Advertisement

Responses of Nucleus Basalis of Meynert Neurons in Behaving Monkeys

  • Russell T. Richardson
  • Susan J. Mitchell
  • Frank H. Baker
  • Mahlon R. DeLong

Abstract

Cholinergic systems have long been implicated in memory processes since anticholinergic drugs disrupt performance on memory tasks in both human (Drachman, 1977; Mewaldt and Ghoneim, 1979) and nonhuman primates (Bartus, 1978; Ridley et al., 1984) and other species (Buresova et al., 1964; Deutsch, 1971; Squire et al., 1971). The source of cholinergic afferents to cerebral cortex has recently been found to lie primarily in the nucleus basalis of Meynert (NBM) (Lehman et al., 1980; Johnston et al., 1981; Mesulam et al., 1983; Pearson et al., 1983). Moreover, both the number of neurons in the NBM (Whitehouse et al., 1982; Arendt et al., 1983; Rogers et al., 1985) and the levels of cholinergic markers in cortex (Davies and Maloney, 1976; Perry et al., 1977; White et al., 1977) have consistently been found to be reduced in patients with Alzheimer’s disease. These findings have led to the hypothesis that the NBM may play an important role in learning and memory.

Keywords

Globus Pallidus Basal Forebrain Neuronal Response Nucleus Basalis Choice Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arendt, T., Bigl, V., and Tennstedt, A., 1983, Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease, Acta Neuropathol. 61: 101–108.PubMedCrossRefGoogle Scholar
  2. Bartus, R. T., 1978, Evidence for a direct cholinergic involvement in the scopolamine-induced amnesia in monkeys: Effects of concurrent administration of physostigmine and methylphenidate with scopolamine, Pharmacol. Biochem. Behay. 9: 833–836.CrossRefGoogle Scholar
  3. Bartus, R. T., and Johnson, H. R., 1976, Short-term memory in the rhesus monkey: Disruption from the anticholinergic scopolamine, Pharmacol. Biochem. Behay. 5: 39–46.CrossRefGoogle Scholar
  4. Buresova, O., Bures, J., and Bohdanecky, Z., 1964, Effect of atropine on learning, extinction, retention, and retrieval in rats, Psychopharmacology 5: 255–263.CrossRefGoogle Scholar
  5. Burton, M. J., Rolls, E. T., and Mora, F., 1976, Effects of hunger on the responses of neurons in the lateral hypothalamus to the sight and taste of food, Exp. Neurol. 51: 668–677.PubMedCrossRefGoogle Scholar
  6. Casamenti, F., Deffenu, G., Abbamondi, A. L., and Pepeu, G., 1986, Changes in cortical acetylcholine output induced by modulation of the nucleus basalis, Brain Res. Bull. 16: 689–695.PubMedCrossRefGoogle Scholar
  7. Das, G. D., 1971, Projections of the interstitial nerve cells surrounding the globus pallidus: A study of retrograde changes following cortical ablations in rabbits, Z. Anat. Entwickl. Gesch. 133: 135–160.CrossRefGoogle Scholar
  8. Das, G. D., and Kreutzberg, G. W., 1968, Evaluation of interstitial nerve cells in the central nervous system: A correlative study using acetylcholinesterase and Golgi techniques, Ergeb. Anat. Entwickl. Gesch. 41: 158.Google Scholar
  9. Davies, P., and Maloney, A. J. F., 1976, Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet 2: 1403.PubMedCrossRefGoogle Scholar
  10. DeLong, M. R., 1971, Activity of pallidal neurons during movement, J. Neurophysiol. 34: 414–427.PubMedGoogle Scholar
  11. Deutsch, J. A., 1971, The cholinergic synapse and the site of memory, Science 174: 788–794.PubMedCrossRefGoogle Scholar
  12. Drachman, D. A., 1977, Memory and cognitive function in man: Does the cholinergic system have a specific role, Neurology (Minneap.) 27: 783–790.CrossRefGoogle Scholar
  13. Dunnett, S. B., 1985, Comparative effects of cholinergic drugs and lesions of nucleus basalis of fimbria—fornix on delayed matching in rats, Psychopharmacology 87: 357–363.PubMedCrossRefGoogle Scholar
  14. Fuster, J. M., 1973, Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory, J. Neurophysiol. 36: 61–78.PubMedGoogle Scholar
  15. Fuster, J. M., and Alexander, G. E., 1970, Delayed response deficit by cryogenic depression of frontal cortex, Brain Res. 20: 85–90.PubMedCrossRefGoogle Scholar
  16. Georgopoulos, A. P., DeLong, M. R., and Crutcher, M. D., 1983, Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey, J. Neurosci. 3: 1586–1598.PubMedGoogle Scholar
  17. Goldman, P. S., and Rosvold, H. E., 1970, Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey, Exp. Neurol. 27: 291–304.PubMedCrossRefGoogle Scholar
  18. Hepler, D. J., Olton, D. S., Wenk, G. L., and Coyle, J. T., 1985, Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments, J. Neurosci. 5: 866–873.PubMedGoogle Scholar
  19. Johnston, M. V., McKinney, M., and Coyle, J. T., 1981, Neocortical cholinergic innervation: A description of extrinsic and intrinsic components in the rat, Exp. Brain Res. 43: 159–172.PubMedCrossRefGoogle Scholar
  20. Kubota, K., and Funahashi, S., 1982, Direction-specific activities of dorsolateral prefrontal and motor cortex pyramidal tract neurons during visual tracking, J. Neurophysiol. 47: 372–376.Google Scholar
  21. Lamour, Y., Dutar, P., Rascol, O., and Jobert, A., 1986, Basal forebrain neurons projecting to the rat frontoparietal cortex: Electrophysiological and pharmacological properties, Brain Res. 362: 122–131.PubMedCrossRefGoogle Scholar
  22. Lehman, J., Nagy, J. I., Armadja, S., and Fibiger, H. C., 1980, The nucleus basalis magnocellularis: The origin of a cholinergic projection to the neocortex of the rat, Neuroscience 5: 1161–1174.CrossRefGoogle Scholar
  23. LoConte, G., Bartolini, L., Casamenti, F., Marconcini-Pepeu, I., and Pepeu, G., 1982, Lesions of cholinergic forebrain nuclei: Changes in avoidance behavior and scopolamine actions, Pharmacol. Biochem. Behay. 17: 933–937.CrossRefGoogle Scholar
  24. Mesulam, M., Mufson, E. J., Levey, A. I., and Wainer, B. H., 1983, Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey, J. Comp. Neurol. 214: 170–197.PubMedCrossRefGoogle Scholar
  25. Metherate, R., Tremblay, N., and Dykes, R. W., 1985, Changes in neuronal function produced in cat primary somatosensory cortex by the iontophoretic application of acetylcholine, Soc. Neurosci. Abstr. 11: 753.Google Scholar
  26. Mewaldt, S. P., and Ghoneim, M. M., 1979, The effects and interactions of scopolamine, physostigmine, and methamphetamine on human memory, Pharmacol. Biochem. Behay. 10: 205–210.CrossRefGoogle Scholar
  27. Mitchell, S. J., Richardson, R. T., Baker, F. H., and DeLong, M. R., 1987a, The primate nucleus basalis of Meynert: Neuronal activity related to a visuomotor tracking task, Exp. Brain Res. (in press).Google Scholar
  28. Mitchell, S. J., Richardson, R. T., Baker, F. H., and DeLong, M. R., 1987b, The primate globus pallidus: Neuronal activity related to direction of movement, Exp. Brain Res. (in press).Google Scholar
  29. Mora, F., Rolls, E. T., and Burton, M. J., 1976, Modulation during learning of the responses of neurons in the lateral hypothalamus to the sight of food, Exp. Neurol. 53: 508–519.PubMedCrossRefGoogle Scholar
  30. Niki, H., and Watanabe, M., 1976, Prefrontal unit activity and delayed response. Relation to cue location versus direction of response, Brain Res. 105: 79–88.PubMedCrossRefGoogle Scholar
  31. Pearson, R. C. A., Gatter, K. C., Brodai, P., and Powell, T. P. S., 1983, The projection of the basal nucleus of Meynert upon the neocortex in the monkey, Brain Res. 259: 132–136.PubMedCrossRefGoogle Scholar
  32. Perry, E., Perry, R., Blessed, G., and Tomlinson, B., 1977, Necropsy evidence of central cholinergic deficits in senile dementia, Lancet 1: 189.PubMedCrossRefGoogle Scholar
  33. Richardson, R. T., and DeLong, M. R., 1984, Activity of nucleus basalis of Meynert neurons during a delayed response task, Soc. Neurosci. Abstr. 10: 128.Google Scholar
  34. Richardson, R. T., and DeLong, M. R., 1986, Differential responses of nucleus basalis of Meynert neurons in a go/no-go task in monkey (Macaca mulatta), Soc. Neurosci. Abstr. 12: 356.Google Scholar
  35. Richardson, R. T., and DeLong, M. R., 1986, Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey, Brain Res. 399: 364–368.PubMedCrossRefGoogle Scholar
  36. Richardson, R. T., Mitchell, S. J., Baker, F. H., and DeLong, M. R., 1983, Activity of neurons in the macaque nucleus basalis of Meynert in a visuomotor tracking task, Soc. Neurosci. Abstr. 9: 951.Google Scholar
  37. Ridley, R. M., Bowes, P. M., Baker, H. F., and Crow, T. J., 1984, An involvement of acetylcholine in object discrimination learning and memory in the marmoset, Neuropsychologia 22: 252–263.CrossRefGoogle Scholar
  38. Rogers, J. D., Brogan, D., and Mirra, S. S., 1985, The nucleus basalis of Meynert in neurological disease: A quantitative morphological study, Ann. Neurol. 17: 163–170.PubMedCrossRefGoogle Scholar
  39. Rolls, E. T., Burton, M. J., and Mora, F., 1976, Hypothalamic neuronal responses associated with the sight of food, Brain Res. 111: 53–66.PubMedCrossRefGoogle Scholar
  40. Rolls, E. T., Sanghera, M. K., and Roper-Hall, A., 1979, The latency of activation of neurones in the lateral hypothalamus and substantia innominata during feeding in the monkey, Brain Res. 164: 121–135.PubMedCrossRefGoogle Scholar
  41. Rosenkilde, C. E., 1979, Functional heterogeneity of the prefrontal cortex in the monkey: A review, Behay. Neurol. Biol. 25: 301–345.CrossRefGoogle Scholar
  42. Rosvold, H. E., and Szwarcbart, M. K., 1964, Neural structures involved in delayed-response performance, in: The Frontal Granular Cortex and Behavior ( K. Akert, ed.), McGraw-Hill, New York, pp. 1–15.Google Scholar
  43. Shute, C. C. D., and Lewis, P. R., 1967, The ascending cholinergic reticular system: Neocortical, olfactory and subcortical projections, Brain 90: 497–519.PubMedCrossRefGoogle Scholar
  44. Squire, L. R., Glick, S. D., and Goldfarb, J., 1971, Relearning at different times after training as affected by centrally and peripherally acting cholinergic drugs in the mouse, J. Comp. Physiol. Psychol. 74: 41–45.PubMedCrossRefGoogle Scholar
  45. Stewart, D. J., Macfabe, D. F., and Vanderwolf, C. H., 1984, Cholinergic activation of the electrocorticogram: Role of the substantia innominata and effects of atropine and quinuclidinyl benzilate, Brain Res. 322: 219–232.PubMedCrossRefGoogle Scholar
  46. White, P., Goodhardt, M. J., and Keet, J. P., 1977, Neocortical cholinergic neurons in elderly people, Lancet 1: 668–671.PubMedCrossRefGoogle Scholar
  47. Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., and DeLong, M. R., 1982, Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain, Science 215: 1237–1239.PubMedCrossRefGoogle Scholar
  48. Wilson, F. A., Rolls, E. T., Yaxley, S., Thorpe, S. J., Williams, G. V., and Simpson, S. J., 1984, Responses of neurons in the basal forebrain of the behaving monkey, Soc. Neurosci. Abstr. 10: 128.Google Scholar
  49. Woody, C. D., 1982, Acquisition of conditioned facial reflexes in the cat: Cortical control of different facial movements, Fed. Proc. 41 (6): 2160–2168.PubMedGoogle Scholar
  50. Woody, C. D., Swartz, B. E., and Gruen, E., 1978, Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats, Brain Res. 158: 373–395.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Russell T. Richardson
    • 1
  • Susan J. Mitchell
    • 1
  • Frank H. Baker
    • 1
  • Mahlon R. DeLong
    • 2
  1. 1.Department of NeurologyJohns Hopkins UniversityBaltimoreUSA
  2. 2.Departments of Neuroscience and NeurologyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations