its production by brief (a few seconds) stimulation within the physiological range (10–400 Hz), and the long duration of the changes (months in vivo) all led to extreme interest in their underlying mechanisms (Swanson et al., 1982).

Keywords

NMDA Receptor Granule Cell Dentate Gyrus Hippocampal Slice Granule Cell Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alger, B. E., and Teyler, T. J., 1976, Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the hippocampal slice, Brain Res. 110: 463–480.PubMedCrossRefGoogle Scholar
  2. Berger, T. W., 1984, Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning, Science 224: 627–630.PubMedCrossRefGoogle Scholar
  3. Bliss, T. V. P., and Gardner-Medwin, A. R., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path, J. Physiol. (Lond.) 232: 357–374.Google Scholar
  4. Bliss, T. V. P., and Lmo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. (Lond.) 232: 331–356.Google Scholar
  5. Bliss, T. V. P., Goddard, G. V., and Riives, M., 1983, Reduction of long-term potentiation in the dentate gyros of the rat following selective depletion of monoamines, J. Physiol. (Gond.) 334: 475–491.Google Scholar
  6. Collingridge, G. L., Kehl, S. J., and McLennan, H., 1983, Excitatory amino acids in synaptic transmission in the Schaffer collateral—commissural pathway of the rat hippocampus, J. Physiol. (Lond.) 334: 33–46.Google Scholar
  7. Crow, T. J., and Wendlandt, S., 1976, Impaired acquisition of a passive avoidance response after lesions induced in the locus coeruleus by 6-OH-dopamine, Nature (Land.) 259: 42–44.CrossRefGoogle Scholar
  8. Douglas, R. M., and Goddard, G. V., 1975, Long-term potentiation of the perforant path—granule cell synapse in the rat hippocampus, Brain Res. 86: 205–215.PubMedCrossRefGoogle Scholar
  9. Everitt, B. J., Robbins, T. W., Gaskin, M., and Fray, P. J., 1983, The effects of lesions to ascending noradrenergic neurons on discrimination learning and performance in the rat, Neuroscience 10: 397–410.PubMedCrossRefGoogle Scholar
  10. Fricke, R. A., and Prince, D. A., 1984, Electrophysiology of dentate gyros granule cells, J. Neurophysiol. 51: 195–209.PubMedGoogle Scholar
  11. Goddard, G. V., McIntyre, D. C., and Leech, C. K., 1969, A permanent change in brain function resulting from daily electrical stimulation, Exp. Neurol. 25: 295–300.PubMedCrossRefGoogle Scholar
  12. Haas, H. L., and Konnerth, A., 1983, Histamine and noradrenaline decrease-calcium-activated potassium conductance in hippocampal pyramidal cells, Nature (Land.) 302: 432–434.CrossRefGoogle Scholar
  13. Harris, E. W., Ganong, A. H. and Cotman, C. W., 1984, Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors, Brain Res. 323: 132–137.PubMedCrossRefGoogle Scholar
  14. Hebb, D. O., 1949, The Organization of Behavior, John Wiley and Sons, New York.Google Scholar
  15. Heinemann, U., Lux, H. D., and Gutnick, M. J., 1977, Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat, Exp. Brain Res. 27: 237–243.PubMedGoogle Scholar
  16. Herron, C. E., Lester, R. A. J., Coan, E. J., and Collingridge, G. L., 1985, Intracellular demonstration of an N-methyl-D-aspartate receptor mediated component of synaptic transmission in the rat hippocampus, Neurosci. Lett. 60: 19–23.PubMedCrossRefGoogle Scholar
  17. Hotson, J. R., Prince, D. A., and Schwartzkroin, P. A., 1979, Anomalous rectification in hippocampal neurons, J. Neurophysiol. 42: 889–895.PubMedGoogle Scholar
  18. Langmoen, I. A., Segal, M., and Andersen, P., 1981, Mechanisms of norepinephrine actions on hippocampal pyramidal cells in vitro, Brain Res. 208: 349–362.PubMedCrossRefGoogle Scholar
  19. Lux, H. D., and Heinemann, U., 1982, Consequences of calcium-electrogenesis for the generation of paroxysmal depolarization shift, in: Epilepsy and Motor System ( E. J. Speckmann and H. Elger, eds.), Urban and Schwarzenberg, Munich, pp. 101–119.Google Scholar
  20. Madison, D. V., and Nicoll, R. A., 1982, Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus, Nature (Lond.) 299: 636–638.CrossRefGoogle Scholar
  21. Mason, S. T., and Iversen, S. D., 1977, Effects of selective noradrenaline loss on behavioral inhibition in the rat, J. Comp. Physiol. Psychol. 91: 165–173.PubMedCrossRefGoogle Scholar
  22. McIntyre, D. C., and Edson, N., 1982, Effect of norepinephrine depletion on dorsal hippocampus kindling in rats, Exp. Neurol. 77: 700–704.PubMedCrossRefGoogle Scholar
  23. Milner, B., 1972, Disorders of learning and memory after temporal lobe lesions in man, Clin. Neurosurg. 19: 421–446.PubMedGoogle Scholar
  24. Mody, I., and Heinemann, U., 1987, NMDA receptors of dentate gyms granule cells participate in synaptic transmission following kindling, Nature (Land.) 326: 701–704.CrossRefGoogle Scholar
  25. Mody, I., Lambert, J. D. C., and Heinemann, U., 1987, Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices, J. Neurophysiol. 57: 869–888.PubMedGoogle Scholar
  26. Mueller A. L., Hoffer, B. J., and Dunwiddie, T. V., 1981, Noradrenergic responses in rat hippocampus: Evidence for mediation by a and ß receptors in the in vitro slice, Brain Res. 214: 113–126.PubMedCrossRefGoogle Scholar
  27. Neuman, R. S., and Harley, C. W., 1983, Long-lasting potentiation of the dentate gyms population spike by norepinephrine, Brain Res. 273: 162–165.PubMedCrossRefGoogle Scholar
  28. Peterson, D. W., Collins, J. F., and Bradford, H. F., 1984, Anticonvulsant action of amino acid antagonists against kindled hippocampal seizures, Brain Res. 311: 176–180.PubMedCrossRefGoogle Scholar
  29. Puil, E., and Werman, R., 1981, Internal cesium ions block various K conductances in spinal motoneurons, Can. J. Physiol. Pharmacol. 59: 1280–1284.PubMedCrossRefGoogle Scholar
  30. Schwartzkroin, P. A., and Wester, K., 1975, Long-lasting facilitation of a synaptic potential following tetanization in the in vitro hippocampal slice, Brain Res. 89: 107–119.PubMedCrossRefGoogle Scholar
  31. Segal, M., 1982, Norepinephrine modulates reactivity of hippocampal cells to chemical stimulation in vitro, Exp. Neurol. 77: 86–93.PubMedCrossRefGoogle Scholar
  32. Segal, M., and Bloom, F. E., 1974, The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies, Brain Res. 77: 79–97.CrossRefGoogle Scholar
  33. Stanton, P. K., and Heinemann, U., 1986, Norepinephrine enhances stimulus-evoked Ca’- ` and K+ concentration changes in dentate granule cell layer, Neurosci. Lett. 67: 233–238.PubMedCrossRefGoogle Scholar
  34. Stanton, P. K., Jones, R. S. G., Mody, I., and Heinemann, U., 1987, Epileptiform activity induced by lowering extracellular [Mg2+] in combined hippocampal—entorhinal cortex slices: Modulation by receptors for norepinephrine and N-methyl-D-aspartate, Epilepsy Res. 1: 53–62.PubMedCrossRefGoogle Scholar
  35. Stanton, P. K., and Sarvey, J. M., 1985a, Depletion of norepinephrine, but not serotonin, reduces long-term potentiation in the dentate of rat hippocampal slices, J. Neurosci. 5: 2169–2176.PubMedGoogle Scholar
  36. Stanton, P. K., and Sarvey, J. M., 1985b, The effect of high-frequency electrical stimulation and norepinephrine on cyclic AMP levels in normal versus norepinephrine-depleted rat hippocampal slices, Brain Res. 358: 343–348.PubMedCrossRefGoogle Scholar
  37. Stanton, P. K., and Sarvey, J. M., 1985c, Blockade of norepinephrine-induced long-lasting potentiation in the hippocampal dentate gyms by an inhibitor of protein synthesis, Brain Res. 361: 276–283.PubMedCrossRefGoogle Scholar
  38. Stein, L., Beluzzi, J. D., and Wise, C. D., 1975, Memory enhancement by central administration of norepinephrine, Brain Res. 84: 329–335.PubMedCrossRefGoogle Scholar
  39. Swanson, L. W., Teyler, T. J., and Thompson, R. F., 1982, Hippocampal long-term potentiation: Mechanisms and implications for memory, Neurosci. Res. Prog. Bull. 20: 612–769.Google Scholar
  40. Wadman, W. J., Heinemann, U., Konnerth, A., and Neuhaus, S., 1985, Hippocampal slices of kindled rats reveal calcium involvement in epileptogenesis, Exp. Brain Res. 57: 404–407.PubMedCrossRefGoogle Scholar
  41. Walther, H., Lambert, J. D. C., Jones, R. S. G., Heinemann, U., and Hamon, B., 1986, Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion of low magnesium medium, Neurosci. Lett. 69: 156–161.PubMedCrossRefGoogle Scholar
  42. Wigstrom, H., and Gustafsson, B., 1984, A possible correlate of the postsynaptic condition for long-lasting potentiation in the guinea pig hippocampus in vitro, Neurosci. Lett. 44: 327–332.PubMedCrossRefGoogle Scholar
  43. Zornetzer, S. F., 1984, Brain substrates of senescent memory decline, in: Neuropsychology of Memory, Guilford, New York, pp. 588–600.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • P. K. Stanton
    • 1
  • U. Heinemann
    • 2
  1. 1.Department of BiophysicsJohn Hopkins UniversityBaltimoreUSA
  2. 2.Institute for Normal and Pathological PhysiologyUniversity of CologneCologne 41Federal Republic of Germany

Personalised recommendations