The Cytoskeleton in Neurological Disease

  • Michael L. Shelanski
  • Carol M. Troy


The history of the microscopic study of diseases of the nervous system is little older than the appreciation that these maladies are often accompanied by alterations in fibrillar or reticular elements within nerve cells. The most common of these alterations is known as neurofibrillary degeneration. This change, marked by an increase in the apparent number and thickness of the argentophilic fibrillar elements of the neuronal cytoplasm, is seen in Alzheimer’s disease, amyotrophic lateral sclerosis, lathyrism, sporadic motor neuron disease, and a number of drug- and toxin-induced neuropathies.


Amyotrophic Lateral Sclerosis Neurofibrillary Tangle Paired Helical Filament Neurofibrillary Degeneration Paired Helical Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alzheimer, A., 1907, Über ein eigenartige Erkrankung der Hirnrinde, Allg. Z. Psychiatr. 64: 146–148.Google Scholar
  2. Bizzi, A., and Gambetti, P., 1986, Phosphorylation of neurofilaments is altered in aluminum intoxication, Acta Neuropathol. 71: 154–158.PubMedGoogle Scholar
  3. Bizzi, A., Crane, R. C., Autilio-Gambetti, L., and Gambetti, P., 1984, Aluminum effect on slow axonal transport: A novel impairment of neurofilament transport, J. Neurosci. 4: 722–731.PubMedGoogle Scholar
  4. Brady, S. T., 1985, A novel brain ATPase with properties expected for the fast axonal transport motor, Nature 317: 73–75.PubMedGoogle Scholar
  5. Brion, J. P., van den Bosch de Aquilar, P., and Flament-Durand, J., 1985, Senile dementia of the Alzheimer type: Morphological and immunocytochemical studies in senile dementia of Alzheimer type, in: Advances in Applied Neurological Science, Volume 2 (J. Traben and W. H. Gispen, eds.), Springer Verlag, Berlin, pp. 164–174.Google Scholar
  6. Chou, S. M., and Hartmann, H. A., 1965, Electron microscopy of focal neuroaxonal lesions produced by β,β′-iminodipropionitrite (IDPN) in rats. I. The advanced lesions, Acta Neuropathoi. 4: 598–603.Google Scholar
  7. Cleveland, D. W., Pittenger, M. F., and Lopatz, M. A., 1983, Autoregulatory control of the expression of a and β tubulin, J. Submicrosc. Cytol. 15: 353–358.PubMedGoogle Scholar
  8. Cork, L. C., Sternberger, N. H., Sternberger, L. A., Casanova, M. F., Struble, R. G., and Price, D. L., 1986, Phosphorylated neurofilament antigens in neurofibrillary tangles in Alzheimer’s disease, J. Neuropathoi. Exp. Neurol. 45: 59–64.Google Scholar
  9. Den Hartog Jager, W. A., and Bethlem, J., 1980, The distribution of Lewy bodies in the central and autonomic nervous systems in idiopathic paralysis agitans, J. Neurol. Neurosurg. Psychiatry 23: 283–290.Google Scholar
  10. Dickson, D. W., Kress, Y., Crowe, A., and Yen, S.-H., 1985, Monoclonal antibodies to Alzheimer neurofibrillary tangles (ANT). 2. Demonstration between ANT and neurofibrillary degeneration in progressive supranuclear palsy, Am. J. Pathol. 120: 292–303.PubMedGoogle Scholar
  11. Dickson, D. W., Ksiezak-Reding, H., Davies, P., and Yen, S.-H., 1987, A monoclonal antibody that recognizes a phosphorylated epitope in Alzheimer neurofibrillary tangles, neurofilaments and tau proteins immunostains granulovacuolar degeneration, Acta Neuropathoi. 73: 254–258.Google Scholar
  12. Embree, L. J., Hamberger, A., and Sjostrand, J., 1967, Quantitative cytochemical studies and histochemistry in experimental neurofibrillary degeneration, J. Neuropathoi. Exp. Neurol. 26: 427–434.Google Scholar
  13. Forno, L. S., 1969, Concentric hyaline intraneuronal inclusions of Lewy tape in the brains of elderly persons (50 incidental cases): Relationships to parkinsonism, J. Am. Geriatr. Soc. 17: 557–575.PubMedGoogle Scholar
  14. Forno, L. S., Strefling, A. M. Sternberger, L. A., and Eng, L. F., 1983, Immunocytochemical staining of neurofibrillary tangles and the periphery of Lewy bodies with a monoclonal antibody to neurofilaments, J. Neuropathoi. Exp. Neurol. 42: 342 (abstract).Google Scholar
  15. Fu, T. K., Matsuyama, S. S., Kellser, J. O., and Jarvik, L. F., 1986, Philothermal response, microtubules and dementia, Neurobiol. Aging 7: 41–43.PubMedGoogle Scholar
  16. Galloway, P. G., Perry, G., and Gambetti, P., 1987, Hirano body filaments contain actin and actin-associated proteins, J. Neuropathoi. Exp. Neurol. 46: 185–199.Google Scholar
  17. Gambetti, P., Autilio-Gambetti, L., and Papasozomenos, S. C., 1981, Bodian’s silver method stains neurofilament polypeptides, Science 213: 1521–1522.PubMedGoogle Scholar
  18. Gambetti, P., Autilio-Gambetti, L., Perry, G., Shecket, G., and Crane, R. C., 1983, Antibodies to neurofibrilary tangles of Alzheimer’s disease raised from human and animal neurofilament fractions, Lab. Invest. 49: 430–435.PubMedGoogle Scholar
  19. Ghetti, B., and Gambetti, P., 1983, Comparative immunocytochemical characterization of neurofibrillary tangles in experimental maytansine and aluminum encephalopathies, Brain Res. 276: 388–393.PubMedGoogle Scholar
  20. Goldman, J. E., 1983, The association of actin with Hirano bodies, J. Neuropathol. Exp. Neurol. 42: 146–152.PubMedGoogle Scholar
  21. Goldman, J. E., and Yen, S.-H., 1986, Cytoskeletal protein abnormalities in neurodegenerative diseases, Ann. Neurol. 19: 209–223.PubMedGoogle Scholar
  22. Goldman, J. E., Yen, S.-H., Chiu, F.-C., and Peress, N., 1983, Lewy bodies of Parkinson’s disease contain neurofilament antigens, Science 221: 1082–1084.PubMedGoogle Scholar
  23. Goldstein, M. E., Sternberger, N. H., and Sternberger, L. H., 1987, Phosphorylation protects neurofilaments against proteolysis, J. Neuroimmunol. 14: 149–160.PubMedGoogle Scholar
  24. Graham, D. G., Anthony, D. C., Szakal-Quin, G., Gottfried, M. R., and Boekelheide, K., 1985, Covalent crosslinking of neurofilaments in the pathogenesis of n-hexane neuropathy, Neurotoxicology 6: 55–63.PubMedGoogle Scholar
  25. Griffin, J. W., Fahnestock, K. E., Price, D. L., and Hoffman, P. N., 1983, Microtubule-neurofilament segregation produced by β,β′-iminodipropionitrile: Evidence for the association of fast axoplasmic transport with microtubules, J. Neurosci. 3: 557–566.PubMedGoogle Scholar
  26. Griffin, J. W., Parhad, I., Gold, B., Price, D. L., Hoffman, P. N., and Fahnestock, K., 1985, Axonal transport of neurofilament proteins in IDPN neurotoxicity, Neurotoxicology 6: 43–53.PubMedGoogle Scholar
  27. Grundke-Iqbal, I., Johnson, A. B., Wisniewski, H. M., Terry, R. D., and Iqbal, K., 1979, Evidence that Alzheimer neurofibrillary tangles originate from neurotubules, Lancet 1: 578–580.PubMedGoogle Scholar
  28. Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., and Wisniewski, H. M., 1984, Alzheimer paired helical filaments: Immunochemical identification of polypeptides, Acta Neuropathol. 62: 259–267.PubMedGoogle Scholar
  29. Hamakubo, T., Kannagi, R., Murachi, T., and Matus, A., 1986, Distribution of calpains I and II in rat brain, J. Neurosci. 6: 3103–3111.PubMedGoogle Scholar
  30. Heimann, R., Shelanski, M. L., and Liem, R. K. H., 1984, Microtubule-associated proteins bind specifically to the 70 kDa neurofilament protein, J. Biol. Chem. 254: 12160–12166.Google Scholar
  31. Hirano, A., Dembitzer, H. M., Kurland, L. T., and Zimmerman, H. M., 1968, The fine structure of some intraganglionic alterations, J. Neuropathol. 28: 365–366.Google Scholar
  32. Hirano, A., Donnenfeld, H., Sasaki, S. and Nakano, I., 1984, Fine structured observation of neurofilamentous changes in amyotrophic lateral sclerosis, J. Neuropathol. Exp. Neurol. 43: 461–470.PubMedGoogle Scholar
  33. Hoffman, P. N., and Lasek, R., 1975, The slow component of axoplasmic transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol. 66: 351–366.PubMedGoogle Scholar
  34. Hoffman, P. N., Griffin, J. W., and Price, D. L., 1984, Control of axonal caliber by neurofilament transport, J. Cell Biol. 99: 705–714.PubMedGoogle Scholar
  35. Hoffman, P. N., Cleveland, D. W., Griffin, J. W., Landes, P. W., Cowan, N. J., and Price, D. L., 1987, Neurofilament gene expression: A major determinant of axonal caliber, Proc. Natl. Acad. Sci. USA 84: 3472–3476.PubMedGoogle Scholar
  36. Iqbal, K., Wisniewski, H., Shelanski, M. L., Brostoff, S., Liwnicz, B. H., and Terry, R. D., 1974, Protein changes in senile dementia, Brain Res. 77: 337–343.PubMedGoogle Scholar
  37. Iqbal, K., Zaidi, T., Thompson, C. H., Merz, P., and Wisniewski, H. M., 1984, Alzheimer paired helical filaments: Bulk isolation, solubility and protein composition, Acta Neuropathol. 62: 167–177.PubMedGoogle Scholar
  38. Jones, H. B., and Cavanagh, J. B., 1984, The evolution of intracellular responses to acrylamide in rat spinal ganglion neurons, Neuropathol. Appl. Neurobiol. 10: 101–121.PubMedGoogle Scholar
  39. Julien, J. P., and Mushynski, W. E., 1983, The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments, J. Biol. Chem. 258: 4019–4025.PubMedGoogle Scholar
  40. Kidd, M., 1963, Paired filaments in electron microscopy of Alzheimer’s disease, Nature 197: 192–193.PubMedGoogle Scholar
  41. Kirschner, D. A., Abraham, C., and Selkoe, D. J., 1986, X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer’s disease indicates cross-beta conformation, Proc. Natl. Acad. Sci. USA 83: 503–507.PubMedGoogle Scholar
  42. Klatzo, I., Wisniewski, H. M., and Streicher, E., 1965, Experimental production of neurofibrillary degeneration, J. Neuropathol. Exp. Neurol. 24: 187.PubMedGoogle Scholar
  43. Kosik, V. S., Joachim, C. L., and Selkoe, D. J., 1986, Microtubule-associated protein tau is a major antigenic component of paired helical filaments in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA 83: 4044–4048.PubMedGoogle Scholar
  44. Kowall, N. W., and Kosik, K. S., 1987, The cytoskeletal pathology of Alzheimer’s disease is characterized by aberrant tau distribution, Ann. Neurol. 22: 639–643.PubMedGoogle Scholar
  45. Ksiezak-Reding, H., and Yen, S.-H., 1987, Two monoclonal antibodies recognize Alzheimer’s neurofibrillary tangles, neurofilament, and microtubule-associated proteins, J. Neurochem. 48: 455–462.PubMedGoogle Scholar
  46. Lasek, R. J., and Hoffman, P. N., 1976, The neuronal cytoskeleton, axonal transport and axonal growth, in: Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., pp. 1021–1050.Google Scholar
  47. LeTerrier, J.-F., Liem, R. K. H., and Shelanski, M. L., 1982, Interactions between neurofilaments and microtubule-associated proteins: Possible mechanism for intraorganellar bridging, J. Cell Biol. 95: 982–986.PubMedGoogle Scholar
  48. LeTerrier, J.-F., Wong, J., Liem, R. K. H., and Shelanski, M. L., 1984, Promotion of microtubule assembly by neurofilament-associated, microtubule-associated proteins, J. Neurochem. 43: 1385–1391.PubMedGoogle Scholar
  49. Lewy, F. H., 1912, Paralysis agitans. I. Pathologische Anatomie, in: Handbuch der Neurologie (M. Lewandowsky, ed.), Springer, Berlin, pp. 920–933.Google Scholar
  50. Liem, R. K. H., and Hutchison, S., 1982, Purification of the individual components of the neurofilament triplet. Filament assembly from the 70,000 dalton subunit, Biochemistry 21: 3221–3226.PubMedGoogle Scholar
  51. Liem, R. K. H., Yen, S.-H., Salomon, G. D., and Shelanski, M. L., 1978, Intermediate filaments in nervous tissues, J. Cell Biol. 78: 637–645.Google Scholar
  52. Lipkin, L. E., 1959, Cytoplasmic inclusions in ganglion cells associated with parkinsonian states, Am. J. Pathol. 35: 1117–1133.PubMedGoogle Scholar
  53. Masters, C. L., Multhaup, G., Simms, G., Pottgiesser, J., Martins, R. N., and Beyreuther, K., 1985, Neuronal origin of a cerebral amyloid: Neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels, EMBO J. 4: 2757–2763.PubMedGoogle Scholar
  54. Miller, C. C., Brion, J. P., Calvert, R., Chin, T. K., Eagles, P. A., Downes, M. J., Flament-Durand, J., Haugh, M., Kahn, J., Probst, A., Olrich, J., and Anderton, B. H., 1986, Alzheimer’s paired helical filaments share epitopes with neurofilaments side arms, EMBO J. 5: 269–276.PubMedGoogle Scholar
  55. Mori, H., Kondo, J., and Ihara, Y., 1987, Ubiquitin is a component of paired helical filaments in Alzheimer’s disease, Science 235: 1641–1644.PubMedGoogle Scholar
  56. Muñoz, D. G., Greene, C., Peel, D. P., and Selkoe, D. J., 1988, Accumulation of phosphorylated neurofilaments in anterior horn motorneurons of amyotrophic lateral sclerosis patients, J. Neuropathol. Exp. Neural. 47: 9–18.Google Scholar
  57. Munoz-Garcia, D., and Ludwin, S. K., 1984, Classic and generalized variants of Pick’s disease: A clinicopathological, ultrastructural and immunocytochemical comparative study, Ann. Neurol. 16: 467–480.PubMedGoogle Scholar
  58. Nagara, H., Yakajima, K., and Suzuki, K., 1980, An ultrastructural study of the cerebellum of the brindled mouse, Acta Neuropathol. 52: 41–50.PubMedGoogle Scholar
  59. Nixon, R. A., Brown, B. A., and Marotta, C. A., 1982, Posttranslational modification of a neurofilament protein during axoplasmi transport: Implications for regional specialization of CNS axons, J. Cell Biol. 94: 150–158.PubMedGoogle Scholar
  60. Nukina, N., Kosik, K. S., and Selkoe, D. J., 1988, The monoclonal antibody, Alz 50, recognizes tau proteins in Alzheimer’s disease brain, Neurosci. Lett., 87: 240–246.PubMedGoogle Scholar
  61. Ohama, E., and Ikuta, F., 1976, Parkinson’s disease: Distribution of Lewy bodies and monoamine neuron systems, Acta Neuropathol. 34: 311–319.PubMedGoogle Scholar
  62. Papasozomenos, S. C., Yoon, M., Crane, R., Autilio-Gambetti, L., and Gambetti, P., 1982, Redistribution of proteins of fast axonal transport following administration of β,β′-iminodipropionitrile: A quantitative autoradiographic study, J. Cell Biol. 95: 672–675.PubMedGoogle Scholar
  63. Paschal, B. M., Shpetner, H. S., and Vallee, R. B., 1987, Map 1C is a microtubule-activated ATPase which translates microtubules in vitro and has dynein-like properties, J. Cell Biol. 105: 1273–1285.PubMedGoogle Scholar
  64. Perry, G., Friedman, R., Shaw, G., and Chau, V., 1987a, Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer’s disease brains, Proc. Natl. Acad. Sci. USA 84: 3033–3036.PubMedGoogle Scholar
  65. Perry, G., Mulvihill, P., Manetto, V., Autilio-Gambetti, L., and Gambetti, P., 1987b, Immunocytochemical properties of Alzheimer straight filaments, J. Neurosci. 7: 3736–3738.PubMedGoogle Scholar
  66. Peters, A., and Vaughn, J. E., 1967, Microtubules and filaments in the axons and astrocytes of early postnatal optic nerve, J. Cell Biol. 32: 113–119.PubMedGoogle Scholar
  67. Peterson, C., and Goldman, J. E., 1986, Alterations in calcium content and biochemical processes during aging and Alzheimer’s disease, Proc. Natl. Acad. Sci. USA 83: 2758–2762.PubMedGoogle Scholar
  68. Peterson, C., Ratan, R. R., Shelanski, M. L., and Goldman, J. E., 1986a, Cytosolic free calcium and cell spreading decrease in fibroblasts from aged and Alzheimer’s donors, Proc. Natl. Acad. Sci. USA 83: 7999–8001.PubMedGoogle Scholar
  69. Peterson, C., Suzuki, K., Kress, Y., and Goldman, J. E., 1986b, Abnormalities of dendritic actin organization in the brindled mouse, Brain Res. 382: 205–212.PubMedGoogle Scholar
  70. Peterson, C., Ratan, R. R., Shelanski, M. L., and Goldman, J. E., 1988, Altered response of fibroblasts from aged and Alzheimer donors to drugs that elevate cytoplasmic free calcium, Neurobiol. Aging 9: 261–266.PubMedGoogle Scholar
  71. Price, D. L., Whitehouse, P. J., and Struble, R. G., 1986, Cellular pathology in Alzheimer’s and Parkinson’s disease, Trends Neurosci. 9: 29–33.Google Scholar
  72. Probst, A., Anderson, B. H., Ulrich, J., Köhler, R., Karen, J., and Hertz, P. U., 1983, Pick’s disease: An immunocytochemical study of neuronal changes: Monoclonal antibodies show that Pick bodies share antigenic determinants with neurofibrillary tangles and neurofilaments, Acta Neuropathol. 60: 175–182.PubMedGoogle Scholar
  73. Raine, C. S., Ghetti, B., and Shelanski, M. L., 1971, On the association between microtubules and mitochondria in axons, Brain Res. 34: 389–393.PubMedGoogle Scholar
  74. Rasool, C. S., and Selkoe, D. J., 1984, Alzheimer’s disease: Exposure of neurofilament immunoreactivity in SDS-insoluble paired helical filaments, Brain Res. 322: 194–198.PubMedGoogle Scholar
  75. Rasool, C. S., and Selkoe, D. J., 1985, Recognition of Pick bodies by antibodies to neurofibrillary tangles in Alzheimer’s disease, N. Engl. J. Med. 312: 700–705.PubMedGoogle Scholar
  76. Rewcastle, N. B., and Ball, M. J., 1968, Electron microscopy of the inclusion bodies in Pick’s disease, Neurology 18: 1205–1213.PubMedGoogle Scholar
  77. Roots, B. I., 1983, Neurofilament accumulation induced in synapses by leupeptin, Science 221: 971–972.PubMedGoogle Scholar
  78. Runge, M. S., Lane, T. M., Yphantis, D. A., Lifsics, M. R., Saito, A., Altin, M., Reinke, K., and Williams, R. C., Jr., 1981, ATP-induced formation of a complex between microtubules and neurofilaments, Proc. Natl. Acad. Sci. USA 78: 1431–1435.PubMedGoogle Scholar
  79. St. George-Hyslop, P. H., Tanzi, R. E., Polinsky, R. J., Haines, J. L., Nee, L., Watkins, P. C., Myers, R. H., Feldman, R. G., Pollen, D., Drachman, D., Growdon, J., Bruni, A., Foncin, J.-F., Salmon, D., Frommelt, P., Amaducci, L., Sorbi, S., Placentini, S., Stewart, G. D., Hobbs, W. J., Conneally, P. M., and Gusella, J. F., 1987, The genetic defect causing familial Alzheimer’s disease maps on chromosome 21, Science 235: 885–890.PubMedGoogle Scholar
  80. Schlaepfer, W. W., 1977, Immunological and ultrastructural studies of neurofilaments isolated from rat peripheral nerve, J. Cell Biol. 74: 226–240.PubMedGoogle Scholar
  81. Schochet, S. S., Jr., and McCormick, W. F., 1972, Ultrastructure of Hirano bodies, Acta Neuropathol. 21: 50–60.PubMedGoogle Scholar
  82. Schochet, S. S., Jr., Lampert, P. W., and Lindenberg, R., 1968, Fine structure of the Pick and Hirano bodies in a case of Pick’s disease, Acta Neuropathol. 11: 330–337.PubMedGoogle Scholar
  83. Schochet, S. S., Jr., Hartman, J. M., Ladewig, P. P., and Eakle, K. M., 1969, Intraneuronal conglomerates in sporadic motor neuron disease, Arch. Neurol. 20: 548–553.PubMedGoogle Scholar
  84. Selkoe, D. J., Liem, R. K. H., Yen, S.-H., and Shelanski, M. L., 1979, Biochemical and immunological characterization of neurofilaments in experimental neurofibrillary degeneration induced by aluminum, Brain Res. 163: 235–252.PubMedGoogle Scholar
  85. Selkoe, D. J., Ihara, Y., and Salazar, F. J., 1982, Alzheimer’s disease: Insolubility of partially purified helical filaments in sodium dodecyl sulfate and urea, Science 215: 1243–1245.PubMedGoogle Scholar
  86. Shelanski, M. L., Liem, R. K. H., LeTerrier, J.-F., and Keith, C. H., 1981, The cytoskeleton and neuronal disease, in: International Cell Biology (H. G. Schweiger, ed.), Springer, Berlin, pp. 428–439.Google Scholar
  87. Steele, J. C., Richardson, E. P., and Olszewski, J., 1964, Progressive supranuclear palsy: A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuctal dyptonia and dementia, Arch. Neurol. 10: 333–359.PubMedGoogle Scholar
  88. Sternberger, L. A., and Sternberger, N. H., 1983, Monoclonal antibodies distinguish phosphorylated and nonphosphory lated forms of neurofilament in situ, Proc. Natl. Acad. Sci. USA 80: 6126–6130.PubMedGoogle Scholar
  89. Terry, R. D., 1963, The fine structure of neurofibrillary tangles in Alzheimer’s disease, J. Neuropathol. Exp. Neurol. 22: 629–642.PubMedGoogle Scholar
  90. Terry, R. D., and Davies, P., 1980, Dementia of the Alzheimer type, Annu. Rev. Neurosci. 3: 77–95.PubMedGoogle Scholar
  91. Tesser, P., Jones, P. S., and Schechter, N., 1986, Elevated levels of retinal neurofilament mRNA accompany optic nerve regeneration, J. Neurochem. 47: 1235–1243.PubMedGoogle Scholar
  92. Vale, R. D., Reese, T. S., and Sheetz, M. P., 1985, Identification of a novel force-generating protein, kinesin, involved in microtubule based motility, Cell 42: 39–50.PubMedGoogle Scholar
  93. Vitto, A., and Nixon, R. A., 1986, Calcium-activated neutral proteinase of human brain: Subunit structure and enzymatic properties of multiple molecular forms, J. Neurochem. 47: 1039–1051.PubMedGoogle Scholar
  94. Weingarten, M. D., Lockwood, A. H. Hwo, S. Y., and Kirschner, M. W., 1975, A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. USA 72: 1858–1862.PubMedGoogle Scholar
  95. Wiley, C. A., Love, S., Skoglund, R. R., and Lampert, P. W., 1987, Infantile neurodegenerative disease with neuronal accumulation of phosphorylated neurofilaments, Acta Neuropathol. 72: 369–376.PubMedGoogle Scholar
  96. Wisniewski, H., Shelanski, M., and Terry, R. D., 1968, Effects of mitotic spindle inhibitions on neurotubules and neurofilaments of anterior horn cells, J. Cell Biol. 38: 224–229.PubMedGoogle Scholar
  97. Wisniewski, H., Terry, R. D., and Hirano, A., 1970, Neurofibrillary pathology, J. Neuropathol. Exp. Neurol. 29: 163–176.PubMedGoogle Scholar
  98. Wolozin, B. L., Pruchnicki, A., Dickson, D. W., and Davies, P., 1986, A neuronal antigen in the brain of Alzheimer patients, Science 232: 648–650.PubMedGoogle Scholar
  99. Wood, J. G., Mirra, S. S., Pollock, N. J., and Bindex, L. I., 1986, Neurofibrillary tangles of Alzheimer’s disease share antigenic determinants with the axonal microtubule-associated protein tau, Proc. Natl. Acad. Sci. USA 83: 4040–4043.PubMedGoogle Scholar
  100. Wuerker, R., 1970, Neurofilaments and glial filaments, Tissue Cell 2: 1–9.PubMedGoogle Scholar
  101. Yen, S.-H., Horoupian, D., and Terry, R. D. 1983, Immunocytochemical comparison of neurofibrillary tangles in senile dementia of Alzheimer type, progressive supranuclear palsy and postencephalitic parkinsonism, Ann. Neurol. 13: 172–175.PubMedGoogle Scholar
  102. Yen, S.-H., Dickson, D. W., Crowe, A., Butler, M., and Shelanski, M. L., 1987, Alzheimer’s neurofibrillary tangles contain unique epitopes and epitopes in common with the heat-stable microtubule-associated proteins tau and MAP2, Am. J. Pathol. 126: 63–73.Google Scholar
  103. Zimmerman, U. J., and Schlaepfer, W. W., 1982, Characterization of a brain calcium-activated protease that degrades neurofilament proteins, Biochemistry 21: 3977–3982.PubMedGoogle Scholar
  104. Zubenko, G. S., Cohen, B. M., Boiler, F., Malmakova, I., Keefe, N., and Chojnacki, B., 1987a, Platelet membrane abnormality in Alzheimer’s disease, Ann. Neurol. 22: 237–244.PubMedGoogle Scholar
  105. Zubenko, G. S., Wusylko, M., Cohen, B. M., Boiler, F., and Teply, I., 1987b, Family study of platelet fluidity in Alzheimer’s disease, Science 238: 539–542.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Michael L. Shelanski
    • 1
  • Carol M. Troy
    • 1
  1. 1.Department of Pathology and Center for Neurobiology and Behavior, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations