The Role of the Maize Viviparous-1 Gene in Regulation of Seed Maturation

  • Donald R. McCarty


Late in the course of seed formation tissues that are destined to remain viable in the dry seed undergo a maturation process during which further development is arrested and tolerance to desiccation is acquired. The viviparous mutants of maize which fail to complete maturation identify genes that are essential for this process (Robertson, 1955; McCarty and Carson, 1991; McCarty et al., 1992). In this paper we will address the regulation of the maturation program on two levels: 1) how intrinsic and extrinsic signals are integrated to produce a developmentally specific response and 2) how the diverse metabolic pathways associated with maturation are integrated by a regulatory hierarchy into a common developmental program. We explore the notion that these two integration processes are intimately related and involve a common mechanism operating at the level of transcriptional regulation. This model is motivated by our analysis of the role of the Viviparous-1 (Vp1) gene in regulating the maturation program in maize. Finally, our results offer some insight into how at least part of the regulatory network controlling maturation evolved.


Abscisic Acid Seed Maturation Anthocyanin Synthesis Anthocyanin Pathway Regulatory Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, G. A., Weishaar, B. and Hahlbrock, K. 1992. Hommodimeric and hetero-dimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. Plant Cell. 4:525–537.PubMedGoogle Scholar
  2. Chen, S. M. and E. H. Coe, Jr. 1978. Control of anthocyanin synthesis by the C locus in maize. Biochem. Genet. 15: 333–346.CrossRefGoogle Scholar
  3. Coe, E. H. and M. G. Neuffer. 1977. The genetics of corn. In Corn and corn improvement. (G. F. Sprague, ed). pp. 111–213. American Society of Agronomy, Madison, WI.Google Scholar
  4. Cone, K. C., F. A. Burr and B. Burr. 1986. Molecular analysis of the maize anthocyanin regulatory locus ci. Proc. Nat. Acad. Sci. USA. 83:9631–9635.PubMedCrossRefGoogle Scholar
  5. DeLisle, A. and Ferl, R. J. 1990. Characterization of the Arabidopsis Adh G-box binding factor. Plant Cell. 2:547–557.PubMedGoogle Scholar
  6. Dooner, H. K. 1985. Viviparous-1 mutation in maize conditions pleiotropic enzyme deficiencies in the aleurone. Plant Physiol. 77:486–488.PubMedCrossRefGoogle Scholar
  7. Dickinson, C. D., R. P. Evans and Niels C. Neilsen. 1988. RY repeats are conserved in the 5’-flanking regions of legume seed-protein genes. Nucleic Acids Res. 16: 371.PubMedCrossRefGoogle Scholar
  8. Goff, S., K. C. Cone and M. E. Fromm. 1991. Identification of functional domains in the maize transcriptional activator C1: comparison of wild-type and dominant inhibitor proteins. Genes and Dev. 5:298–309.PubMedCrossRefGoogle Scholar
  9. Goff, S., T. M. Klein, B. A. Roth, M. E. Fromm, K. C. Cone, J. P. Radicella and V. L. Chandler. 1990. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J. 9:2517–2522.PubMedGoogle Scholar
  10. Gomez, J., Sanchez-Martinez, D., Stiefel, V., Rigau, J., Puigdomenech and Pages, M. 1988. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature. 334:262–264.PubMedCrossRefGoogle Scholar
  11. Guiltinan, M. J., W. R. Marcotte, R. S. Quatrano. 1990. A leucine zipper protein that recognizes an abscisic acid response element. Science 250:267–270.PubMedCrossRefGoogle Scholar
  12. Hattori, T., Vasil, V., Rosenkrans, L., Hannah, L. C, McCarty, D. R. and Vasil, I. K. 1992. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Gen. Dev. 6:609–618.CrossRefGoogle Scholar
  13. Ludwig, S. R., L. F. Habera, S. L. Delaporta and S. R. Wessler. 1989. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes protein similar to transcriptional activators and contains the myc-homology region. Proc. Natl. Acad. Sci. USA 86:7092–7096.PubMedCrossRefGoogle Scholar
  14. Marcotte, W. R. Jr., C. C. Bayley and R. S. Quatrano. 1988. Regulation of a wheat promoter by abscisic acid in rice protoplasts. Nature 335:454–457.CrossRefGoogle Scholar
  15. Marcotte, W. R. Jr., S. H. Russell and R. S. Quatrano. 1989. Abscisic acid response sequences from the Em gene of wheat. Plant Cell 1:969–976.PubMedGoogle Scholar
  16. McCarty, D. R. 1992. The role of VP1 in regulation of seed maturation in maize. Bio-chem. Soc. Trans. 20:89–92.Google Scholar
  17. McCarty, D. R., C. B. Carson, M. Lazar and S. C. Simonds. 1989a. Transposable element induced mutations of the viviparous-1 gene of maize. Dev. Genetics. 10: 473–481.CrossRefGoogle Scholar
  18. McCarty, D. R., C. B. Carson, P. S. Stinard and D. S. Robertson. 1989b. Molecular analysis of viviparous-1: An abscisic acid insensitive mutant of maize. Plant Cell 1: 523–532.PubMedGoogle Scholar
  19. McCarty, D. R. and C. B. Carson. 1990. The molecular genetics of seed maturation in maize. Physiol Plant. 81: 267–272.CrossRefGoogle Scholar
  20. McCarty, D. R., T. Hattori, C. B. Carson, V. Vasil and I. K. Vasil. 1991. The viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66: 895–905.PubMedCrossRefGoogle Scholar
  21. Mundy, J., K. Yamaguchi-Shinozaki and N.-H. Chua. 1990. Nuclear proteins bind conserved elements in the abscisic acid responsive promoter of a rice rab gene. Proc. Nat. Acad. Sci. USA. 87:406–410.CrossRefGoogle Scholar
  22. Neill, S. J., R. Horgan and A. D. Parry. 1986. The carotenoid and abscisic acid content of viviparous kernels and seedlings of Zea mays L. Planta 169:87–96.CrossRefGoogle Scholar
  23. Paz-Ares, J., D. Ghosal, U. Wienand, P. Peterson and H. Saedler. 1987. The regulatory locus c1 of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 6: 3553–3558.PubMedGoogle Scholar
  24. Robertson, D. S. 1955. The genetics of vivipary in maize. Genetics 40: 745–760.PubMedGoogle Scholar
  25. Robichaud, C. S., J. Wong and I. M. Sussex. 1980. Control of in vitro growth of viviparous embryo mutants of maize by abscisic acid. Dev. Genetics 1: 325–330.CrossRefGoogle Scholar
  26. Robichaud, C. S. and I. M. Sussex. 1986. The response of viviparous-1 and wildtype embryos of Zea mays to culture in the presence of abscisic acid. J. Plant Physiol. 126: 235–242.CrossRefGoogle Scholar
  27. Robichaud, C. S. and I. M. Sussex. 1987. The uptake and metabolism of 14C-ABA by excised wild type and viviparous-1 embryos of Zea mays L. J. Plant Physiol. 130: 181–188.CrossRefGoogle Scholar
  28. Roth, B. A., S. A. Goff, T. M. Klein and M. E. Fromm. 1991. C1 and R1 dependent expression of the maize Bz1 gene requires sequences with homology to mammalian myb and myc binding sites. Plant Cell 3:317–325.PubMedGoogle Scholar
  29. Senaratna, T., McKersie, B. D. and Bowley, S. R. 1989. Desiccation tolerance of alfalfa (Medicago sativa L.) somatic embryos. Influence of abscisic acid, stress pretreatments and drying rates. Plant Sci. 65:253–259.CrossRefGoogle Scholar
  30. Skriver, K. and J. Mundy. 1990. Gene expression in response to abscisic acid and osmotic stress. The Plant Cell 2: 503–512.PubMedGoogle Scholar
  31. Vasil, V., M. Clancy, R. J. Ferl, I. K. Vasil and L. C. Hannah. 1989. Increased gene expression by the first intron of the maize sh1 locus in grass species. Plant Physiol. 91:1575–1579.PubMedCrossRefGoogle Scholar
  32. Zack, C. D., R. J. Ferl and L. C. Hannah. 1986. DNA sequence of a shrunken allele of maize evidence for visitation by insertional sequences. Maydica 31:5–16.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Donald R. McCarty
    • 1
  1. 1.Horticultural Sciences DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations