Mammalian Systems for Storing and Retrieving Information

  • John C. Eccles


In the first demonstration of long-term potentiation (LTP) by Bliss and Lømo (1973), the conditioning presynaptic stimulation was a brief tetanus (usually 15 Hz for 15 sec) of the perforating pathway to the fascia dentata (Fig. 1A) of the hippocampus, and the homosynaptic stimulation was by a single stimulus through the same electrode; i.e., it was a homosynaptic LTP. Figure 1B illustrates the extracellular potentials recorded either at the level of the synapses and hence largely a negative wave, a population EPSP, or at the level of the granule cell bodies and hence a favorable site for recording the cell discharges, the negative population spike. In Fig. 1C, four bursts of conditioning stimulations cause the population EPSP to increase to more than double and to remain large 10 hr after the last conditioning tetanus.


Pyramidal Cell Apical Dendrite Retrograde Amnesia Conditioning Stimulation Dentate Granule Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akert, K., Peper, K., and Sandri, C., 1975, Structural organization of motor end plate and central synapses, in: Cholinergic Mechanisms ( P. G. Waser, ed.), Raven Press, New York, pp. 43–57.Google Scholar
  2. Barnes, C. A., and McNaughton, B. L., 1980, Spatial memory and hippocampal synaptic plasticity in senescent and middle-aged rats, in: Psychology of Aging ( D. Stein, ed.), Elsevier/North-Holland, Amsterdam, pp. 253–272.Google Scholar
  3. Bliss, T. V. P., and Dolphin, A. C., 1982, What is the mechanism of long-term potentiation in the hippocampus? Trends Neurosci. 5: 289–290.CrossRefGoogle Scholar
  4. Bliss, T. V. P., and Gardner-Medwin, A. R., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of the perforant path, J. Physiol. (Lond.) 232: 357–374.Google Scholar
  5. Bliss, T. V. P., and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. (Lond.) 232: 331–356.Google Scholar
  6. Bloch, V., 1970, Facts and hypotheses concerning memory consolidation processes, Brain Res. 24: 561–575.PubMedCrossRefGoogle Scholar
  7. Collingridge, G. L., Kehl, S. J., and McLennan, H., 1983, Excitatory amino-acids in synaptic transmission in the Schaffer collateral—commissural pathway of the rat hippocampus. J. Physiol. (Gond.) 334: 33–46.Google Scholar
  8. Dingledine, R., 1983, N-Methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells, J. Physiol. (Lond.) 343: 385–405.Google Scholar
  9. Eccles, J. C., 1981, The modular operation of the cerebral neocortex considered as the material basis of mental events, Neuroscience 6: 1839–1856.PubMedCrossRefGoogle Scholar
  10. Eccles, J. C., 1983, Calcium in long-term potentiation as a model for memory, Neuroscience 10: 1071–1081.PubMedCrossRefGoogle Scholar
  11. Eccles, J. C., 1986, Do mental events cause neural events analogously to the probability fields of quantum mechanics? Proc. R. Soc. Lond. [Biol.] 227: 411–428.CrossRefGoogle Scholar
  12. Feldman, M. L., 1984, Morphology of the neocortical pyramidal neuron, in: Cerebral Cortex, Vol. 1 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 123–200.Google Scholar
  13. Fifkovâ, E., and Anderson, C. L., 1981, Stimulation-induced changes in dimensions of stalks of dendritic spines in dentate molecular layer, Exp. Neurol. 74: 621–627.PubMedCrossRefGoogle Scholar
  14. Fifkovâ, E., and van Harreveld, A., 1977, Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area, J. Neurocytol. 6: 211–230.PubMedCrossRefGoogle Scholar
  15. Fifkovâ, E., Markham, J. A., and Delay, R. J., 1983, Calcium in the spine apparatus of dendritic spines in the dentate molecular layer, Brain Res. 266: 163–168.PubMedCrossRefGoogle Scholar
  16. Fleischhauer, K., and Detzer, K., 1975, Dendritic bundling in the cerebral cortex, in: Advances in Neurology, Vol. 12 ( G. W. Kreutzberg, ed.), Raven Press, New York, pp. 71–77.Google Scholar
  17. Gustafsson, B., and Wigström, H., 1987, Hippocampal long-lasting potentiation produced by pairing single volleys and brief conditioning tetani evoked in separate afferents, J. Neurosci. 6: 1575–1582.Google Scholar
  18. Gustafsson, B., Wigström, H., Abraham, W. C., and Huang, Y.-Y., 1987, Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials, J. Neurosci. (in press).Google Scholar
  19. Jack, J. J. B., Redman, S. J., and Wong, K., 1981, The components of synaptic potentials evoked in cat spinal motoneurones by impulses in.Aile group la afferents, J. Physiol. (Lond.) 321: 65–96.Google Scholar
  20. Korn, H., Triller, A., Mallet, A., and Faber, D. S., 1981, Fluctuating responses at a central synapse: n of binomial fit predicts number of stained presynaptic boutons, Science 213: 898–901.PubMedCrossRefGoogle Scholar
  21. Komhuber, H. H., 1973, Neural control of input into long-term memory: Limbic system and amnestic syndrome in man, in: Memory and Transfer of Information ( H. P. Zippel, ed.), Plenum Press, New York, pp. 122.Google Scholar
  22. Lee, K. S., 1983, Sustained modification of neuronal activity in the hippocampus and cerebral cortex, in: Molecular, Cellular and Behavioural Neurobiology of the Hippocampus ( W. Seifert, ed.), Academic Press, New York, pp. 265–272.Google Scholar
  23. Levy, W. B., and Steward, O., 1979, Synapses as asssociative elements in the hippocampal formation, Brain Res. 175: 233–245.PubMedCrossRefGoogle Scholar
  24. Levy, W. B., and Steward, O., 1983, Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus, Neuroscience 8: 791–797.PubMedCrossRefGoogle Scholar
  25. Lynch, G., and Baudry, M., 1984, The biochemical intermediates in memory formation: A new and specific hypothesis, Science 224: 1057–1063.PubMedCrossRefGoogle Scholar
  26. Lynch, G., Larson, J., Kelso, S., Barrionirevo, G., and Schottler, F., 1983, Intracellular injections of EGTA block induction of hippocampal long-term potentiation, Nature 305: 719–721.PubMedCrossRefGoogle Scholar
  27. Margenau, H., 1984, The Miracle of Existence, Ox Bow Press, Woodbridge, CT.Google Scholar
  28. Marr, D., 1970, A theory for cerebral neocortex, Proc. R. Soc. Lond. [Biol.] 176: 161–234.CrossRefGoogle Scholar
  29. Mayer, M. L., and Westbrook, G. L., 1985, Divalent cation permeability of N-methyl-D-aspartate channels, Soc. Neurosci. Abstr. 11: 7–85.Google Scholar
  30. McNaughton, B. L., 1982, Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms, J. Physiol. (Lond.) 324: 249–262.Google Scholar
  31. McNaughton, B. L., Douglas, R. M., and Goddard, G. V., 1978, Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents, Brain Res. 157: 277–293.PubMedCrossRefGoogle Scholar
  32. Penfield, W., and Perot, P., 1963, The brain’s record of auditory and visual experience, Brain 86: 596–696.CrossRefGoogle Scholar
  33. Roland, P. E., and Friberg, L., 1985, Localization of cortical areas activated by thinking, J. Neurophysiol. 53: 1219–1243.PubMedGoogle Scholar
  34. Roland, P. E., Larsen, B., Lassen, N. A., Skinh$j, E., 1980, Supplementary motor area and other cortical areas in organization of voluntary movements in man, J. Neurophysiol. 43: 118–136.Google Scholar
  35. Squire, L. R., 1982, The neuropsychology of human memory, Annu. Rev. Neurosci. 5: 241–273.PubMedCrossRefGoogle Scholar
  36. Squire, L. R., 1983, The hippocampus and the neuropsychology of memory, in: Molecular, Cellular and Behavioural Neurobiology of the Hippocampus ( W. Seifert, ed.), Academic Press, New York, pp. 491–507.Google Scholar
  37. Szentâgothai, J., 1970, Les circuits neuronaux de l’écorce cérébrale, Bull. Acad. R. Med. Belg. 7: 475–492.Google Scholar
  38. Szentggothai, J., 1978, The neuron network of the cerebral cortex: A functional interpretation, Proc. R. Soc. Lond. [Biol.] 201: 219–248.CrossRefGoogle Scholar
  39. Watkins, J. C., 1984, Excitatory amino acids and central synaptic transmission, Trends Pharmacol. Sci. 5: 373–376.CrossRefGoogle Scholar
  40. Wigström, H., and Gustafsson, B., 1983a, Facilitated induction of hippocampal long-lasting potentiation during blockade of inhibition, Nature 301: 603–604.PubMedCrossRefGoogle Scholar
  41. Wigström, H., and Gustafsson, B., 1983b, Heterosynaptic modulation of homosynaptic long-lasting potentiation in the hippocampal slice, Acta Physiol. Scand. 119: 455–458.PubMedCrossRefGoogle Scholar
  42. Wigström, H., and Gustafsson, B., 1984, A possible correlate of the postsynaptic condition for long-lasting potentiation in the guinea pig hippocampus in vitro, Neurosci. Leu. 44: 327–333.CrossRefGoogle Scholar
  43. Wigström, H., and Gustafsson, B., 1985a, Facilitation of hippocampal long-lasting potentiation by GABA antagonists, Acta Physiol. Scand. 125: 159–172.PubMedCrossRefGoogle Scholar
  44. Wigström, H., and Gustafsson, B., 1985b, On long-asting potentiation in the hippocampus: A proposed mechanism for its dependence on coincident pre-and postsynaptic activity, Acta Physiol. Scand. 123: 519–522.PubMedCrossRefGoogle Scholar
  45. Wigström, H., Gustafsson, B., and Huang, Y.-Y., 1985, A synaptic potential following single volleys in the hippocampal CA, region possibly involved in the induction of long-lasting potentiation, Acta Physiol. Scand. 124: 475–478.PubMedCrossRefGoogle Scholar
  46. Wigström, H., Gustafsson, B., and Hunag, Y.-Y., 1986, Mode of action of excitatory amino acid receptor antagonists on hippocampal long-lasting potentiation, Neuroscience 17: 1105–1115.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • John C. Eccles
    • 1
  1. 1.ContraSwitzerland

Personalised recommendations