Advertisement

Primary and Secondary Structure of IF Protein Chains and Modes of Molecular Aggregation

  • David A. D. Parry

Abstract

Five classes of intermediate filaments (IF) have been defined on the basis of the cell type from which the filaments were initially isolated and characterized. The first of these classes comprises the keratins, a heterogeneous family of protein chains with molecular weights in the range 40 to 70k; they are expressed in most epithelia. Vimentin chains have a molecular weight of 53k, and are expressed in cells of mesenchymal origin and in cell lines established in vitro. The third class comprises desmin chains of molecular weight 53k; they are expressed in smooth, cardiac, and skeletal myogenic cells. Glial fibrillary acidic protein chains, found in glial cells and astrocytes, have molecular weights of 50k and form the fourth class. The fifth class of IF protein contains neurofilament chains with molecular weights of about 62, 98, and 112k; these are expressed in varying amounts in different neuronal tissues. The limitations of this type of classification have become apparent with the observation that some cells are capable of expressing vimentin in addition to their “normal” IF protein species.

Keywords

Glial Fibrillary Acidic Protein Intermediate Filament Protein Chain Terminal Domain Intermediate Filament Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebi, I.L., Cohn, J., Buhle, L., and Gerace, L., 1986, The nuclear lamina is a meshwork of intermediate-type filaments, Nature 323: 560–564.PubMedGoogle Scholar
  2. Ahmadi, B., and Speakman, P. T., 1978, Suberimidate crosslinking shows that a rod-shaped, low cystine, high-helix protein prepared by limited proteolysis of reduced wool has four protein chains, FEBS Lett. 94: 365–367.PubMedGoogle Scholar
  3. Ahmadi, B., Boston, N. M., Dobb, M. G., and Speakman, P. T., 1980, Possible four-chain repeating unit in the microfibril of wool, in: Fibrous Proteins: Scientific, Industrial and Medical Aspects, Volume 2 (D. A. D. Parry and L. K. Creamer, eds.), Academic Press, New York, pp. 161–166.Google Scholar
  4. Bader, B. L., Magin, T. M., Hatzfeld, M., and Franke, W. W., 1986, Amino acid sequence and gene organisation of cytokeratin No. 19. an exceptional tail-less intermediate filament protein, EMBO J. 5: 1865–1875.PubMedGoogle Scholar
  5. Burley, S. K., and Petsko, G. R., 1985, Aromatic-aromatic interaction: A mechanism of protein stabilization, Science 229: 23–28.PubMedGoogle Scholar
  6. Chou, P. Y., and Fasman, G. D., 1978, Prediction of the secondary structure of proteins from their amino acid sequence, Adv. Enzymol. 47: 45–148.PubMedGoogle Scholar
  7. Cohen, C., and Parry, D. A. D., 1986, α-helical coiled-coils—A widespread motif in proteins, Trends Biochem. Sci. 11: 245–248.Google Scholar
  8. Conway, J. F., and Parry, D. A. D., 1988, Intermediate filament structure: 3. Analysis of sequence homologies, Int. J. Biol. Macromol. 10: 79–98.Google Scholar
  9. Conway, J. F., and Parry, D. A. D., 1989, Structure and spatial organisation of intermediate filament and nuclear lamin molecules, in: Cytoskeletal and Extracellular Proteins: Structure, Interactions and Assembly, Springer Series in Biophysics (U. Aebi and J. Engel, eds.), Volume 3, Springer-Verlag, Berlin, pp. 140–149.Google Scholar
  10. Conway, J. F., Fraser, R. D. B., MacRae, T. P., and Parry, D. A. D., 1988, Protein chains in wool and epidermal keratin IF: Structural features and spatial arrangement, in: Biology of Wool and Hair (G. E. Rogers, P. J. Reis, K. A. Ward, and R. C. Marshall, eds.), Chapman & Hall, London, pp. 127–144.Google Scholar
  11. Crewther, W. G., and Dowling, L. M., 1971, The preparation and properties of large peptides from the helical regions of the low-sulphur proteins of wool, Appl. Polym. Symp. No. 18, 1-20.Google Scholar
  12. Crewther, W. G., and Harrap, B. S., 1967, The preparation and properties of a helix-rich fraction obtained by partial proteolysis of low-sulphur S-carboxymethylkerateine from wool, J. Biol. Chem. 242: 4310–4319.PubMedGoogle Scholar
  13. Crewther, W. G., Inglis, A. S., and McKern, N. M., 1978, Amino acid sequences of a-helical segments from S-carboxymethylkerateine A. Complete sequence of a type II segment, Biochem. J. 173: 365–371.PubMedGoogle Scholar
  14. Crewther, W. G., Dowling, L. M., Steinert, P. M., and Parry, D. A. D., 1983, The structure of intermediate filaments, Int. J. Biol. Macromol. 5: 267–274.Google Scholar
  15. Crick, F. H. C., 1953, The packing of a-helices: Simple coiled-coils, Acta Crystallogr. 6: 689–697.Google Scholar
  16. Debus, E., Fligge, G., Weber, K., and Osborn, M., 1982, A monoclonal antibody specific for the 200 kilodalton polypeptide of the neurofilament triplet, EMBO J. 1: 41–46.PubMedGoogle Scholar
  17. Dowling, L. M., Parry, D. A. D., and Sparrow, L. G., 1983, Structural homology between hard α-keratin and the intermediate filament proteins, desmin and vimentin, Biosci. Rep. 3: 73–78.PubMedGoogle Scholar
  18. Dowling, L. M., Crewther, W. G., and Inglis, A. S., 1986, The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin, Biochem. J. 236: 695–703.PubMedGoogle Scholar
  19. Eckert, R. L., 1988, Sequence of the human 40-kDa keratin reveals an unusual structure with very high sequence identity to the corresponding bovine keratin, Proc. Natl. Acad. Sci. USA 85: 1114–1118.PubMedGoogle Scholar
  20. Eichner, R., Bonitz, P., and Sun, T. T., 1984, Classification of epidermal keratins according to their immunoreactivity, isoelectric point and mode of expression, J. Cell Biol. 98: 1388–1396.PubMedGoogle Scholar
  21. Fisher, D. Z., Chaudhary, N., and Blobel, G., 1986, cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins, Proc. Natl. Acad. Sci. USA 83: 6450–6454.PubMedGoogle Scholar
  22. Fraser, R. D. B., and MacRae, T. P., 1976, The molecular structure of feather keratin, Proc. 16th Ornithological Congress, Canberra, Aust. Acad. Sci., pp. 443-451.Google Scholar
  23. Fraser, R. D. B., and MacRae, T. P., 1983, The structure of the a-keratin microfibril, Biosci. Rep. 3: 517–525.PubMedGoogle Scholar
  24. Fraser, R. D. B., MacRae, T. P., Parry, D. A. D., and Suzuki, E., 1969, The structure of β-keratin, Polymer 10: 810–826.Google Scholar
  25. Fraser, R. D. B., MacRae, T. P., and Suzuki, E., 1976, Structure of the α-keratin microfibril, J. Mol. Biol. 108: 435–452.PubMedGoogle Scholar
  26. Fraser, R. D. B., MacRae, T. P., Suzuki, E., and Parry, D. A. D., 1985, Intermediate filament structure: 2. Molecular interactions in the filament, Int. J. Biol. Macromol. 7: 258–274.Google Scholar
  27. Fraser, R. D. B., MacRae, T. P., Sparrow, L. G., and Parry, D. A. D., 1988, Disulphide bonding in α-keratin, Int. J. Biol. Macromol. 10: 106–112.Google Scholar
  28. Gamier, J., Osguthorpe, D. J., and Robson, B., 1978, Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, J. Mol. Biol. 120: 97–120.Google Scholar
  29. Geisler, N., and Weber, K., 1981, Comparison of the proteins of two immunologically distinct intermediate sized filaments by amino acid sequence analysis: Desmin and vimentin, Proc. Natl. Acad. Sci. USA 78: 4120–4123.PubMedGoogle Scholar
  30. Geisler, N., and Weber, K., 1982, The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins, EMBO J. 1: 1649–1656.PubMedGoogle Scholar
  31. Geisler, N., and Weber, K., 1983, Amino acid sequence data on glial fibrillary acidic protein (GFA): Implications for the subdivision of intermediate filaments into epithelial and non-epithelial members, EMBO J. 2: 2059–2063.PubMedGoogle Scholar
  32. Geisler, N., Kaufmann, E., and Weber, K., 1982a, Proteinchemical characterization of three structurally distinct domains along the protofilament unit of desmin 10 nm filaments, Cell 30: 277–286.PubMedGoogle Scholar
  33. Geisler, N., Plessmann, U., and Weber, K., 1982b, Related amino acid sequences in neurofilaments and non-neuronal intermediate filaments, Nature 296: 448–450.PubMedGoogle Scholar
  34. Geisler, N., Kaufmann, E., Fischer, S., Plessmann, U., and Weber, K., 1983, Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins, EMBO J. 2: 1295–1302.PubMedGoogle Scholar
  35. Geisler, N., Fischer, S., Vanderkerckhove, J., Plessmann, U., and Weber, K., 1984, Hybrid character of a large neurofilament protein (NF-M): Intermediate filament type sequence followed by a long and acidic carboxy-terminal extension, EMBO J. 3: 2701–2706.PubMedGoogle Scholar
  36. Geisler, N., Fischer, S., Vanderkerckhove, J., van Damme, J., Plessmann, U., and Weber, K., 1985a, Protein-chemical characterization of NF-H, the largest mammalian neurofilament component: Intermediate filament-type sequences followed by a unique carboxy-terminal extension, EMBO J. 4: 57–63.PubMedGoogle Scholar
  37. Geisler, N., Kaufmann, E., and Weber, K., 1985b, Antiparallel orientation of the two double-stranded coiled-coils in the tetrameric protofilament unit of intermediate filaments, J. Mol. Biol. 182: 173–177.PubMedGoogle Scholar
  38. Geisler, N., Plessmann, U., and Weber, K., 1985c, The complete amino acid sequence of the major neurofilament protein (NF-L), FEBS Lett. 182: 475–478.PubMedGoogle Scholar
  39. Glass, C., Kim, K. H., and Fuchs, E., 1985, Sequence and expression of a human type II mesothelial keratin, J. Cell Biol. 101: 2366–2373.PubMedGoogle Scholar
  40. Gough, K. H., Inglis, A. S., and Crewther, W. G., 1978, Amino acid sequences of α-helical segments from S-carboxymethyl-kerateine-A. Complete sequence of a type I segment, Biochem. J. 173: 373–385.PubMedGoogle Scholar
  41. Gruen, L. C., and Woods, E. F., 1983, Structural studies on the microfibrillar proteins of wool, Biochem. J. 209: 587–595.PubMedGoogle Scholar
  42. Hanukoglu, I., and Fuchs, E., 1982, The cDNA sequence of a human epidermal keratin: Divergence of sequence but conservation of structure among intermediate filament proteins, Cell 31: 243–252.PubMedGoogle Scholar
  43. Hanukoglu, I., and Fuchs, E., 1983, The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable domains among keratins, Cell 33: 915–924.PubMedGoogle Scholar
  44. Hirokawa, N., Glicksman, M. A., and Willard, M. B., 1984, Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton, J. Cell Biol. 98: 1523–1536.PubMedGoogle Scholar
  45. Hoffmann, W., and Franz, J. K., 1984, Amino acid sequence of the carboxy-terminal part of an acidic type I cytokeratin of molecular weight 51 000 from Xenopus laevis epidermis as predicted from the cDNA sequence, EMBO J. 3: 1301–1306.PubMedGoogle Scholar
  46. Hoffmann, W., Franz, J. K., and Franke, W. W., 1985, Amino acid sequence microheterogeneities of basic (type II) cytokeratins of Xenopus laevis epidermis and evolutionary conservativity of helical and non-helical domains, J. Mol. Biol. 184: 713–724.PubMedGoogle Scholar
  47. Hong, B., and Davison, P. F., 1981, Isolation and characterization of a soluble, immunoactive peptide of glial fibrillary acidic protein, Biochim. Biophys. Acta 670: 139–145.PubMedGoogle Scholar
  48. Huber, R., 1979, Conformational flexibility and its functional significance in some protein molecules, Trends Biochem. Sci. 4: 271–276.Google Scholar
  49. Ip, W., Hartzer, M. K., Pang, S. Y. Y., and Robson, R. M., 1985, Assembly of vimentin in vitro and its implications concerning the structure of intermediate filaments, J. Mol. Biol. 183: 365–375.PubMedGoogle Scholar
  50. Jonas, E., Sargent, T. D., and Dawid, I. B., 1985, Epidermal keratin gene expressed in embryos of Xenopus laevis, Proc. Natl. Acad. Sci. USA 82: 5413–5417.PubMedGoogle Scholar
  51. Jorcano, J. L., Rieger, M., Franz, J. K., Schiller, D. L., Moll, R., and Franke, W. W., 1984, Identification of two types of keratin polypeptides within the acidic cytokeratin subfamily I, J. Mol. Biol. 179: 257–281.PubMedGoogle Scholar
  52. Julien, J. P., Ramachandran, K., and Grosveld, F., 1985, Cloning of a cDNA encoding the smallest neurofilament protein from the rat, Biochim. Biophys. Acta. 825: 398–404.PubMedGoogle Scholar
  53. Julien, J. P., Grosveld, F., Yazdanbaksh, K., Flavell, D., Meijer, D., and Mushynski, W., 1987, The structure of a human neurofilament gene (NF-L): A unique exon-intron organization in the intermediate filament gene family, Biochim. Biophys. Acta 909: 10–20.PubMedGoogle Scholar
  54. Klinge, E. M., Sylvestre, Y. R., Freedberg, I. M., and Blumenberg, M., 1987, Evolution of keratin genes: Different protein domains evolve by different pathways, J. Mol. Evol. 24: 319–329.PubMedGoogle Scholar
  55. Knapp, B., Rentrop, M., Schweizer, J., and Winter, H., 1987, Three cDNA sequences of mouse type I keratins, J. Biol. Chem. 262: 938–945.PubMedGoogle Scholar
  56. Krieg, T. M., Schafer, M. P., Cheng, C. K., Filpula, D., Flaherty, P., Steinert, P. M., and Roop, D. R., 1985, Organisation of a type I keratin gene. Evidence for evolution of intermediate filaments from a common ancestral gene, J. Biol. Chem. 260: 5867–5870.PubMedGoogle Scholar
  57. Krohne, G., Wolin, S. L., McKeon, F. D., Franke, W. W., and Kirschner, M. W., 1987, Nuclear lamin LI of Xenopus laevis: cDNA cloning, amino acid sequence and binding specificity of a member of the lamin B subfamily, EMBO J. 6: 3801–3808.PubMedGoogle Scholar
  58. Lees, J. F., Shneidman, P. S., Skuntz, S. F., Carden, M. J., and Lazzarini, R. A., 1988, The structure and organisation of the human heavy neurofilament subunit (NF-H) and the gene encoding it, EMBO J. 7: 1947–1955.PubMedGoogle Scholar
  59. Lersch, R., and Fuchs, E., 1988, Sequence and expression of a type II keratin, K5, in human epidermal cells, Mol. Cell. Biol. 8: 486–493.PubMedGoogle Scholar
  60. Levy, E., Liem, R. K. H., D’Eustachio, P., and Cowan, N. J., 1987, Structure and evolutionary origin of the gene encoding mouse NF-M, the middle-molecular-mass neurofilament protein, Eur. J. Biochem. 166: 71–77.PubMedGoogle Scholar
  61. Lewis, S. A., and Cowan, N. J., 1986, Anomalous placement of introns in a member of the intermediate filament multigene family: An evolutionary conundrum, Mol. Cell. Biol. 6: 1529–1534.PubMedGoogle Scholar
  62. Lewis, S. A., Balcarek, J. M., Krek, V., Shelanski, M., and Cowan, N. J., 1984, Sequence of a cDNA clone encoding mouse glial fibrillary acidic protein: Structural conservation of intermediate filaments, Proc. Natl. Acad. Sci. USA 81: 2743–2746.PubMedGoogle Scholar
  63. Mack, J. W., Torchia, D. A., and Steinert, P. M., 1988, Solid-state NMR studies of the dynamics and structure of mouse keratin intermediate filaments, Biochemistry 27: 5418–5426.PubMedGoogle Scholar
  64. McKeon, F. D., Kirschner, M. W., and Caput, D., 1986, Homologies in both primary and secondary structure between nuclear envelope and cytoplasmic intermediate filament proteins, Nature 319: 463–468.PubMedGoogle Scholar
  65. McLachlan, A. D., and Karn, J., 1983, Periodic features in the amino acid sequence of nematode myosin rod, J. Mol. Biol. 164: 605–626.PubMedGoogle Scholar
  66. McLachlan, A. D., and Stewart, M., 1976, The 14-fold periodicity in α-tropomyosin and the interaction with actin, J. Mol. Biol. 103: 271–298.PubMedGoogle Scholar
  67. McLachlan, A. D., and Stewart, M., 1982, Periodic charge distribution in the intermediate filament proteins desmin and vimentin, J. Mol. Biol. 162: 693–698.PubMedGoogle Scholar
  68. Marchuk, D., McCrohon, S., and Fuchs, E., 1984, Remarkable conservation of structure among intermediate filament genes, Cell 39: 491–498.PubMedGoogle Scholar
  69. Marchuk, D., McCrohon, S., and Fuchs, E., 1985, Complete sequence of a gene encoding a human type I keratin: Sequences homologous to enhancer elements in the regulatory region of the gene, Proc. Natl. Acad. Sci. USA 82: 1609–1613.PubMedGoogle Scholar
  70. Moll, R., Franke, W. W., Schiller, D., Geiger, B., and Krepier, R., 1982, The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells, Cell 31: 11–24.PubMedGoogle Scholar
  71. Myers, M. W., Lazzarini, R. A., Lee, V. M. Y., Schlaepfer, W. W., and Nelson, D. L., 1987, The human midsize neurofilament subunit: A repeated protein sequence and the relationship of its gene to the intermediate filament gene family, EMBO J. 6: 1617–1625.PubMedGoogle Scholar
  72. Napolitano, E. W., Chin, S. S. M., Colman, D. R., and Liem, R. K. H., 1987, Complete amino acid sequence and in vitro expression of rat NF-M, the middle molecular weight neurofilament protein, J. Neurosci. 7: 2590–2599.PubMedGoogle Scholar
  73. Pang, Y. Y. S., Robson, R. M., Hartzer, M. K., and Stromer, M. H., 1983, Subunit structure of the desmin and vimentin protofilament units, J. Cell Biol. 97: 266a.Google Scholar
  74. Parry, D. A. D., 1975, Analysis of the primary sequence of α-tropomyosin from rabbit skeletal muscle, J. Mol. Biol. 98: 519–535.PubMedGoogle Scholar
  75. Parry, D. A. D., 1979, Determination of structural information from the amino acid sequences of fibrous proteins, in: Fibrous Proteins: Scientific, Industrial and Medical Aspects, Volume 1 (D. A. D. Parry and L. K. Creamer, eds.), Academic Press, New York, pp. 393–427.Google Scholar
  76. Parry, D. A. D., and Fraser, R. D. B., 1985, Intermediate filament structure: 1. Analysis of IF protein sequence data, Int. J. Biol. Macromol. 7: 203–213.Google Scholar
  77. Parry, D. A. D., Crewther, W. G., Fraser, R. D. B., and MacRae, T. P., 1977, Structure of α-keratin: Structural implication of the amino acid sequences of the type I and type II chain segments, J. Mol. Biol. 113: 449–454.PubMedGoogle Scholar
  78. Parry, D. A. D., Steven, A. C., and Steinert, P. M., 1985, The coiled-coil molecules of intermediate filaments consist of two parallel chains in exact axial register, Biochem. Biophys. Res. Commun. 127: 1012–1018.PubMedGoogle Scholar
  79. Parry, D. A. D., Conway, J. F., and Steinert, P. M., 1986, Structural studies on lamin: Similarities and differences between lamin and intermediate filament proteins, Biochem. J. 238: 305–308.PubMedGoogle Scholar
  80. Parry, D. A. D., Conway, J. F., Goldman, A. E., Goldman, R. D., and Steinert, P. M., 1987, Nuclear lamin proteins: Common structures for paracrystalline, filamentous and lattice forms, Int. J. Biol. Macromol. 9: 137–145.Google Scholar
  81. Potschka, M., Winkler, H., and Wicke, G., 1984, Charge effects in sedimentation of intermediate filament subassemblies, 8th Int. Biophys. Congr. Bristol, p. 212.Google Scholar
  82. Quax, W., Egberts, W. V., Hendriks, W., Quax-Jeuken, Y., and Bloemendal, H., 1983, The structure of the vimentin gene, Cell 35: 215–223.PubMedGoogle Scholar
  83. Quax, W., van der Heuvel, R., Egberts, W. V., Quax-Jeuken, Y., and Bloemendal, H., 1984, Intermediate filament cDNAs from BHK-21 cells: Demonstration of distinct genes for desmin and vimentin in all vertebrate classes, Proc. Natl. Acad. Sci. USA 81: 5970–5974.PubMedGoogle Scholar
  84. Quax-Jeuken, Y. E. F. M., Quax, W. J., and Bloemendal, H., 1983, Primary and secondary structure of hamster vimentin from the nucleotide sequence, Proc. Natl. Acad. Sci. USA 80: 3548–3552.PubMedGoogle Scholar
  85. Quinlan, R. A., and Franke, W. W., 1982, Heteropolymer filaments of vimentin and desmin in vascular smooth muscle tissue and cultured hamster kidney cells demonstrated by chemical crosslinking, Proc. Natl. Acad. Sci. USA 79: 3452–3456.PubMedGoogle Scholar
  86. Quinlan, R. A., and Franke, W. W., 1983, Molecular interactions in intermediate-sized filaments revealed by chemical cross-linking. Heteropolymers of vimentin and glial filament protein in cultured human glioma cells, Eur. J. Biochem. 132: 477–484.PubMedGoogle Scholar
  87. Quinlan, R. A., Cohlberg, J. A., Schiller, D. L., Hatzfeld, M., and Franke, W. W., 1984, Heterotypic tetramer (A2D2) complexes of non-epidermal keratins isolated from cytoskeletons of rat hepatocytes and hepatoma cells, J. Mol. Biol. 178: 365–388.PubMedGoogle Scholar
  88. Quinlan, R. A., Schiller, D. L., Hatzfeld, M., Achtstatter, T., Moll, R., Jorcano, J. L., Magin, T. M., and Franke, W. W., 1985, Patterns of expression and organization of cytokeratin intermediate filaments, Ann. N.Y. Acad. Sci. 455: 282–306.PubMedGoogle Scholar
  89. Raychaudury, A., Marchuk, D., Lindhurst, M., and Fuchs, E., 1986, Three tightly linked genes encoding human type I keratins: Conservation of sequence in the 5′-untranslated leader and 5′-upstream regions of coexpressed keratin genes, Mol. Cell Biol. 6: 539–548.Google Scholar
  90. Renner, W., Franke, W. W., Schmid, E., Geisler, E., Weber, K., and Mandelkow, E., 1981, Reconstitution of intermediate-sized filaments from denatured monomeric vimentin, J. Mol. Biol. 149: 285–306.PubMedGoogle Scholar
  91. Rieger, M., Jorcano, J. L., and Franke, W. W., 1985, Complete sequence of a bovine type I cytokeratin gene: Conserved and variable intron positions in genes of polypeptides of the same cytokeratin subfamily, EMBO J. 4: 2261–2267.PubMedGoogle Scholar
  92. Romano, V., Hatzfeld, M., Magin, T. M., Zimbelmann, R., Franke, W. W., Maier, G., and Ponstingl, H., 1986, Cytokeratin expression in simple epithelia I. Identification of mRNA coding for human cytokeratin No 18 by a cDNA clone, Differentiation 30: 244–253.PubMedGoogle Scholar
  93. Sharp, G., Shaw, G., and Weber, K., 1982, Immunoelectron microscopic localization of the 3 neurofilament triplet proteins along neurofilaments of cultured dorsal root ganglion neurons, Exp. Cell Res. 137: 403–414.PubMedGoogle Scholar
  94. Shaw, G., and Weber, K., 1981, Distribution of neurofilament triplet proteins within individual neurons, Exp. Cell Res. 136: 119–126.PubMedGoogle Scholar
  95. Shaw, G., and Weber, K., 1982, Differential expression of neurofilament triplet proteins in brain development, Nature 298: 277–279.PubMedGoogle Scholar
  96. Shneidman, P. S., Carden, M. J., Lees, J. F., and Lazzarini, R. A., 1988, The structure of the largest murine neurofilament protein (NF-H) as revealed by cDNA and genomic sequences, Mol. Brain Res. 4: 217–231.Google Scholar
  97. Singer, P. A., Trevor, K., and Oshima, R. G., 1986, Molecular cloning and characterization of the endo B cytokeratin expressed in preimplantation mouse embryos, J. Biol. Chem. 261: 538–547.PubMedGoogle Scholar
  98. Skerrow, D., Matoltsy, A. G., and Matoltsy, M. N., 1973, Isolation and characterization of the helical regions of epidermal prekeratin, J. Biol. Chem. 248: 4820–4826.PubMedGoogle Scholar
  99. Sparrow, L. G., and Inglis, A. S., 1980, Characterization of the cyanogen bromide proteins of component 7c, a major microfibrillar protein from wool, Proc. 6th Int. Wool Text. Res. Conf. Pretoria, Vol. II, pp. 237-246.Google Scholar
  100. Sparrow, L. G., Dowling, L. M., Loke, V. Y., and Strike, P. M., 1989, Amino acid sequences of wool keratin IF proteins, in: Biology of Wool and Hair (G. E. Rogers, P. J. Reis, K. A. Ward, and R. C. Marshall, eds.), Chapman & Hall, London, pp. 145–155.Google Scholar
  101. Steinert, P. M., 1978a, Structure of the three-chain unit of the bovine epidermal keratin filament, J. Mol. Biol. 123: 49–70.PubMedGoogle Scholar
  102. Steinert, P. M., 1978b, Structural features of the α-type filaments of the inner root sheath cells of the guinea pig hair follicle, Biochemistry 17: 5045–5052.PubMedGoogle Scholar
  103. Steinert, P. M., 1981, Intermediate filaments (IF), in: Electron Microscopy of Proteins, Volume 1 (J. R. Harris, ed.), Academic Press, New York, pp. 125–166.Google Scholar
  104. Steinert, P. M., and Parry, D. A. D., 1985, Intermediate filaments: Conformity and diversity of expression and structure, Annu. Rev. Cell Biol. 1: 41–65.PubMedGoogle Scholar
  105. Steinert, P. M., and Roop, D. R., 1988, Molecular and cellular biology of intermediate filaments, Annu. Rev. Biochem. 57: 593–625.PubMedGoogle Scholar
  106. Steinert, P. M., Zimmerman, S. B., Starger, J. M., and Goldman, R. D., 1978, Ten-nanometer filaments of hamster BHK-21 cells and epidermal keratin filaments have similar structures, Proc. Natl. Acad. Sci. USA 75: 6098–6101.PubMedGoogle Scholar
  107. Steinert, P. M., Idler, W. W., and Goldman, R. D., 1980, Intermediate filaments of BHK-21 cells and bovine epidermal keratinocytes have similar ultrastructures, Proc. Natl. Acad. Sci. USA 77: 4534–4538.PubMedGoogle Scholar
  108. Steinert, P. M., Idler, W. W., Cabrai, F., Gottesman, M. M., and Goldman, R. D., 1981, In vitro assembly of homopolymer and copolymer filaments from intermediate filament subunits of muscle and fibroblastic cells, Proc. Natl. Acad. Sci. USA 78: 3692–3696.PubMedGoogle Scholar
  109. Steinert, P. M., Idler, W. W., Aynardi-Whitman, M. A., Zackroff, R. V., and Goldman, R. D., 1982, Heterogeneity of intermediate filaments assembled in vitro, Cold Spring Harbor Symp. Quant. Biol. 46: 465–474.PubMedGoogle Scholar
  110. Steinert, P. M., Rice, R. H., Roop, D. R., Trus, B. L., and Steven, A. C., 1983, Complete amino acid sequence of a mouse epidermal keratin subunit and implications for the structure of intermediate filaments, Nature 302: 794–800.PubMedGoogle Scholar
  111. Steinert, P. M., Parry, D. A. D., Racoosin, E. L., Idler, W. W., Steven, A. C., Trus, B. L., and Roop, D. R., 1984, The complete cDNA and deduced amino acid sequence of a type II mouse epidermal keratin of 60000 Da: Analysis of sequence differences between type I and type II keratins, Proc. Natl. Acad. Sci. USA 81: 5709–5713.PubMedGoogle Scholar
  112. Steinert, P. M., Parry, D. A. D., Idler, W. W., Johnson, L. D., Steven, A. C., and Roop, D. R., 1985a, Amino acid sequences of mouse and human epidermal keratins of Mr 67 000 provide a systematic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits, J. Biol. Chem. 260: 7142–7149.PubMedGoogle Scholar
  113. Steinert, P. M., Steven, A. C., and Roop, D. R., 1985b, The molecular biology of intermediate filaments, Cell 42: 411–419.PubMedGoogle Scholar
  114. Steinert, P. M., Torchia, D. A., and Mack, J. W., 1989, Structural features of keratin intermediate filaments, in: Biology of Wool and Hair (G. E. Rogers, P. J. Reis, K. A. Ward, and R. C. Marshall, eds.), Chapman & Hall, London, pp. 157–167.Google Scholar
  115. Sun, T. T., Eichner, R., Schermer, A., Cooper, D., Nelson, W. G., and Weiss, R. A., 1984, Classification, expression, and possible mechanisms of evolution of mammalian epithelial keratins: A unifying model in: Cancer Cells 1, The Transformed Phenotype, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 169–176.Google Scholar
  116. Suzuki, E., Crewther, W. G., Fraser, R. D. B., MacRae, T. P., and McKern, N. M., 1973, X-ray diffraction and infrared studies of an α-helical fragment from a-keratin, J. Mol. Biol. 73: 275–278.PubMedGoogle Scholar
  117. Tyner, A. L., Eichman, M. J., and Fuchs, E., 1985, The sequence of a type II keratin gene expressed in human skin: Conservation of structure among all intermediate filament genes, Proc. Natl. Acad. Sci. USA 82: 4683–4687.PubMedGoogle Scholar
  118. Willard, M., and Simon, C., 1981, Antibody decoration of neurofilaments, J. Cell Biol. 89: 198–205.PubMedGoogle Scholar
  119. Winkles, J. A., Sargent, T. D., Parry, D. A. D., Jonas, E., and Dawid, I. B., 1985, Developmentally regulated cytokeratin gene in Xenopus laevis, Mol. Cell. Biol. 5: 2575–2581.PubMedGoogle Scholar
  120. Woodcock-Mitchell, J., Eichner, R., Nelson, W. G., and Sun, T. T., 1982, Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies, J. Cell Biol. 95: 580–588.PubMedGoogle Scholar
  121. Woods, E. F., 1983, The number of polypeptide chains in the rod domain of bovine epidermal keratin, Biochem. Int. 7: 769–774.PubMedGoogle Scholar
  122. Woods, E. F., and Gruen, L. C., 1981, Structural studies on the microfibrillar proteins of wool: Characterization of the α-helix-rich particle produced by chymotryptic digestion, Aust. J. Biol. Sci., 34: 515–526.PubMedGoogle Scholar
  123. Woods, E. F., and Inglis, A. S., 1984, Organization of the coiled-coils in the wool microfibril, Int. J. Biol. Macromol. 6: 277–283.Google Scholar
  124. Wu, Y. J., Parker, L. M., Binder, N. E., Beckett, M. A., Sinard, J. H., Griffiths, C. T., and Rheinwald, J. G., 1982, The mesothelial keratins: A new family of cytoskeletal proteins identified in cultured mesothelial cell and nonkeratinizing epithelia, Cell 31: 693–703.PubMedGoogle Scholar
  125. Zackroff, R. V., and Goldman, R. D., 1980, In vitro reassembly of squid brain intermediate filaments (neurofilaments): Purification by assembly-diassembly, Science 208: 1152–1155.PubMedGoogle Scholar
  126. Zehner, Z. E., and Paterson, B. M., 1985, The chicken vimentin gene: Aspects of organization and transcription during myogenesis, Ann. N.Y. Acad. Sci. 455: 79–94.PubMedGoogle Scholar
  127. Zhou, X.-M., Idler, W. W., Steven, A. C., Roop, D. R., and Steinert, P. M., 1988, The complete sequence of the human intermediate filament chain keratin 10, J. Biol. Chem., 263: 15584–15589.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • David A. D. Parry
    • 1
  1. 1.Department of Physics and BiophysicsMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations