Skip to main content

Norepinephrine-Dependent Neuronal Plasticity in Kitten Visual Cortex

  • Chapter

Abstract

Higher mammals such as cats, monkeys, and humans have a pair of frontal eyes. Visual scientists want to understand this simple fact in evolution as a necessary condition for having stereopsis, or the three-dimensional depth sensation in vision. We look at a single object in space using the two eyes. An image of the object in visual space is encoded into a sequence of electrical impulses at the two retinas, and the coded information is sent upward to the visual centers through the two deliberately separated channels in the subcortical structures. A set of impulses impinge on a single cell for the first time in the occipital area of the neocortex and have somehow to be integrated and decoded in order to create the three-dimensional visual sensation of the object at which we are looking. This is thought to be the neuronal scenario of having stereopsis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrien, J., Blanc, G., Buisseret, P., Frégnac, Y., Gary-Bobo, E., Imbert, M., Tassin, J.-P., and Trotter, Y., 1985, Noradrenaline and functional plasticity in kitten visual cortex: A re-examination, J. Physiol. (Lond.) 367: 73–98.

    CAS  Google Scholar 

  • Aoki, C., and Siekevitz, P., 1985, Ontogenic changes in the cyclic adenosine 3′,5′-monophosphate stimulatable phosphorylation of cat visual cortex proteins, particularly of microtubule-associated protein 2 (MAP2): Effects of normal and dark rearing and of the exposure to light, J. Neurosci. 5: 2465–2483.

    PubMed  CAS  Google Scholar 

  • Bear, M. F., and Daniels, J. D., 1983, The plastic response to monocular deprivation persists in kitten visual cortex after chronic depletion of norepinephrine, J. Neurosci. 3: 407–416.

    PubMed  CAS  Google Scholar 

  • Bear, M. F., and Singer, W., 1986, Modulation of visual cortical plasticity by acetylcholine and noradrenaline, Nature 320: 172–176.

    Article  PubMed  CAS  Google Scholar 

  • Bear, M. F., Paradiso, M. A., Schwartz, M., Nelson, S. B., Carnes, K. M., and Daniels, J. D., 1983, Two methods of catecholamine depletion in kitten visual cortex yield different effects on plasticity, Nature 302: 245–247.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, G. S., Schoenfeld, T. A., and Vallee, R. B., 1984, Widespread distribution of the major polypeptide component of MAP! (microtubule-associated protein 1) in the nervous system, J. Cell Biol. 98: 320–330.

    Article  PubMed  CAS  Google Scholar 

  • Caceres, A., Binder, L. I., Payne, M. R., Bender, P., Rebhun, L., and Steward, O., 1984, Differential subcellular localization of tubulin and the microtubule-associated protein MAP2 in brain tissue as revealed by immunocytochemistry with monoclonal hybridoma antibodies, J. Neurosci. 4: 394–410.

    PubMed  CAS  Google Scholar 

  • Daw, N. W., Rader, R. K., Robertson, T. W., and Ariel, M., 1983, Effects of 6-hydroxydopamine on visual deprivation in kitten striate cortex, J. Neurosci. 3: 907–914.

    PubMed  CAS  Google Scholar 

  • Daw, N. W., Robertson, T. W., Rader, R. K., Videen, T. O., and Coscia, C. J., 1984, Substantial reduction in cortical noradrenaline by lesion of adrenergic pathway does not prevent effects of monocular deprivation, J. Neurosci. 4: 1354–1360.

    PubMed  CAS  Google Scholar 

  • Daw, N. W., Videen, T. O., Parkinson, D., and Rader, R. K., 1985a, DSP-4 [N-(2-chloroethyl)-N-ethyl-2bromobenzylamine] depletes noradrenaline in kitten visual cortex without altering the effects of monocular deprivation, J. Neurosci. 5: 1925–1933.

    PubMed  CAS  Google Scholar 

  • Daw, N. W., Videen, T. O., Robertson, T., and Rader, R. K., 1985b, An evaluation of the hypothesis that noradrenaline affects plasticity in the developing visual cortex, in: The Visual System ( A. Fein, ed.), Alan R. Liss, New York, pp. 133–144.

    Google Scholar 

  • Daw, N. W., Videen, T. O., Rader, R. K., Robertson, T. W., and Coscia, C. J., 1985c, Substantial reduction of noradrenaline in kitten visual cortex by intraventricular injection of 6-hydroxydopamine does not always prevent ocular dominance shift after monocular deprivation, Exp. Brain Res. 59: 30–35.

    Article  PubMed  CAS  Google Scholar 

  • De Camilli, P., Milles, P. E., Navone, F., Theurkauf, W. E., and Vallee, R. B., 1984, Patterns of MAP2 distribution in the nervous system studied by immunofluorescence, Neuroscience 11: 819–846.

    Article  Google Scholar 

  • Frégnac, Y., and Imbert, M., 1984, Development of neuronal selectivity in primary visual cortex of cat, Physiol. Rev. 64: 325–434.

    PubMed  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. (London.) 160: 106–154.

    CAS  Google Scholar 

  • Huber, G., and Matus, A., 1984, Differences in the cellular distributions of two microtubule-associated proteins, MAPI and MAP2, in rat brain, J. Neurosci. 4: 151–160.

    PubMed  CAS  Google Scholar 

  • Imamura, K., and Kasamatsu, T., 1986, Noradrenergic and cholinergic interaction in ocular dominance plasticity, Soc. Neurosci. Abstr. 12: 1372.

    Google Scholar 

  • Itakura, T., Kasamatsu, T., and Pettigrew, J. D., 1981, Norepinephrine-containing terminals in kitten visual cortex: Laminar distribution and ultrastructure, Neuroscience 6: 159–175.

    Article  PubMed  CAS  Google Scholar 

  • Jonsson, G., 1980, Chemical neurotoxins as denervation tools in neurobiology, Annu. Rev. Neurosci. 3: 169–187.

    Article  PubMed  CAS  Google Scholar 

  • Jonsson, G., and Kasamatsu, T., 1983, Maturation of monoamine neurotransmitters and receptors in cat occipital cortex during postnatal critical period, Exp. Brain Res. 50: 449–458.

    PubMed  CAS  Google Scholar 

  • Kasamatsu, T., 1980, A possible role for cyclic nucleotides in plasticity of visual cortex, Soc. Neurosci. Abstr. 6: 494.

    Google Scholar 

  • Kasamatsu, T., 1983, Neuronal plasticity maintained by the central norepinephrine system in the cat visual cortex, in: Progress in Psychobiology and Physiological Psychology, Vol. 10 ( J. M. Sprague and A. N. Epstein, eds.), Academic Press, New York, pp. 1–112.

    Google Scholar 

  • Kasamatsu, T., 1986, Changes in ocular dominance of adult cats following monocular lid suture: The effects of directly infused forskolin, Invest. Ophthalmol. Vis. Sci. Suppl. 27: 153.

    Google Scholar 

  • Kasamatsu, T., 1987, Norepinephrine hypothesis for visual cortical plasticity: Thesis, antithesis, and recent development, in: Current Topics in Developmental Biology, Vol. 21 ( R. K. Hunt, A. A. Moscona, and A. Monroy, eds.), Academic Press, Orlando, pp. 367–389.

    Google Scholar 

  • Kasamatsu, T., and Pettigrew, J. D., 1976, Depletion of brain catecholamine: Failure of ocular dominance shift after monocular occlusion in kittens, Science 194: 206–209.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., and Pettigrew, J. D., 1979, Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine, J. Comp. Neurol. 185: 139–162.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., and Shirokawa, T., 1985, Involvement of 3-adrenoreceptors in the shift of ocular dominance after monocular deprivation, Exp. Brain Res. 59: 507–514.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., Pettigrew, J. D., and Ary, M., 1979, Restoration of visual cortical plasticity by local micro-perfusion of norepinephrine, J. Comp. Neurol. 185: 163–182.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., Itakura, T., and Jonsson, G., 1981, Intracortical spread of exogenous catecholamines: Effective concentrations for modifying cortical plasticity, J. Pharmacol. Exp. Ther. 217: 841–850.

    PubMed  CAS  Google Scholar 

  • Kasamatsu, T., Itakura, T., Jonsson, G., Heggelund, P., Pettigrew, J. D., Nakai, K., Watabe, K., Kuppermann, B. D., and Ary, M., 1984, Neuronal plasticity in cat visual cortex: A proposed role for the central noradrenaline system, in: Monoamine Innervation of Cerebral Cortex ( L. Descarries, T. Reader, and H. H. Jasper, eds.), Alan R. Liss, New York, pp. 301–319.

    Google Scholar 

  • Kasamatsu, T., Watabe, K., Heggelund, P., and Schöller, E., 1985, Plasticity in cat visual cortex restored by electrical stimulation of the locus coeruleus, Neurosci. Res. 2: 365–386.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa, R. M., and Jacobowitz, D. M., 1974, Pharmacological action of 6-hydroxydopamine, Pharmacol. Rev. 26: 199–288.

    PubMed  CAS  Google Scholar 

  • Nakai, K., and Kasamatsu, T., 1984, Accelerated regeneration of central catecholamine fibers in cat occipital cortex: Effects of substance P, Brain Res. 323: 364–379.

    Article  Google Scholar 

  • Nakai, K., Jonsson, G., and Kasamatsu, T., 1981, Regrowth of central catecholaminergic fibers in cat visual cortex following localized lesion with 6-hydroxydopamine, Soc. Neurosci. Abstr. 7: 675.

    Google Scholar 

  • Nakai, K., Jonsson, G., and Kasamatsu, T., 1987, Norepinephrinergic reinnervation of cat occipital cortex following localized lesions with 6-hydroxydopamine, Neurosci. Res. 4: 433–453.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, S. B., Schwartz, M., and Daniels, J. D., 1985, Clonidine and cortical plasticity: Possible evidence for noradrenergic involvement, Dev. Brain Res. 23: 39–50.

    Article  CAS  Google Scholar 

  • Paradiso, M. A., Bear, M. F., and Daniels, J. D., 1983, Effects of intracortical infusion of 6-hydroxydopamine on the response of kitten visual cortex to monocular deprivation, Exp. Brain Res. 51: 413–422.

    Article  CAS  Google Scholar 

  • Pettigrew, J. D., and Kasamatsu, T., 1978, Local perfusion of norepinephrine maintains visual cortical plasticity, Nature 271: 761–763.

    Article  PubMed  CAS  Google Scholar 

  • Shirokawa, T., and Kasamatsu, T., 1986, Concentration-dependent suppression by 3-adrenergic antagonists of the shift in ocular dominance following monocular deprivation in kitten visual cortex, Neuroscience 18: 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Trombley, P., Allen, E. E., Soyke, J. Blaha, C. D., Lane, R. F., and Gordon, B., 1986, Doses of 6hydroxydopamine sufficient to deplete norepinephrine are not sufficient to decrease plasticity in the visual cortex, J. Neurosci. 6: 266–273.

    CAS  Google Scholar 

  • Wiesel, T. N., and Hubel, D. H., 1963, Single-cell responses in striate cortex of kittens deprived of vision in one eye, J. Neurophysiol. 26: 1003–1017.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kasamatsu, T., Shirokawa, T. (1988). Norepinephrine-Dependent Neuronal Plasticity in Kitten Visual Cortex. In: Woody, C.D., Alkon, D.L., McGaugh, J.L. (eds) Cellular Mechanisms of Conditioning and Behavioral Plasticity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9610-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9610-0_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9612-4

  • Online ISBN: 978-1-4757-9610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics