Advertisement

The Cellular Basis for Short-Term Memory in Endocrine Systems

  • Howard Rasmussen
  • Carlos Isales
  • Yoh Takuwa
  • Noriko Takuwa
  • Paula Barrett
  • Walter Zawalich

Abstract

A common property of many endocrine systems is an anamnestic response. For instance, when pancreatic islets are reexposed to a standard glucose stimulus after a prior period of exposure to the same glucose challenge, their insulin secretory response is greater to the second than to the first stimulus (Gold et al., 1982; Grill et al., 1978, 1979; Grill and Rundfeldt, 1979; Grill, 1981; Grodsky et al., 1969). A similar pattern is seen on repeated exposure of adrenal glomerulosa cells to the peptide hormone angiotensin II. Recent work in both of these systems indicates that protein kinase C plays a central role in mediating the sustained phase of each of these endocrine responses (Kojima et al., 1984; Tanigawa et al., 1982; Zawalich et al., 1983, 1984). Work in our laboratories over the past 18 months has focused on the possible role of protein kinase C in this type of short-term cellular memory in bovine adrenal glomerulosa cells and isolated rat pancreatic islets.

Keywords

Insulin Secretion Phosphatidic Acid None None Influx Rate Insulin Secretory Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahren, B., and Linguist, I., 1981, Effects of two cholecystokinin variants CCK-39 and CCK8S on basal and stimulated insulin secretion, Acta Diabetol. Lat. 18: 345–356.PubMedCrossRefGoogle Scholar
  2. Barrett, P., Kojima, I., Kojima, K., Zawalich, K., (sales, C., and Rasmussen, H., 1986a, Temporal patterns of protein phosphorylation after angiotensin II, A23187 and/or TPA in adrenal glomerulosa cells, Biochem. J. 238: 893–903.PubMedGoogle Scholar
  3. Barrett, P., Kojima, I., Kojima, K., Zawalich, K., Isales, C., and Rasmussen, H., 1986b, Short-term memory in the calcium messenger system: Evidence for a sustained activation of C-kinase in adrenal glomerulosa cells, Biochem. J. 238: 904–912.Google Scholar
  4. Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220: 345360.Google Scholar
  5. Best, L., Dunlop, M., and Malaise, W. J., 1984, Phospholipid metabolism in pancreatic islets, Experientia 40: 1085–1091.PubMedCrossRefGoogle Scholar
  6. Cook, D. L., and Hales, C. N., 1984, Intracellular ATP directly blocks K+ channels in pancreatic 0-cells, Nature 311: 271–273.PubMedCrossRefGoogle Scholar
  7. Dunlop, M. E., and Larkins, R. G., 1985, Pancreatic islets synthesize phospholipid de novo from glucose via acyl-dihydroxyacetone phosphate, Biochem. Biophys. Res. Commun. 132: 467–473.PubMedCrossRefGoogle Scholar
  8. Gold, G., Gishizky, M. L., and Grodsky, G., 1982, Evidence that glucose “marks” ß cells resulting in preferential release of newly synthesized insulin, Science 218: 56–58.PubMedCrossRefGoogle Scholar
  9. Grill, V., 1981, Time and dose dependencies for priming effect of glucose on insulin secretion, Am. J. Physiol. 240: E24 - E31.PubMedGoogle Scholar
  10. Grill, V., and Rundfeldt, M., 1979, Effects of priming with D-glucose on insulin secretion from rat pancreatic islets: Increased responsiveness to other secretagogues, Endocrinology 105: 980–987.PubMedCrossRefGoogle Scholar
  11. Grill, V., Adamson, U., and Cerasi, E., 1978, Immediate and time-dependent effects of glucose on insulin release from rat pancreatic tissue, J. Clin. Invest. 61: 1034–1043.PubMedCrossRefGoogle Scholar
  12. Grill, V., Adamson, U., Rundfeldt, M., Andersson, S., and Cerasi, E., 1979, Glucose memory of pancreatic B and A2 cells, J. Clin. Invest. 64: 700–707.PubMedCrossRefGoogle Scholar
  13. Grodsky, G. M., Curry, D., Landahl, H., and Bennett, L., 1969, Further studies on the dynamic aspects of insulin release in vitro with evidence for a two-compartmental storage system, Acta Diabetol. Lat. [Suppl.] 1: 554–579.Google Scholar
  14. Hannum, Y., Loomis, C. R., and Bell, R. M., 1986, Protein kinase C activation in mixed micelles, J. Biol. Chem. 261: 7184–7190.Google Scholar
  15. Hedeskov, C. J., 1980, Mechanism of glucose-induced insulin secretion, Physiol. Rev. 60: 442–506.PubMedGoogle Scholar
  16. Henquin, J.-C., 1980, Tolbutamide stimulation and inhibition of insulin release: Studies of the underlying ionic mechanisms in isolated rat islets, Diabetologia 18: 151–160.PubMedCrossRefGoogle Scholar
  17. Henquin, J.-C., 1985, The interplay between cyclic AMP and ions in the stimulus—secretion coupling in pancreatic 0-cells, Arch. Int. Physiol. Biochim. 93: 37–48.PubMedCrossRefGoogle Scholar
  18. Henquin, J.-C., and Meissner, H. P., 1984, The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic 13 cells: Studies with forskolin, Endocrinology 115: 1125 1134.Google Scholar
  19. Holst, J. J., Jensen, S. L., and Morley, J. S., 1980, Neural regulation of pancreatic hormone secretion by the C-terminal tetrapeptide of CCK, Nature 284: 33–38.PubMedCrossRefGoogle Scholar
  20. Kojima, I., Kojima, K., Kreutter, D., and Rasmussen, H., 1984, The temporal integration of the aldosterone secretory response to angiotensin II occurs via two intracellular pathways, J. Biol. Chem. 259: 1444814457.Google Scholar
  21. Kojima, I., Kojima, K., and Rasmussen, H., 1985, Role of calcium fluxes in the sustained phase of angiotensin Il-mediated aldosterone secretion from adrenal cells, J. Biol. Chem. 260: 9177–9184.PubMedGoogle Scholar
  22. May, W. J., Jr., Sayhoun, N., Wolf, M., and Cuatrecasas, P., 1985, Role of intracellular calcium mobilization in the regulation of protein kinase C-mediated membrane processes, Nature 317: 549–551.PubMedCrossRefGoogle Scholar
  23. Morgan, N. G., Rumford, G. M., and Montague, W., 1985, Studies on the role of inositol trisphosphate in the regulation of insulin secretion from isolated rat islets of Langerhans, Biochem. J. 228: 713–718.PubMedGoogle Scholar
  24. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308: 693–698.PubMedCrossRefGoogle Scholar
  25. Pipeleers, D., 1984, Islet cell interactions with pancreatic 13-cells, Experientia 40: 1114–1126.PubMedCrossRefGoogle Scholar
  26. Rasmussen, H., 1986, The calcium messenger system, N. Engl. J. Med. 314: 1094–1101, 1164–1170.Google Scholar
  27. Rasmussen, H., and Barrett, P. Q., 1984, Calcium messenger system: An integrated view, Physiol. Rev. 64: 938–984.PubMedGoogle Scholar
  28. Sakamoto, C., Otsuki, M., Ohki, A., Yuu, H., Maeda, M., Yamasaki, T., and Baba, S., 1982, Glucose-dependent insulinotropic action of cholecystokinin and caerulein in the isolated perfused rat pancreas, Endocrinology 110: 398–402.PubMedCrossRefGoogle Scholar
  29. Schuit, F. C., and Pipeleers, D. G., 1985, Regulation of adenosine 3’,5’-monophosphate levels in the pancreatic ß cell, Endocrinology 117: 834–840.PubMedCrossRefGoogle Scholar
  30. Streb, H., Irvine, R. F., Berridge, M. J., and Schultz, I., 1983, Release of Ca’ from a non-mitochondrial store in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature 306: 67–69.PubMedCrossRefGoogle Scholar
  31. Sturgess, N. C., Ashford, M. L., Cook, D. L., and Hales, C. N., 1985, The sulphonylurea receptor may be an ATP-sensitive potassium channel, Lancet 2: 474–475.PubMedCrossRefGoogle Scholar
  32. Sturgess, N. C., Ashford, M. L., Carrington, C. A., and Hales, C. N., 1986, Single channel recordings of potassium currents in an insulin secreting cell line, J. Endocrinol. 109: 201–207.PubMedCrossRefGoogle Scholar
  33. Takai, Y., Kikkawa, U., Kaibuchi, K., and Nishizuka, Y., 1984, Membrane phospholipid metabolism and signal transduction for protein phosphorylation, Adv. Cyclic Nucleotide Prot. Phosphor. Res. 18: 119–158.Google Scholar
  34. Tanigawa, K., Kuzuya, H., Imura, H., Taniguchi, H., Baba, S., Takai, Y., and Nishizuka, Y., 1982, Calcium-activated, phospholipid-dependent protein kinase in rat pancreas islets of Langerhans, FEBS Leu. 138: 183187.Google Scholar
  35. Turk, J., Wolf, B. A., and McDaniel, M. L., 1986, Glucose-induced Accumulation of inositol trisphosphates in isolated pancreatic islets, Biochem. J. 237: 259–263.PubMedGoogle Scholar
  36. Wolf, M., Cuatrecasas, P., and Sahyoun, N., 1985, Interaction of protein kinase C with membranes is regulated by Ca’, phorbol esters, and ATP, J. Biol. Chem. 260: 15718–15722.PubMedGoogle Scholar
  37. Zawalich, W., and Diaz, V. A., 1986, Asperlicin antagonizes the stimulatory effects of cholecystokinin on isolated perifused islets, Am. J. Physiol. 252: E370 - E374.Google Scholar
  38. Zawalich, W., Brown, C., and Rasmussen, H., 1983, Insulin secretion: Combined effect of phorbol ester and A23187, Biochem. Biophys. Res. Commun. 117: 448–455.PubMedCrossRefGoogle Scholar
  39. Zawalich, W., Zawalich, K., and Rasmussen, H., 1984, Insulin secretion combined tolbutamide, forskolin, and TPA mimic action of glucose, Cell Calcium 5: 551–558.PubMedCrossRefGoogle Scholar
  40. Zawalich, W., Cote, S. B., and Diaz, V. A., 1986, Influence of cholecystokinin on insulin output from isolated perifused pancreatic islets, Endocrinology 119: 616–621.PubMedCrossRefGoogle Scholar
  41. Zawalich, W., Takuwa, N., Takuwa, Y., Diaz, V. A., and Rasmussen, H., 1987, Mechanisms of action of cholecystokinin and glucose in rat pancreatic islets, Diabetes 36: 426–433.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Howard Rasmussen
    • 1
  • Carlos Isales
    • 1
  • Yoh Takuwa
    • 1
  • Noriko Takuwa
    • 1
  • Paula Barrett
    • 1
  • Walter Zawalich
    • 1
  1. 1.Departments of Internal Medicine and Cell Biology, School of Medicine and School of NursingYale UniversityNew HavenUSA

Personalised recommendations