Intermediate Filament-Associated Proteins

  • Hsi-Yuan Yang
  • Norman Lieska
  • Robert D. Goldman


Intermediate filaments (IF) comprise a set of ~ 10-nm-diameter cytoskeletal filaments that are distributed throughout the cytoplasm from the level of the nuclear surface to the region of the plasma membrane in most eukaryotic cells (Ishikawa et. al., 1968; Traub, 1985a; Wang et. al., 1985; Goldman et. al., 1986). While IF from the various vertebrate cells share certain structural characteristics and constitute a unique fibrous organelle (Pruss et. al., 1981; Fuchs and Hanukoglu, 1983; Steinert and Parry, 1985), the structural proteins comprising them can be classified into subgroups whose distribution in most cases is tissue-type specific (Goldman et. al., 1979; Lazarides, 1980; Steinert and Roop, 1988). Due to this tissue-type specificity, IF have been used as markers to determine the origin of cells in studies of differentiation and in clinical pathology, e.g., neoplasia (Osborn and Weber, 1982).


Intermediate Filament High Molecular Weight Protein Baby Hamster Kidney Intermediate Filament Vimentin Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnn, J., and Staehelin, L. A., 1981, The structure and function of spot desmosomes, Dermatology 20: 330–339.Google Scholar
  2. Baitinger, C., Cheney, R., Clements, D., Glickman, M., Hirokawa, N., Levine, J., Meiri, K., Simon, C., Skene, P., and Willard, M., 1983, Axonally transported proteins in axon development, maintenance and regeneration, Cold Spring Harbor Symp. Quant. Biol. 47: 791–802.CrossRefGoogle Scholar
  3. Ben-Ze’ev, A., 1983, Cell configuration-related control of vimentin biosynthesis and phosphorylation in cultured mammalian cells, J. Cell Biol. 97: 858–865.CrossRefGoogle Scholar
  4. Ben-Ze’ev, A., 1984, Control of intermediate filament protein synthesis by cell-cell interaction and cell configuration, FEBS Lett. 17: 107–110.CrossRefGoogle Scholar
  5. Berkowitz, S., Katagiri, J., Binder, H., and Williams, R., 1977, Separation and characterization of microtubule proteins from calf brain, Biochemistry 16: 5610–5617.PubMedCrossRefGoogle Scholar
  6. Bloom, G. S., and Vallee, R. B., 1983, Association of microtubule associated protein 2 (MAP-2) with microtubules and intermediate filaments in cultured brain cells, J. Cell Biol. 96: 1523–1531.PubMedCrossRefGoogle Scholar
  7. Breckler, J., and Lazarides, E., 1982, Isolation of a new high molecular weight protein associated with desmin and vimentin filaments from avian embryonic skeletal muscle, J. Cell Biol. 92: 795–806.PubMedCrossRefGoogle Scholar
  8. Brown, K. D., and Binder, L. I., 1988, A monoclonal antibody to a high molecular weight brain MAP recognizes intermediate filaments in HeLa and CHO cells, J. Cell Biol. 107: 459a.Google Scholar
  9. Celis, J. E., Small, J. V., Larsen, P. M., Fey, S. J., De Mey, J., and Celis, A., 1984, Intermediate filaments in monkey kidney TC7 cells: focal center and interrelationship with other cytoskeletal system, Proc. Natl. Acad. Sci. USA 81: 1117–1121.PubMedCrossRefGoogle Scholar
  10. Chen, L. B., Summerhayes, I. C., Johnson, L. V., Walsh, M. L., Bernai, S. D., and Lampidis, T. J., 1982, Probing mitochondria in living cells with rhodamine 123, Cold Spring Harbor Symp. Quant. Biol. 46: 141–155.PubMedCrossRefGoogle Scholar
  11. Ciment, G., Resler, A., Letourneau, P. C., and Weston, J. A., 1986, A novel intermediate filament-associated protein, NAPA-73, that binds to different filament types at different stages of nervous system development, J. Cell Biol. 102: 246–251.PubMedCrossRefGoogle Scholar
  12. Dale, B. A., 1977, Purification and characterization of a basic protein from the stratum corneum of mammalian epidermis, Biochim. Biophys. Acta 491: 193–204.PubMedCrossRefGoogle Scholar
  13. Dentier, W. L., Granette, S., and Rosenbaum, J. L., 1975, Ultrastructural localization of the high molecular weight proteins associated with in vitro assembled brain microtubules, J. Cell Biol. 65: 237–241.CrossRefGoogle Scholar
  14. Duffy, P. E., Huang, Y. Y., and Rapport, M. M., 1982, The relationship of glial fibrillary acidic protein to the shape, motility, and differentiation of human astrocytoma cells, Exp. Cell Res. 139: 145–157.PubMedCrossRefGoogle Scholar
  15. Ellison, J., and Garrod, D. R., 1984, Anchoring filaments of the amphibian epidermal-dermal junction traverse the basal lamina entirely from the plasma membrane of the hemidesmosomes to the dermis, J. Cell Sci. 72: 163–172.PubMedGoogle Scholar
  16. Fey, E. G., Wan, K. M., and Penman, S., 1984, The epithelial cytoskeletal framework and nuclear matrixintermediate filament scaffold: Three dimensional organization and protein composition, J. Cell Biol. 100: 93–102.Google Scholar
  17. Foisner, R., Leichtfield, F. E., Herrmann, H., Small, J. V., Lawson, D., and Wiche, E., 1988, Cytoskeletonassociated plectin: In situ localization, in vitro reconstitution, and binding to immobilized intermediate filament proteins, J. Cell Biol. 106: 723–733.PubMedCrossRefGoogle Scholar
  18. Franke, W. W., Schiller, D. L., Hatzfield, M., Magin, T. M., Jorcano, J. L., Mittnacht, S., Schmid, E., Cohlberg, J. A., and Quinlan, R. A., 1984, Cytokeratins: Complex formation biosynthesis, and interactions with desmosomes, in: Cancer Cell, Volume 1 (A. Levine, W. Topp, G. V. Wonde, and J. D. Watson, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 177–190.Google Scholar
  19. Fuchs, E., and Hanukoglu, I., 1983, Unraveling the structure of the intermediate filaments, Cell 34: 332–334.PubMedCrossRefGoogle Scholar
  20. Georgatos, S. D., and Blobel, G., 1987, Lamin B constitutes an intermediate filament attachment site at the nuclear envelope, J. Cell Biol. 105: 117–125.PubMedCrossRefGoogle Scholar
  21. Georgatos, S.D., and Marchesi, V. T., 1985, The binding of vimentin of human erythrocyte membranes: A model system for the study of intermediate filament-membrane interactions, J. Cell Biol. 100: 1955–1961.PubMedCrossRefGoogle Scholar
  22. Georgatos, S. D., Weaver, D. C., and Marchesi, V. T., 1985, Site specificity in vimentin-membrane interactions: Intermediate filament subunits associate with the plasma membrane via their head domains, J. Cell Biol. 100: 1962–1967.PubMedCrossRefGoogle Scholar
  23. Georgatos, S. D., Weber, K., Geisler, N., and Blobel, G., 1987, Binding of two desmin derivatives of the plasma membrane and the nuclear envelope of avian erythrocytes: Evidence for a conserved site-specificity in intermediate filament-membrane interactions, Proc. Natl. Acad. Sci. USA 84: 6780–6784.PubMedCrossRefGoogle Scholar
  24. Goldman, R. D., and Follett, E. A. C., 1969, The structure of the major cell processes of isolated BHK-21 fibroblasts, Exp. Cell Res. 57: 263–276.PubMedCrossRefGoogle Scholar
  25. Goldman, R. D., and Knipe, D. M., 1972, Functions of cytoplasmic fibers in nonmuscle cell motility, Cold Spring Harbor Symp. Quant. Biol. 37: 534.Google Scholar
  26. Goldman, R. D., Milsted, A., Schloss, J. A., Starger, J., and Yerna, M. J., 1979, Cytoplasmic fibers in mammalian cells: Cytoskeletal and contractile elements, Annu. Rev. Physiol. 41: 703–722.PubMedCrossRefGoogle Scholar
  27. Goldman, R. D., Hill, B. F., Steinert, P., Aynardi-Whitman, M., and Zackroff, R. V., 1980, Intermediate filament-micortubule interactions: Evidence in support of a common organization center, in: Microtubules and Microtubule Inhibitors (M. DeBrabander and J. DeMey, eds.), Elsevier/North-Holland, Amsterdam. pp. 91–102.Google Scholar
  28. Goldman, R. D., Goldman, A. E., Green, K. J., Jones, J. C. R., Lieska, N., Talian, J., and Yang, H.-Y, 1984, Intermediate filaments: Their interactions with various cell organelles and their associated proteins, J. Submicrosc. Cytol. 16: 73–74.Google Scholar
  29. Goldman, R. D., Goldman, A. E., Green, K. J., Jones, J. C. R., Lieska, N., and Yang, H.-Y, 1985, Intermediate filaments: Possible functions as cytoskeletal connecting links between the nucleus and the cell surface, Ann. N.Y. Acad. Sci. 455: 1–17.PubMedCrossRefGoogle Scholar
  30. Goldman, R. D., Goldman, A. E., Green, K., Jones, J. C. R., Jones, S. M., and Yang, H.-Y, 1986, Intermediate filament networks: Organization and possible functions of a diverse group of cytoskeletal elements, J. Cell Sei. Suppl. 5: 69–97.CrossRefGoogle Scholar
  31. Granger, B. L., and Lazarides, E., 1980, Synemin: A new high molecular weight protein associated with desmin and vimentin filaments in muscle, Cell 22: 727–738.PubMedCrossRefGoogle Scholar
  32. Granger, B. L., and Lazarides, E., 1982, Structural associations of synemin and vimentin filaments in avian erythrocytes revealed by immunoelectron microscopy, Cell 30: 263–275.PubMedCrossRefGoogle Scholar
  33. Granger, B. L., and Lazarides, E., 1984, Expression of the intermediate-filament-associated protein synemin in chicken lens cells, Mol. Cell Biol. 4: 1943–1950.PubMedGoogle Scholar
  34. Granger, B. L., Repasky, E. A., and Lazarides, E., 1982, Synemin and vimentin are components of intermediate filaments in avian erythrocyte, J. Cell Biol. 92: 299–312.PubMedCrossRefGoogle Scholar
  35. Green, K. J., and Goldman, R. D., 1986, Evidence for an interaction between the cell surface and the intermediate filaments in cultured fibroblasts, Cell Motil. Cytoskel. 6: 389–405.CrossRefGoogle Scholar
  36. Green, K. J., Talian, J. C., and Goldman, R. S., 1986, Relationship between intermediate filaments and microfilaments in cultured fibroblasts: Evidence for common foci during cell spreading, Cell Motil. Cytoskel. 6: 604–618.CrossRefGoogle Scholar
  37. Green, K. J., Geiger, B., Jones, J. C. R., and Talian, J. C., 1987, The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherens-type junctions in mouse epidermal keratinocytes, J. Cell Biol. 104: 1389–1402.PubMedCrossRefGoogle Scholar
  38. Hennings, U., Michael, D., Cheng, C., Steinert, P., Holbrook, K., and Yuspa, S. H., 1980, Calcium regulation of growth and differentiation of mouse epidermal cells in culture, Cell 19: 245–254.PubMedCrossRefGoogle Scholar
  39. Herrmann, H., and Wiche, G., 1983, Specific in situ phosphorylation of plectin in detergent-resistant cytoskeletons from cultured Chinese hamster ovary cells, J. Biol. Chem. 258: 14610–14618.PubMedGoogle Scholar
  40. Herrmann, H., and Wiche, G., 1987, Plectin and IFAP-300K are homologous proteins binding to microtubule-associated proteins 1 and 2 and to the 240 kilodalton subunit of spectrin, J. Biol. Chem. 262: 1320–1325.PubMedGoogle Scholar
  41. Hirokawa, N., 1982, Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by quick-freeze, deep-etching method, J. Cell Biol. 94: 129–142.PubMedCrossRefGoogle Scholar
  42. Hirokawa, N., Cheney, R. E., and Willard, M., 1983, Location of a protein of the fodrin/spectrin TW 260/240 family in the mouse intestinal brush border, Cell 32: 953–965.PubMedCrossRefGoogle Scholar
  43. Hirokawa, N., Glicksman, M. A., and Willard, M. B., 1984, Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton, J. Cell Biol 98: 1523–1536.PubMedCrossRefGoogle Scholar
  44. Ishikawa, H., Bischoff, R., and Holtzer, H., 1968, Mitosis and intermediate sized filaments in developing skeletal muscle, J. Cell Biol. 38: 538–555.PubMedCrossRefGoogle Scholar
  45. Jones, J. C. R., and Goldman, R. D., 1985, Intermediate filaments and the initiation of desmosome assembly, J. Cell Biol. 101: 506–517.PubMedCrossRefGoogle Scholar
  46. Jones, J. C. R., Goldman, A. E., Steinert, P. M., Yuspa, S., and Goldman, R. D., 1982, Dynamic aspects of the supramolecular organization of intermediate filament networks in cultured epidermal cells, Cell Motil. 2: 197–213.PubMedCrossRefGoogle Scholar
  47. Jones, J. C. R., Goldman, A. E., Yang, H.-Y., and Goldman, R. D., 1985, The organizational fate of intermediate filament networks in two epithelial cell types during mitosis, J. Cell Biol. 100: 93–102.PubMedCrossRefGoogle Scholar
  48. Lasek, R. J., and Hoffman, P. N., 1976, The neuronal cytoskeleton, axonal transport and axonal growth, in: Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 1021–1049.Google Scholar
  49. Lawson, D., 1983, Epinemin: A new protein associated with vimentin filaments in non-neural cells, J. Cell Biol. 97: 1891–1905.PubMedCrossRefGoogle Scholar
  50. Lawson, D., 1984, Distribution of epinemin in colloidal gold-labeled, quick-frozen deep-etched cytoskeletons, J. Cell Biol. 99: 1451–1460.PubMedCrossRefGoogle Scholar
  51. Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature 283: 249–253.PubMedCrossRefGoogle Scholar
  52. Lazarides, E., 1982, Intermediate filaments: A chemically heterogeneous, developmentally regulated class of proteins, Annu. Rev. Biochem. 51: 219–250.PubMedCrossRefGoogle Scholar
  53. Lazarides, E., 1984, Assembly and morphogenesis of the avian erythrocyte cytoskeleton, in: Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 131–150.Google Scholar
  54. Lehto, V.-P., 1983, 140,000 dalton surface glycoprotein. A plasma membrane component of the detergentresistant cytoskeletal preparation of cultured human fibroblasts, Exp. Cell Res. 143: 271–286.PubMedCrossRefGoogle Scholar
  55. Lehto, V.-P., and Virtanen, I., 1983, Immunolocalization of a novel, cytoskeleton-associated polypeptide of Mr 230,000 daltons (p230), J. Cell Biol. 96: 703–716.PubMedCrossRefGoogle Scholar
  56. Lehto, V.-P., Virtanen, I., and Kurki, P., 1978, Intermediate filaments anchor the nuclei in nuclear monolayers of cultured human fibroblasts, Nature 272: 175–177.PubMedCrossRefGoogle Scholar
  57. Le Terrier, J. F., Liem, R. K., and Shelanski, M. L., 1982, Interactions between neurofilaments and microtubule-associated proteins: A possible mechanism for intraorganellar bridging, J. Cell. Biol. 95: 982–986.CrossRefGoogle Scholar
  58. Lieska, N., Yang, H.-Y., and Goldman, R. D., 1985a, Purification of the 300,000-mol-wt intermediate filament (IF) associated protein and its in vitro recombination with IF, J. Cell Biol. 101: 802–813.PubMedCrossRefGoogle Scholar
  59. Lieska, N., Yang, Y.-Y., and Goldman, R. D., 1985b, Purification and some in vitro properties of BHK-21 cell intermediate filament-associated proteins 70/280kD, J. Cell Biol. 101: 15a.CrossRefGoogle Scholar
  60. Lin, J. J.-C., and Feramisco, J. R., 1981, Disruption of the in vivo distribution of the intermediate filaments in fibroblasts through the microinjection of a specific monoclonal antibody, Cell 24: 185–193.PubMedCrossRefGoogle Scholar
  61. Mangeat, P. H., and Burridge, K., 1984, Immunoprecipitation of non-erythrocyte spectrin within live cells following microinjection of specific antibodies: Relation of cytoskeletal structures, j. Cell Biol. 98: 1363–1377.PubMedCrossRefGoogle Scholar
  62. Metuzals, J., Montpetit, V., and Clapin, D.-F., 1981, Organization of the neurofilamentous network, Cell Tissue Res. 214: 455–482.PubMedCrossRefGoogle Scholar
  63. Minami, Y., Murofishi, V., and Sakai, H., 1982, Interaction of tubulin with neurofilaments: Formation of networks by neurofilament dependent tubulin polymerization, J. Biochem. 92: 889–898.PubMedGoogle Scholar
  64. Miyata, Y., Hoshi, M., Nishida, E., Minami, Y., and Sakai, H., 1986, Binding of microtubule-associated protein 2 and tau to the intermediate filament reassembled from neurofilament 70-kDa subunit protein, J. Biol. Chem. 261: 13026–13030.PubMedGoogle Scholar
  65. Moon, R. T., and Lazarides, E., 1983, Synthesis and post-translational assembly of intermediate filaments in avian erythroid cells: Vimentin assembly limits the rate of synemin assembly, Proc. Natl. Acad. Sci. USA 80: 5495–5499.PubMedCrossRefGoogle Scholar
  66. Mose-Larsen, P., Bravo, R., Fey, S. J., Small, J. V., and Celis, J. E., 1982, Putative association of mitochondria with a subpopulation of intermediate-sized filaments in cultured human skin fibroblasts, Cell 31: 681–692.PubMedCrossRefGoogle Scholar
  67. Mueller, M., and Franke, W. W., 1982, Biochemical and immunological characterization of desmoplakins I and II, the major polypeptides of the desmosomal plaque, Differentiation 23: 189–205.CrossRefGoogle Scholar
  68. Murphy, D. B., and Borisy, G. G., 1975, Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro, Proc. Natl. Acad. Sci. USA 72: 2696–2700.PubMedCrossRefGoogle Scholar
  69. Osborn, M., and Weber, K., 1982, Intermediate filaments: Cell type specific markers in differentiation and pathology, Cell 31: 303–306.PubMedCrossRefGoogle Scholar
  70. Price, M. G., and Lazarides, E., 1983, Expression of intermediate filament-associated protein paranemin and synemin in chicken development, J. Cell Biol. 97: 1860–1874.PubMedCrossRefGoogle Scholar
  71. Pruss, R. M., Mirsky, R., Raff, M. C., Thorpe, R., Dowding, A. J., and Anderson, B. H., 1981, All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody, Cell 27: 419–428.PubMedCrossRefGoogle Scholar
  72. Pytela, R., and Wiche, G., 1980, High molecular weight polypeptides (270,000–340,000) from cultured cells are related to hog brain microtubule-associated proteins but copurify with intermediate filaments, Proc. Natl. Acad. Sci. USA 77: 4808–4812.PubMedCrossRefGoogle Scholar
  73. Ramaekers, F. C. S., Dunia, S. I., Dodemont, H. J., Benedetti, E. L., and Bloemendal, H., 1982, Lenticular intermediate-sized filaments: Biosynthesis and interactions with plasma membrane, Proc. Natl. Acad. Sci. USA 79: 3208–3212.PubMedCrossRefGoogle Scholar
  74. Runge, M. S., Lau, T. M., Yphantis, D., Lifiscs, M., Saito, A., Altin, M., Reinke, K., and Williams, R. C., Jr., 1981, ATP-induced formation of an associated complex between microtubules and neurofilaments, Proc. Natl. Acad. Sci. USA 78: 1431–1435.PubMedCrossRefGoogle Scholar
  75. Sandoval, I. V., Colaco, C. A., and Lazarides, E., 1983, Purification of the intermediate filament-associated protein, synemin, from chicken smooth muscle. Studies on its physiochemical properties, interaction with desmin and phosphorylation, J. Biol. Chem. 258: 2568–2576.PubMedGoogle Scholar
  76. Schnapp, B. J., and Reese, T. S., 1982, Cytoplasmic structure in rapid frozen axons, J. Cell Biol. 94: 667–669.PubMedCrossRefGoogle Scholar
  77. Shelanski, M. L., LeTerrier, J.-F., and Liem, R. K. H., 1981, Evidence for interaction between neurofilaments and microtubules, Neurosci. Res. Progr. Bull. 19: 32–43.Google Scholar
  78. Starger, J. M., Brown, W. E., Goldman, A. E., and Goldman, R. D., 1978, Biochemical and immunological analysis of rapidly purified 10nm filaments from baby hamster kidney (BHK-21) cells, J. Cell Biol. 78: 93–109.PubMedCrossRefGoogle Scholar
  79. Steinert, P. M., and Parry, D. A. D., 1985, Intermediate filaments, Annu. Rev. Cell Biol. 1: 41–65.PubMedCrossRefGoogle Scholar
  80. Steinert, P. M., and Roop, D. R., 1988, Molecular and cellular biology of intermediate filaments, Annu. Rev. Biochem. 57: 593–625.PubMedCrossRefGoogle Scholar
  81. Thorpe, R., Delacourte, A., Ayers, M., Bullock, C., and Anderson, B. H., 1979, The polypeptides of isolated brain 10nm filaments and their association with polymerized tubulin, Biochem. J. 181: 275–84.PubMedGoogle Scholar
  82. Tokuyasu, K. T., Maher, P. A., and Singer, S. J., 1984, Distribution of vimentin and desmin in developing chick myotubes in vivo. I. Immunofluorescence study, J. Cell Biol. 98: 1961–1972.PubMedCrossRefGoogle Scholar
  83. Traub, P., 1985a, Intermediate Filaments: A Review, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  84. Traub, P., 1985b, Are intermediate filament proteins involved in gene expression? Ann. N.Y. Acad. Sci. 455: 68–78.PubMedCrossRefGoogle Scholar
  85. Tsukita, S., Usukura, J., Tsukita, S., and Ishikawa, H., 1982, The cytoskeleton in myelinated axons: A freezeetch replica study, Neuroscience 7: 2135–2147.PubMedCrossRefGoogle Scholar
  86. Vallee, R. B., and Bloom, G. S., 1984, High molecular weight microtubule-associated proteins (MAPs), Modern Cell Biology 3, Liss, New York, pp. 21–75.Google Scholar
  87. Vallee, R. B., Bloom, G. S., and Theurkauf, W. E., 1984, Microtubule-associated proteins: Subunits of the cytomatrix, J. Cell Biol. 99: 38s–44s.PubMedCrossRefGoogle Scholar
  88. Voter, W. A., and Erickson, H. P., 1982, Electron microscopy of MAP 2 (microtubule-associated protein 2). J. Ultrastruct. Res. 80: 374–382.PubMedCrossRefGoogle Scholar
  89. Wang, E., and Goldman, R. D., 1978, Functions of cytoplasmic fibers in intracellular movement in BHK-21 cells, J. Cell Biol. 79: 708–726.PubMedCrossRefGoogle Scholar
  90. Wang, E., Ciarncross, E. J., Yung, W. K. S., Garber, E. R. and Liem, R. K. H., 1983, An intermediate filament-associated protein, p50, recognized by monoclonal antibodies, J. Cell Biol. 97:1507–1514.PubMedCrossRefGoogle Scholar
  91. Wang, E., Fischman, D., Liem, R. K. H., and Sun, T.-T. (eds.), 1985, Intermediate Filaments, Ann. N.Y. Acad. Sci. 455.Google Scholar
  92. Wang, W., 1985, Are cross-bridge structures involved in the bundle formation of intermediate filaments and the decrease in locomotion that accompany cell aging? J. Cell Biol. 100: 1466–1473.PubMedCrossRefGoogle Scholar
  93. Wiche, G., and Baker, A. A., 1982, Cytoplasmic network arrays demonstrated by immunolocalization using antibodies to a high molecular weight protein present in cytoskeletal preparations from cultured cells, Exp. Cell Res. 138: 15–29.PubMedCrossRefGoogle Scholar
  94. Wiche, G., Baker, M. A., Kindas-Mugge, I., Leichtfried, F., and Pytela, R., 1980, High molecular weight polypeptides (around 300,000) from cultured cells and their possible role as mediators of microtubule-intermediate filament interaction, in: Microtubules and Microtubule Inhibitors (M. DeBrabander and J. DeMey, eds.), Elsevier/North-Holland, Amsterdam, pp. 189–200.Google Scholar
  95. Wiche, G., Herrmann, H., Leichtfried, F., and Pytela, R., 1982, Plectin: A high molecular weight cytoskeletal polypeptide component that copurifies with intermediate filaments of the vimentin types, Cold Spring Harbor Symp. Quant. Biol. 46: 475–482.PubMedCrossRefGoogle Scholar
  96. Wiche, G., Krepier, R., Antlieb, U., Pytela, R., and Denk, H., 1983, Occurrence and immunolocalization of plectin in tissues, J. Cell Biol. 97: 887–901.PubMedCrossRefGoogle Scholar
  97. Wiche, G., Krepier, R., Antlieb, U., Pytela, R., and Aberer, W., 1984, Identification of plectin in different human cell types and immunolocalization at epithelial basal cell surface membranes, Exp. Cell Res. 155: 43–49.PubMedCrossRefGoogle Scholar
  98. Willard, M., 1983, Neurofilaments and axonal transport, in: Neurofilaments (C. A. Marotta, ed.), University of Minnesota Press, Minneapolis, pp. 86–116.Google Scholar
  99. Wolf, K. M., and Mullins, J. M., 1985, Cytochalasin-induced redistribution of cytokeratin filaments in PtK-1 cells, J. Cell Biol. 101: 14a.Google Scholar
  100. Yang, H.-Y., Lieska, N., and Goldman, R. D., 1984, The distribution of a 300K molecular weight intermediate filament associated protein in different cell types, J. Cell Biol. 99: 324a.Google Scholar
  101. Yang, H.-Y., Lieska, N., Goldman, A. E., and Goldman, R. D., 1985a, A 300,000-mol-wt. intermediate filament associated protein in baby hamster kidney (BHK-21) cells, J. Cell Biol 100: 620–631.PubMedCrossRefGoogle Scholar
  102. Yang, H.-Y., Lieska, N., and Goldman, R. D., 1985b, Identification and localization of a group of immunologically-related, intermediate filament-associated polypeptides in BHK-21 cells, J. Cell Biol. 101: 15a.Google Scholar
  103. Yang, H.-Y., Lieska, N., and Goldman, R. D., 1986, Different distribution of two intermediate filament-associated proteins, IFAP-300kD and IFAP-70-280kD, in BHK-21 cells, J. Cell Biol. 103: 419a.CrossRefGoogle Scholar
  104. Yang, H.-Y., Lieska, N., and Goldman, R. D., 1990, A group of immunologically-related, intermediate filament-associated polypeptides (70–280kD) in BHK-21 cells, submitted for publication.Google Scholar
  105. Zackroff, R. V., and Goldman, R. D., 1979, In vitro assembly of intermediate filaments from baby hamster kidney (BHK-21) cells, Proc. Natl. Acad. Sci. USA 76: 6226–6230.PubMedCrossRefGoogle Scholar
  106. Zingsheim, H.-P., Hertzog, W., and Weber, K., 1979, Difference in surface morphology of microtubules reconstituted from pure brain tubulin using two different microtubule-associated proteins in high molecular weight MAP-2 proteins and tau proteins, Eur. J. Cell Biol. 19: 175–183.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Hsi-Yuan Yang
    • 1
  • Norman Lieska
    • 2
  • Robert D. Goldman
    • 3
  1. 1.Department of Anatomy and Cell Biology, College of MedicineUniversity of IllinoisChicagoUSA
  2. 2.Department of AnatomyTexas College of Osteopathic MedicineFort WorthUSA
  3. 3.Department of Cell, Molecular, and Structural BiologyNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations