Short-Term and Long-Term Plasticity Mediated by Changes in Responding Synapses at Crustacean Neuromuscular Junctions

  • H. L. Atwood
  • J. M. Wojtowicz
  • F. W. Y. Tse


Neuromuscular junctions of crustaceans have been frequently employed as model systems to investigate mechanisms of synaptic plasticity (reviews by Atwood, 1976, 1982). The large size of the individual motor neurons and their limited number permit investigations of synaptic physiology and morphology at the level of individual nerve terminals and even of individual synapses. Furthermore, crustacean neuromuscular junctions display physiological properties akin to those of synapses in the central nervous systems of both vertebrate and invertebrate species. Several forms of short-term and long-term synaptic plasticity have been described, and cellular mechanisms of these are under investigation.


Nerve Terminal Neuromuscular Junction Transmitter Release Presynaptic Inhibition Motor Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atwood, H. L., 1976, Organization and synaptic physiology of crustacean neuromuscular systems, Prog. Neurobiol. 7: 291–391.PubMedCrossRefGoogle Scholar
  2. Atwood, H. L., 1982, Synapses and neurotransmitters, in: The Biology of Crustacea, Vol. 3 ( H. L. Atwood, and D. C. Sandeman, eds.), Academic Press, New York, pp. 105–150.Google Scholar
  3. Atwood, H. L., and Bittner, G. D., 1971, Matching of excitatory and inhibitory inputs to crustacean muscle fibers, J. Neurophysiol. 34: 157–170.PubMedGoogle Scholar
  4. Atwood, H. L., and Marin, L., 1983, Ultrastructure of synapses with different transmitter-releasing characteristics on motor axon terminals of a crab, Hyas areneas, Cell Tissue Res. 231: 103–115.PubMedCrossRefGoogle Scholar
  5. Atwood, H. L., and Morin, W. A., 1970, Neuromuscular and axoaxonal synapses of the crayfish opener muscle, J. Ultrastruct. Res. 32: 351–369.PubMedCrossRefGoogle Scholar
  6. Atwood, H. L., and Wojtowicz, J. M., 1986, Short-term and long-term plasticity at crustacean motor synapses, Int. Rev. Neurobiol. 28: 275–362.PubMedCrossRefGoogle Scholar
  7. Atwood, H. L., Swenarchuk, L. E., and Gruenwald, C. R., 1975, Long-term synaptic facilitation during sodium accumulation in nerve terminals, Brain Res. 100: 198–204.PubMedCrossRefGoogle Scholar
  8. Atwood, H. L., Stevens, J. K., and Marin, L., 1984, Axoaxonal synapse location and consequences for presynaptic inhibition in crustacean motor axon terminals, J. Comp. Neurol. 225: 64–74.PubMedCrossRefGoogle Scholar
  9. Atwood, H. L., Lnenicka, G. A., and Marin, L., 1985, Morphological responses to conditioning stimulation in a phasic motor axon of crayfish (Procambarus clarkii), J. Physiol. (Lond.) 365: 26 P.Google Scholar
  10. Baxter, D. A., and Bittner, G. D., 1981, Intracellular recordings from crustacean motor axons during presynaptic inhibition, Brain Res. 223: 422–428.PubMedCrossRefGoogle Scholar
  11. Breen, C., and Atwood, H. L., 1983, Octopamine—a neurohormone with presynaptic activity-dependent effects at crayfish neuromuscular junctions, Nature 303: 716–718.PubMedCrossRefGoogle Scholar
  12. Brown, H. B., Perkel, D. H., and Feldman, M. W., 1976, Evoked neurotransmitter release: Statistical effects of nonuniformity and nonstationarity, Proc. Natl. Acad. Sci. U.S.A. 73: 2913–2917.PubMedCrossRefGoogle Scholar
  13. Bryan, J. S., and Atwood, H. L., 1981, Two types of synaptic depression at synapses of a single crustacean motor axon, Mar. Behay. Physiol. 8: 99–121.CrossRefGoogle Scholar
  14. Dixon, D., and Atwood, H. L., 1985, Crayfish motor nerve terminal’s response to serotonin examined by intracellular microelectrode, J. Neurobiol. 16: 409–424.PubMedCrossRefGoogle Scholar
  15. Dudel, J., 1965a, Facilitatory effects of 5-hydroxy-tryptamine on the crayfish neuromuscular junction, Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmacol. 249: 515–528.PubMedGoogle Scholar
  16. Dudel, J., 1965b, The mechanism of presynaptic inhibition at the crayfish neuromuscular junction, Pflugers Arch. 284: 66–80.CrossRefGoogle Scholar
  17. Dudel, J., and Kuffler, S. W., 1961, Presynaptic inhibition at the crayfish neuromuscular junction, J. Physiol. (Lond.) 155: 543–562.Google Scholar
  18. Florey, E., and Rathmayer, M., 1978, The effects of octopamine and other amines on the heart and on neuromuscular transmission in decapod crustaceans: Further evidence for a role as neurohormone, Comp. Biochem. Physiol. 61C: 229–237.Google Scholar
  19. Fritz, L. C., Atwood, H. L., and Jahromi, S. S., 1980, Lobster neuromuscular junctions treated with black widow spider venom: Correlation between ultrastructure and physiology, J. Neurocytol. 9: 699–721.PubMedCrossRefGoogle Scholar
  20. Fuchs, P. A., and Getting, P. A., 1980, Ionic basis of presynaptic inhibitory potentials at crayfish claw opener, J. Neurophysiol. 43: 1547–1557.PubMedGoogle Scholar
  21. Glusman, S., and Kravitz, E. A., 1982, The action of serotonin on excitatory nerve terminals in lobster nerve–muscle preparations, J. Physiol. (Lond.) 325: 223–241.Google Scholar
  22. Govind, C. K., Meiss, D. E., and Pearce, J., 1982, Differentiation of identifiable lobster neuromuscular synapses during development, J. Neurocytol. 11: 235–247.PubMedCrossRefGoogle Scholar
  23. Hirst, G. D. S., Redman, S. J., and Wong, K., 1981, Post-tetanic potentiation and facilitation of synaptic potentials evoked in cat spinal motoneurones, J. Physiol. (Lond.) 321: 97–109.Google Scholar
  24. Hoyle, G., and Wiersma, C. A. G., 1958, Excitation at neuromuscular junctions in crustacea, J. Physiol. (Lond.) 143: 403–425.Google Scholar
  25. Jack, J. J. B., Redman, S. J., and Wong, K., 1981, Modifications to synaptic transmission at group Ia synapses on cat spinal motoneurones by 4-aminopyridine, J. Physiol. (Lond.) 321: 111–126.Google Scholar
  26. Jacobs, J. R., and Atwood, H. L., 1981, Long term facilitation of tension in crustacean muscle and its modulation by temperature, activity and circulating amines, J. Comp. Physiol. 144: 335–343.CrossRefGoogle Scholar
  27. Jahromi, S. S., and Atwood, H. L., 1974, Three-dimensional ultrastructure of the crayfish neuromuscular apparatus, J. Cell Biol. 63: 599–613.PubMedCrossRefGoogle Scholar
  28. Katz, B., and Miledi, R., 1968, The role of calcium in neuromuscular facilitation, J. Physiol. (Lond.) 195:481– 492.Google Scholar
  29. Korn, H., Mallet, A., Triller, A., and Faber, D. S., 1982, Transmission at a central inhibitory synapse. II. Quantal description of release, with a physical correlate for binomial n, J. Neurophysiol. 48: 679–707.PubMedGoogle Scholar
  30. Kravitz, E. A., Beltz, B., Glusman„ S., Goy, M., Harris-Warrick, R., Johnston, M., Livingstone, M., and, Schwarz, T., 1985, The well-modulated lobster: The roles of serotonin, octopamine, and proctolin in the lobster nervous system, in: Model Neural Networks and Behavior ( A. I. Selverston ed.), Plenum Press, New York, pp. 339–360.Google Scholar
  31. Lnenicka, G. A., and Atwood, H. L., 1985a, Age-dependent long-term adaptation of crayfish phasic motor axon synapses to altered activity, J. Neurosci. 5: 459–467.PubMedGoogle Scholar
  32. Lnenicka, G. A., and Atwood, H. L., 1985b, Long-term facilitation and long-term adaptation at synapses of a crayfish phasic motoneuron, J. Neurobiol. 16: 97–110.PubMedCrossRefGoogle Scholar
  33. Lnenicka, G. A., and Atwood, H. L., 1987, Long-term changes in neuromuscular synapses with altered sensory input to a crayfish mononeuron, Exp. Neurol. (in press).Google Scholar
  34. Lustig, C., Parnas, H., and Segel, L. A., 1986, On the quantal hypothesis of neurotransmitter release: An explanation for the calcium dependence of the binomial parameters, J. Theor. Biol. 120: 205–213.PubMedCrossRefGoogle Scholar
  35. Pamas, H., Dudel, J., and Pamas, I., 1982, Neurotransmitter release and its facilitation in crayfish. 1. Saturation kinetics of release, and of entry and removal of calcium, Pflugers Arch. 393: 1–14.CrossRefGoogle Scholar
  36. Pearce, J., Govind, C. K., and Shivers, R. R., 1986, Intramembranous organization of lobster excitatory neuromuscular synapses, J. Neurocytol. 15: 241–252.PubMedCrossRefGoogle Scholar
  37. Sherman, R. G., and Atwood, H. L., 1971, Synaptic facilitation: Long-term neuromuscular facilitation in crustaceans, Science 171: 1248–1250.PubMedCrossRefGoogle Scholar
  38. Silinsky, E. M., 1985, The biophysical pharmacology of calcium-dependent acetylcholine secretion, Pharmacol. Rev. 37: 81–132.PubMedGoogle Scholar
  39. Smith, D. O., 1983, Variable activation of synaptic release sites at the neuromuscular junction, Exp. Neurol. 80: 520–528.PubMedCrossRefGoogle Scholar
  40. Takeuchi, A., and Takeuchi, N., 1966a, A study of the inhibitory action of gamma-aminobutyric acid on the neuromuscular transmission in the crayfish, J. Physiol. (Lond.) 183: 418–432.Google Scholar
  41. Takeuchi, A., and Takeuchi, N., 1966b, On the permeability of the presynaptic terminal of crayfish neuromuscular junction during synaptic inhibition and the action of gamma-aminobutyric acid, J. Physiol. (Lond.) 183: 433–449.Google Scholar
  42. Tse, F. W., 1986, Presynaptic Inhibition of Crustacean Neuromuscular Synapses, Ph.D. thesis, University of Toronto.Google Scholar
  43. Tse, F. W., and Atwood, H. L., 1986, Presynaptic inhibition at the crustacean neuromuscular junction and elsewhere, News Physiol. Sci. 1: 47–50.Google Scholar
  44. Tse, F. W., Marin, L., and Atwood, H. L., 1987, Focal labeling of terminals with active synapses recorded by an extracellular macro-patch electrode, J. Neurosci. Methods 21: 17–29.PubMedCrossRefGoogle Scholar
  45. Wemig, A., 1972, Changes in statistical parameters during facilitation at the crayfish neuromuscular junction, J. Physiol. (Lond.) 226: 751–759.Google Scholar
  46. Wojtowicz, J. M., and Atwood, H. L., 1985, Correlation of presynaptic and postsynaptic events during establishment of long term facilitation at the crayfish neuromuscular junction, J. Neurophysiol. 54: 220–230.PubMedGoogle Scholar
  47. Wojtowicz, J. M., and Atwood, H. L., 1986, Long-term facilitation alters transmitter releasing properties at the crayfish neuromuscular junction, J. Neurophysiol. 55: 484–498.PubMedGoogle Scholar
  48. Zucker, R. S., 1973, Changes in the statistics of transmitter release during facilitation, J. Physiol. (Lond.) 229: 787–810.Google Scholar
  49. Zucker, R. S., 1982, Processes underlying one form of synaptic plasticity: Facilitation, in: Conditioning ( C. D. Woody, ed.), Plenum Press, New York, pp. 249–264.CrossRefGoogle Scholar
  50. Zucker, R. S., and Bruner, J., 1977, Long-lasting depression and the depletion hypothesis at crayfish neuromuscular junctions, J. Comp. Physiol. 121: 223–240.CrossRefGoogle Scholar
  51. Zucker, R. S., and Lara-Estrella, L. 0., 1983, Post-tetanic decay of evoked and spontaneous transmitter release and a residual-calcium model of synaptic facilitation at crayfish neuromuscular junctions, J. Gen. Physiol. 81: 355–372.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • H. L. Atwood
    • 1
  • J. M. Wojtowicz
    • 1
  • F. W. Y. Tse
    • 1
  1. 1.Department of PhysiologyUniversity of TorontoTorontoCanada

Personalised recommendations