Dendritic Spine Synapses, Excitable Spine Clusters, and Plasticity

  • Wilfrid Rall
  • Idan Segev


These computations focus on dendritic spines and the possibility that some spine heads possess excitable nerve membrane. It will be shown that such spines can provide synaptic amplification and, what is more important, that interactions between such spines can result in a local chain reaction involving clusters of such spines. Whether a cluster fires depends (with nonlinear sensitivity) on changes in synaptic excitation and inhibition and on changes in spine stem resistance (a possible locus for plasticity related to conditioning and/or learning) or other spine parameters. Several computed examples indicate the rich repertoire of logical operations that could be implemented by excitable spine clusters.


Dendritic Spine Synaptic Input Dendritic Tree Spine Base Neuron Soma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arshayskii, Y. I., Berkinblit, M. B., Kovalev, S. A., Smolyaninov, V. V., and Chailakhyan, L. M., 1965, The role of dendrites in the functioning of nerve cells, Dokl. Akad. Nauk SSSR 163:994–997.Google Scholar
  2. Bunow, B., Segev, I., and Fleshman, J. W., 1985, Modeling the electrical behavior of anatomically complex neurons using a network analysis program: Excitable membrane, Biol. Cybernet. 53: 41–56.CrossRefGoogle Scholar
  3. Chang, H. T., 1952, Cortical neurons with particular reference to the apical dendrites, Cold Spring Harbor Symp. Quant. Biol. 17: 189–202.PubMedCrossRefGoogle Scholar
  4. Colonnier, M., 1968, Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study, Brain Res., 9: 268–287.PubMedCrossRefGoogle Scholar
  5. Coss, R. G., and Perkel, D. H., 1985, The function of dendritic spines: A review of theoretical issues, Behay. Neural Biol. 44:151–185.Google Scholar
  6. Diamond, J., Gray, E. G., and Yasargil, G. M., 1970, The function of the dendritic spines: An hypothesis, in: Excitatory Synaptic Mechanisms ( P. Anderson and J. K. S. Jansen, eds.), Universitetsforlaget, Oslo, pp. 213–222.Google Scholar
  7. Erulkar, S. D., Butler, R. A., and Gerstein, G. L., 1968, Excitation and inhibition in cochlear nucleus, II. Frequency-modulated tones, J. Neurophysiol. 31: 537–548.PubMedGoogle Scholar
  8. Feldman, M. L., and Peters, A., 1979, A technique for estimating total spine numbers on Golgi-impregnated dendrites, J. Comp. Neurol. 118: 527–542.CrossRefGoogle Scholar
  9. Goldstein, S. S., and Rall, W., 1974, Changes of action potential shape and velocity for changing core conductor geometry, Biophys. J. 14: 731–757.PubMedCrossRefGoogle Scholar
  10. Gray, E. G., 1959, Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscopic study, J. Anat., 93: 420–433.PubMedGoogle Scholar
  11. Harris, K. M., Trogadis, J., and Stevens, J. K., 1985, Three dimensional structure of dendritic spines in the rat hippocampus (CA1) and cerebellum, Abstract, Soc. Neurosci. Abstr. 11: 306.Google Scholar
  12. Henneman, E., Löscher, H.-R., and Mathis, J., 1984, Simultaneously active and inactive synapses of single la fibres in cat spinal motoneurones, J. Physiol. (Lond.) 352:147–161.Google Scholar
  13. Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.) 117: 500–544.Google Scholar
  14. Jack, J. J. B., Noble, D., and Tsien, R. W. 1975, Electric Current Flow in Excitable Cells, Oxford University Press, London.Google Scholar
  15. Jones, E. G., and Powell, T. P. S., 1969, Morphological variations in the dendritic spines of the neocortex, J. Cell. Sci. 5: 509–519.PubMedGoogle Scholar
  16. Kawato, M., and Tsukahara, N., 1984, Electrical properties of dendritic spines with bulbous end terminals, Biophys. J. 46:155–166.Google Scholar
  17. Koch, C., and Poggio, T., 1983, A theoretical analysis of electrical properties of spines, Proc. R. Soc. Lond. [Biol.] 218: 455–477.CrossRefGoogle Scholar
  18. Lorente de Nó, R., and Condouris, G. A., 1959, Decremental conduction in peripheral nerve: Integration of stimuli in the neuron, Proc. Natl. Acad. Sci. U.S.A. 45: 592–617.CrossRefGoogle Scholar
  19. Malinow, R., and Miller, J. P., 1984, Interactions between active dendritic spines could generate bursts of spikes, Soc. Neurosci. Abstr. 10: 547.Google Scholar
  20. Miller, J. P., Rall, W., and Rinzel, J., 1985, Synaptic amplification by active membrane in dendritic spines, Brain Res. 325: 325–330.PubMedCrossRefGoogle Scholar
  21. Parnas, I., and Segev, I., 1979, A mathematical model for conduction of action potentials along bifurcating axons, J. Physiol. (Lond.) 295: 323–343.Google Scholar
  22. Perkel, D. H., and Perkel, D. J., 1985, Dendritic spines: Role of active membrane in modulating synaptic efficacy, Brain Res. 325: 331–335.PubMedCrossRefGoogle Scholar
  23. Peters, A., and Kaiserman-Abramof, I. R., 1970, The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines, Am. J. Anat. 127: 321–356.PubMedCrossRefGoogle Scholar
  24. Rall, W., 1962, Theory of physiological properties of dendrites, Ann. N.Y. Acad. Sci. 96:1071–1092.Google Scholar
  25. Rall, W., 1964, Theoretical significance of dendritic trees for neuronal input—output relations, in: Neural Theory and Modeling; Stanford University Press, Stanford, pp. 73–97.Google Scholar
  26. Rall, W., 1967, Distinguishing theoretical synaptic potentials computed for different soma—dendritic distributions of input, J. Neurophysiol. 30:1138–1168.Google Scholar
  27. Rall, W., 1970, Cable properties of dendrites and effect of synaptic location, in: Excitatory Synaptic Mechanisms (P. Andersen and J. K. S. Jansen, eds.), Universitetsforlaget, Oslo, pp. 175–187.Google Scholar
  28. Rall, W., 1974, Dendritic spines, synaptic potency and neuronal plasticity, in: Cellular Mechanisms Subserving Changes in Neuronal Activity ( C. D. Woody, K. A. Brown, T. J. Crow, and J. D. Knispel, eds.), Brain Information Service, Los Angeles, pp. 13–21.Google Scholar
  29. Rall, W., 1977, Core conductor theory and cable properties of neurons, in: Handbook of Physiology, Vol. 1, Pt. 1, The Nervous System, Cellular Biology of Neurons ( J. M. Brookhart, V. B. Mountcastle, and E. R. Kandel, eds.), American Physiological Society, Bethesda, pp. 39–97.Google Scholar
  30. Rall, W., 1978, Dendritic spines and synaptic potency, in: Studies in Neurophysiology ( R. Porter, ed.), Cambridge University Press, New York, pp. 203–209.Google Scholar
  31. Rall, W., and Rinzel, J., 1971a, Dendritic spines and synaptic potency explored theoretically, Proc. I.U.P.S. IX: 466.Google Scholar
  32. Rall, W., and Rinzel, J., 1971b, Dendritic spine function and synaptic attenuation calculations, Abstr. Soc. Neurosci. 1:64.Google Scholar
  33. Rall, W., and Rinzel, J., 1973, Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model, Biophys. J. 13: 648–688.PubMedCrossRefGoogle Scholar
  34. Rall, W., and Segev, I., 1985, Space clamp problems when voltage clamping branched neurons with intracellular microelectrodes, in: Voltage and Patch Clamping with Microelectrodes ( T. G. Smith, Jr., H. Lecar, S. J. Redman, and P. Gage, eds.), American Physiological Society, Bethesda, pp. 191–215.CrossRefGoogle Scholar
  35. Rall, W., and Segev, I. 1987 Functional possibilities for synapses on dendrites and on dendritic spines, in: Synaptic Function (G. M. Edelman, W. E. Gall, and W. M. Cowan eds.), John Wiley und Sons, New York pp. 605–636.Google Scholar
  36. Rall, W., Shepherd, G. M., Reese, T..S, and Brightman, M. W., 1966, Dendrodendritic synaptic pathway in the olfactory bulb, Exp. Neurol. 14: 44–56.PubMedCrossRefGoogle Scholar
  37. Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G., and Frank, K., 1967, Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons, J. Neurophysiol. 30: 1169–1191.PubMedGoogle Scholar
  38. Redman, S. J., 1976, A quantitative approach to the integrative function of dendrites, in: International Review of Physiology: Neurophysiology II, Vol. 10 (R. Porter, ed.), University Park Press, Baltimore, pp. 1–36. Redman, S., and Walmsley, B., 1983, The time course of synaptic potentials evoked in cat spinal motoneurones at identified group la synapses, J. Physiol. (Lond.) 343: 117–133.Google Scholar
  39. Rinzel, J., 1982, Neuronal plasticity (learning), in: Some Mathematical Questions in Biology—Neurobiology, Vol. 15, Lectures on Mathematics in the Life Sciences ( R. M. Miura, ed.), American Mathematical Society, Providence, pp. 7–25.Google Scholar
  40. Segev, I., and Parnas, I., 1983, Synaptic integration mechanisms. Theoretical and experimental investigation of temporal postsynaptic interaction between excitatory and inhibitory inputs, Biophys. J. 41: 41–50.PubMedCrossRefGoogle Scholar
  41. Segev, I., Fleshman, J. W., Miller, J. P., and Bunow, B., 1985, Modeling the electrical behavior of anatomically complex neurons using a network analysis program: Passive membrane, Biol. Cybernet. 53: 27–40.CrossRefGoogle Scholar
  42. Shepherd, G. M., and Brayton, R. K., 1979, Computer simulation of a dendrodendritic synaptic circuit for self-and lateral-inhibition in the olfactory bulb, Brain Res. 175: 377–382.PubMedCrossRefGoogle Scholar
  43. Shepherd, G. M., Brayton, R. K., Miller, J. P., Segev, I., Rinzel, J., and Rall, W., 1985, Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines, Proc. Natl. Acad. Sci. U.S.A. 82: 2192–2195.PubMedCrossRefGoogle Scholar
  44. Turner, D. A., 1984, Conductance transients on dendritic spines in a segmental cable model of hippocampal neurons, Biophys. J. 46: 85–96.PubMedCrossRefGoogle Scholar
  45. Vladimirescu, A., Newton, A. R., and Pederson, D. 0., 1980, SPICE Version 26.0 User’s Guide, EECS Department, University of California, Berkeley.Google Scholar
  46. Wilson, C. J., 1984, Passive cable properties of dendritic spines and spiny neurons, J. Neurosci. 4: 281–297.PubMedGoogle Scholar
  47. Wilson, C. J., Groves, P. M., Kitai, S. T., and Linder, I. C., 1983, Three dimensional structure of dendritic spines in the rat neostriatum, J. Neurosci. 3: 383–398.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Wilfrid Rall
    • 1
  • Idan Segev
    • 1
  1. 1.Mathematical Research Branch, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations