Signal Perception in Plants: Hepta-ß-Glucoside Elicitor Binding Proteins in Soybean

  • Michael G. Hahn
  • Jong-Joo Cheong
  • Robert M. Alba
  • François Côté


Living organisms utilize a large number of signal molecules to regulate their growth and development. Furthermore, the cells that make up an organism have evolved complex and diverse mechanisms for perceiving and responding to signal molecules originating not only from within the organism, but also from the external environment. Biochemical analysis of the interactions between plants and microbes has contributed to a greater understanding of the molecular basis for signal perception and transduction in plant cells (for recent reviews, see [1–3]). Research in this area has led to the discovery of new classes of signal molecules and provided useful model systems for molecular studies on signal perception, signal transduction, and gene regulation in plants. This article will give an overview of our studies of one plant signal transduction system, the induction of phytoalexin accumulation by oligoglucoside elicitors. Our research to date has focussed on the first stage of this signal transduction system, the specific recognition by plant receptors of molecules (elicitors) that induce phytoalexin accumulation.


Signal Perception Cell Wall Constituent Elicitor Activity Glucosyl Residue Soybean Cotyledon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.A. Dixon, The phytoalexin response: Elicitation, signalling and control of host gene expression, Biol. Rev. 61:239–291 (1986).CrossRefGoogle Scholar
  2. 2.
    C.J. Lamb, M.A. Lawton, M. Dron and R.A. Dixon, Signals and transduction mechanisms for activation of plant defenses against microbial attack, Cell 56:215–224 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    D. Scheel and J.E. Parker, Elicitor recognition and signal transduction in plant defense gene activation, Z. Naturforsch. 45c:569–575 (1990).Google Scholar
  4. 4.
    J. Ebel, Phytoalexin synthesis: The biochemical analysis of the induction process, Annu. Rev. Phytopathol. 24:235–264 (1986).CrossRefGoogle Scholar
  5. 5.
    N.T. Keen, Specific elicitors of plant phytoalexin production: Determinants of race specificity in pathogens? Science 187:74–75 (1975).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Hahlbrock and D. Scheel, Biochemical responses of plants to pathogens, in: “Innovative Approaches to Plant Disease Control,” I. Chet, ed., John Wiley & Sons, Inc., New York, NY, pp. 229–254 (1987).Google Scholar
  7. 7.
    M.G. Hahn, P. Bucheli, F. Cervone, S.H. Doares, R.A. O’Neill, A. Darvill and P. Albersheim, Roles of cell wall constituents in plant-pathogen interactions, in: “Plant-Microbe Interactions. Molecular and Genetic Perspectives, Vol. 3,” T. Kosuge and E.W. Nester, eds., McGraw Hill Publishing Co., New York, NY, pp. 131–181 (1989).Google Scholar
  8. 8.
    A.R. Ayers, J. Ebel, F. Finelli, N. Berger and P. Albersheim, Host-pathogen interactions. IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae, Plant Physiol. 57:751–759 (1976).CrossRefGoogle Scholar
  9. 9.
    A.R. Ayers, J. Ebel, B. Valent and P. Albersheim, Host pathogen interactions. X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae, Plant Physiol. 57:760–765 (1976).CrossRefGoogle Scholar
  10. 10.
    A.R. Ayers, B. Valent, J. Ebel and P. Albersheim, Host-pathogen interactions. XI. Composition and structure of wall-released elicitor fractions, Plant Physiol. 57:766–774 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    J.K. Sharp, B. Valent and P. Albersheim, Purification and partial characterization of a β-glucan fragment that elicits phytoalexin accumulation in soybean, J. Biol. Chem. 259:11312–11320 (1984).PubMedGoogle Scholar
  12. 12.
    J.K. Sharp, P. Albersheim, P. Ossowski, Å. Pilotti, P.J. Garegg and B. Lindberg, Comparison of the structures and elicitor activities of a synthetic and a mycelial-wall-derived hexa(β-D-gluco-pyranosyl)-D-glucitol, J. Biol. Chem. 259:11341–11345 (1984).PubMedGoogle Scholar
  13. 13.
    P. Ossowski, A. Pilotti, P.J. Garegg and B. Lindberg, Synthesis of a glucoheptaose and a glucooctaose that elicit phytoalexin accumulation in soybean, J. Biol. Chem. 259:11337–11340 (1984).PubMedGoogle Scholar
  14. 14.
    P. Fügedi, W. Birberg, P.J. Garegg and Å. Pilotti, Syntheses of a branched heptasaccharide having phytoalexin-elicitor activity, Carbohydr. Res. 164:297–312 (1987).CrossRefGoogle Scholar
  15. 15.
    J.P. Lorentzen, B. Helpap and O. Lockhoff, Synthese eines elicitoraktiven heptaglucansaccharides zur Untersuchung pflanzlicher abwehrmechanismen, Angew. Chem. 103:1731–1732 (1991).CrossRefGoogle Scholar
  16. 16.
    P. Fügedi, P.J. Garegg, I. Kvarnström and L. Svansson, Synthesis of a heptasaccharide, structurally related to the phytoelicitor active glucan of Phytophthora megasperma f.sp. glycinea, J. Carbohydr. Chem. 7:389–397 (1988).CrossRefGoogle Scholar
  17. 17.
    W. Birberg, P. Fügedi, P.J. Garegg and Å. Pilotti, Syntheses of a heptasaccharide β-linked to an 8-methoxycarbonyl-oct-1-yl linking arm and of a decasaccharide with structures corresponding to the phytoelicitor active glucan of Phytophthora megasperma f.sp. glycinea, J. Carbohydr. Chem. 8:47–57 (1989).CrossRefGoogle Scholar
  18. 18.
    N. Hong and T. Ogawa, Stereocontrolled syntheses of phytoalexin elicitor-active β-D-glucohexaoside and β-D-glucononaoside, Tetrahedr. Lett. 31:3179–3182 (1990).CrossRefGoogle Scholar
  19. 19.
    J.-J. Cheong, W. Birberg, P. Fügedi, Å. Pilotti, P.J. Garegg, N. Hong, T. Ogawa and M.G. Hahn, Structure-activity relationships of oligo-β-glucoside elicitors of phytoalexin accumulation in soybean, Plant Cell 3:127–136 (1991).PubMedGoogle Scholar
  20. 20.
    J.K. Sharp, M. McNeil and P. Albersheim, The primary structures of one elicitor-active and seven elicitor-inactive hexa(β-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea, J. Biol. Chem. 259:11321–11336 (1984).Google Scholar
  21. 21.
    B.M. Peters, D.H. Cribbs and D.A. Stelzig, Agglutination of plant protoplasts by fungal cell wall glucans, Science 201:364–365 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Yoshikawa, N.T. Keen and M.-C. Wang, A receptor on soybean membranes for a fungal elicitor of phytoalexin accumulation, Plant Physiol. 73:497–506 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    W.E. Schmidt and J. Ebel, Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glicine max, Proc. Natl. Acad. Sci. USA 84:4117–4121 (1987).CrossRefGoogle Scholar
  24. 24.
    E.G. Cosio, H. Pöpped, W.E. Schmidt and J. Ebel, High-affinity binding of fungal β-glucan fragments to soybean (Glycine max L.) microsomal fractions and protoplasts, Eur. J. Biochem. 175:309–315 (1988).PubMedCrossRefGoogle Scholar
  25. 25.
    E.G. Cosio, T. Frey, R. Verduyn, J. Van Boom and J. Ebel, High-affinity binding of a synthetic heptaglucoside and fungal glucan phytoalexin elicitors to soybean membranes, FEBS Lett. 271:223–226(1990).Google Scholar
  26. 26.
    J.-J. Cheong and M.G. Hahn, A specific, high-affinity binding site for the hepta-β-glucoside elicitor exists in soybean membranes, Plant Cell 3:137–147 (1991).PubMedGoogle Scholar
  27. 27.
    E.G. Cosio, T. Frey and J. Ebel, Solubilization of soybean membrane binding sites for fungal β-glucans that elicit phytoalexin accumulation, FEBS Lett. 264:235–238 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    J.-J. Cheong and M.G. Hahn, Solubilization and purification, from soybean root membranes, of specific binding protein(s) for a hepta-β-glucoside elicitor, Plant Physiol. 96(Supplement):70 (1991).Google Scholar
  29. 29.
    A. Darvill, C. Augur, C. Bergmann, R.W. Carlson, J.-J. Cheong, S. Eberhard, M.G. Hahn, V.-M. Lo, V. Marfà, B. Meyer, D. Mohnen, M.A. O’Neill, M.D. Spiro, H. van Halbeek, W.S. York and P. Albersheim, Oligosaccharins — Oligosaccharides that regulate growth, development and defense responses in plants, Glycobiology, in press (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Michael G. Hahn
    • 1
  • Jong-Joo Cheong
    • 1
  • Robert M. Alba
    • 1
  • François Côté
    • 1
  1. 1.Complex Carbohydrate Research CenterThe University of GeorgiaAthensUSA

Personalised recommendations