Differentiation-Specific Expression of Keratin Pairs

  • W. Michael O’Guin
  • Alexander Schermer
  • Marion Lynch
  • Tung-Tien Sun


Keratins are by far the most complex and heterogeneous family of polypeptides that comprise a subclass of the intermediate filaments (IF). A survey of various human epithelia has demonstrated the existence of approximately 25 distinct keratin polypeptides that are expressed as subsets of two to ten polypeptides in any given epithelial cell or tissue. With the goal of understanding the biological significance of keratin heterogeneity, many investigators have studied keratins in detail. Consequently, a tremendous volume of information regarding keratins has been generated during the past 10–12 years. Because of this rapid accumulation of data, the field of keratin research has been a difficult one to follow for those not directly involved. This is due not only to the sheer amount but also to the diversity of the types of information. The keratin literature is filled with seemingly incongruous information derived from a combination of immunological, biochemical, biophysical, and clinical studies with each progressing at a rapid pace. However, general trends in the data have now allowed us to summarize most of the available information into a set of patterns or “rules” of keratin expression. These rules are: (1) Keratin expression is a characteristic of and is mostly restricted to epithelial cells (except a few epithelial tissues, e.g., lens and retinal epithelia, that seem to lack keratins) and their derivatives (Franke et. al., 1978, 1979; Sun and Green, 1978b; Sun et. al., 1979) (Figs. 1, 2).


Stratify Epithelium Outer Root Sheath Intermediate Filament Keratin Filament Keratin Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmadi, B., and Speakman, P. T., 1978, Suberimidate crosslinking shows that a rod shaped, low cystine, high helix protein prepared by limited proteolysis of reduced wool has four chains, FEBS Lett. 94: 365–367.PubMedGoogle Scholar
  2. Baden, H. P., Goldsmith, L. A., and Fleming, B., 1973, A comparative study of the physicochemical properties of human keratinized tissues, Biochim. Biophys. Acta 322: 269–278.PubMedGoogle Scholar
  3. Bader, B. L., Magrin, T. M., Hatzfield, M., and Franke, W. W., 1986, Amino acid sequence and gene organization of cytokeratin no. 19, an exceptional tail-less intermediate filament protein, EMBO J. 5: 1865–1875.PubMedGoogle Scholar
  4. Banks-Schlegel, S. P., 1982, Keratin alterations during embryonic epidermal differentiation: A presage of adult epidermal maturation, J. Cell Biol. 93: 551–559.PubMedGoogle Scholar
  5. Brabon, A. C., Williams, J. F., and Cardiff, R. D., 1984, A monoclonal antibody to a human breast tumor protein released in response to estrogen, Cancer Res. 44: 2704–2710.PubMedGoogle Scholar
  6. Breitkreutz, D., Bohnert, A., Herzmann, E., Bowden, P., BouKamp, P., and Fusenig, N.E., 1984, Differentiation specific functions in cultured and transplanted mouse keratinocytes: Environmental influence in ultrastructure and keratin expression, Differentiation 26: 154–169.PubMedGoogle Scholar
  7. Cooper, D., and Sun, T.-T., 1986, Monoclonal antibody analysis of bovine epithelial keratins: Specific pairs as defined by coexpression, J. Biol. Chem. 261: 4646–4654.PubMedGoogle Scholar
  8. Cooper, D., Schermer, A., and Sun, T.-T., 1985, Classification of human epithelia and their neoplasms using monoclonal antibodies to keratin: Strategies, applications and limitations, Lab. Invest. 52: 243–256.PubMedGoogle Scholar
  9. Crewther, W. G., Dowling, L. M., Gough, K. H., Inglis, A. S., McKern, N. M., Sparrow, L. G., and Woods, E. G., 1976, The low-sulfur proteins of wool: Studies on their classification, characterization, primary and secondary structure, Proc. Fifth Int. Wool Text. Res. Conf. Aachen 2: 233–242.Google Scholar
  10. Crewther, W. G., Inglish, A. S., and McKern, N. M., 1978, Amino acid sequences of alpha-helical segments from S-carboxymethylkeratein-A: Complete sequence of a type-II segment, Biochem. J. 173: 365–371.PubMedGoogle Scholar
  11. Crewther, W. G., Dowling, L. M., Gough, K. H., Marshall, R. C., and Sparrow, L. G., 1980, The microfibrillar proteins of alpha-keratin, in: Fibrous Proteins: Scientific, Industrial and Medical Aspects, Volume II (D. A. D. Parry and L. K. Creamer, eds.), Academic Press, London, pp. 151–159.Google Scholar
  12. Dale, B. A., 1977, Purification and characterization of a basic protein from the stratum corneum of mammalian epidermis, Biochim. Biophys. Acta 491: 193–204.PubMedGoogle Scholar
  13. Dale, B. A., Stern, I. B., Rabin, M., and Huang, L.-Y., 1976, The identification of fibrous proteins in fetal rat epidermis by electrophoretic and immunologic techniques, J. Invest. Dermatol. 66: 230–235.PubMedGoogle Scholar
  14. Dale, B. A., Holbrook, K. A., and Steinert, P. M., 1978, Assembly of stratum corneum basic protein and keratin filaments in macrofibrils, Nature 276: 729–731.PubMedGoogle Scholar
  15. Dale, B. A., Holbrook, K. A., Kimball, J. R., Hoff, M., and Sun, T.-T., 1985, Expression of epidermal keratins and filaggrin during human fetal skin development, J. Cell Biol. 101: 1257–1269.PubMedGoogle Scholar
  16. Debus, E., Weber, K., and Osborn, M., 1982, Monoclonal cytokeratin antibodies that distinguish simple from stratified squamous epithelia: Characterization on human tissues, EMBO J. 1: 1641.PubMedGoogle Scholar
  17. Dhouailly, D., Rogers, G. E., and Sengel, P., 1978, The specification of feather and scale protein synthesis in epidermal-dermal recombinations, Dev. Biol. 65: 58–68.PubMedGoogle Scholar
  18. Doran, T. I., Vidrich, A., and Sun, T.-T., 1980, Intrinsic and extrinsic regulation of the differentiation of skin, corneal and esophageal epithelial cells, Cell 22: 17–25.PubMedGoogle Scholar
  19. Drochmans, P., Freudenstein, C., Wanson, J., Laurent, L., Keenan, T. W., Stadler, J., Leloup, R., and Franke, W. W., 1978, Structure and biochemical compositin of desmosomes and tonofilaments isolated from calf muzzle epidermis, J. Cell Biol. 79: 427–443.PubMedGoogle Scholar
  20. Eckert, R. L., and Green, H., 1984, Cloning of cDNAs specifying vitamin A-responsive human keratins, Proc. Natl. Acad. Sci. USA 81: 4321.PubMedGoogle Scholar
  21. Eichner, R., Bonitz, P., and Sun, T.-T., 1984, Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression, J. Cell Biol. 98: 1388–1396.PubMedGoogle Scholar
  22. Eichner, R., Sun, T.-T., and Aebi, U., 1986, The role of keratin subfamilies and keratin pairs in the formation of human epidermal intermediate filaments, J. Cell Biol. 102: 1767–1777.PubMedGoogle Scholar
  23. Franke, W. W., Schmid, E., Osborn, M., and Weber, K., 1978, Different intermediate-sized filaments distinguished by immunofluorescence microscopy, Proc. Natl. Acad. Sci. USA 75: 5034–5038.PubMedGoogle Scholar
  24. Franke, W. W., Schmid, E., Weber, K., and Osborn, M., 1979, HeLa cells contain intermediate-sized filaments of the prekeratin type, Exp. Cell Res. 118: 95–109.PubMedGoogle Scholar
  25. Franke, W. W., Schiller, D. L., Moll, R., Winter, S., Schmid, E., Engelbrecht, I., Denk, H., Krepier, R., and Platzer, B., 1981, Diversity of cytokeratins: Differentiation-specific expression of cytokeratin polypeptides in epithelial cells and tissues, J. Mol. Biol. 153: 933–959.PubMedGoogle Scholar
  26. Franke, W. W., Schmid, E., Grund, C., and Geiger, B., 1982, Intermediate filament proteins in nonfilamentous structures: Transient disintegration and inclusion of subunit protein in granular aggregates, Cell 30: 103–113.PubMedGoogle Scholar
  27. Franke, W. W., Schiller, D. L., Hatzfield, M., and Winter, S., 1983a, Protein complexes of intermediate-sized filaments: Melting of cytokeratin complexes in urea reveals different polypeptide separation characteristics, Proc. Natl. Acad. Sci. USA 80: 7113–7117.PubMedGoogle Scholar
  28. Franke, W. W., Schmid, E., Wellsteed, J., Grund, C., Gigi, O., and Geiger, B., 1983b, Change of cytokeratin filament organization during the cell cycle: Selective masking of an immunologie determinant in PtK2 cells, J. Cell Biol. 97: 1255–1260.PubMedGoogle Scholar
  29. Fuchs, E., and Green, H., 1980, Changes in keratin gene expression during terminal differentiation of the keratinocyte, Cell 19: 1033–1042.PubMedGoogle Scholar
  30. Fuchs, E., and Green, H., 1981, Regulation of terminal differentiation of cultured human keratinocytes by vitamin A, Cell 25: 617–625.PubMedGoogle Scholar
  31. Fuchs, E., Coppock, H., Green, H., and Cleveland, D. W., 1981, Two distinct classes of keratin genes and their evolutionary significance, Cell 17: 75–84.Google Scholar
  32. Fuchs, E., Hanukoglu, I., Marchuk, D., Grace, M., and Kim, K. H., 1985, The nature and significance of differential keratin gene expression, Ann. N.Y. Acad. Sci. 455: 436–450.PubMedGoogle Scholar
  33. Geisler, N., and Weber, K., 1982, The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins, EMBQ J. 1: 1649.Google Scholar
  34. Gigi, O., Geiger, B., Eshhar, Z., Moll, R., Schmid, E., Winter, S., Schiller, D. L., and Franke, W. W., 1982, Detection of cytokeratin determinant to diverse epithelial cells by a broadly cross-reacting monoclonal antibody, EMBO J. 1: 1429–1437.PubMedGoogle Scholar
  35. Gilmartin, M. E., Culbertson, V. B., and Freedberg, I. M., 1980, Phosphorylation of epidermal keratins, J. Invest. Dermatol. 75: 211–216.PubMedGoogle Scholar
  36. Gilmartin, M. E., Mitchell, J., Vidrich, A., and Freedberg, I. A., 1984, Dual regulation of intermediate filament phosphorylation, J. Cell Biol. 98: 1144–1149.PubMedGoogle Scholar
  37. Glass, C., Kim, K., and Fuchs, E., 1985, Sequence and expression of a human type II mesothelial keratin, J. Cell Biol. 101: 2366–2373.PubMedGoogle Scholar
  38. Gough, K. H., Inglis, A. S., and Crewther, W. G., 1978, Amino acid sequences of alpha-helical segments from S-carboxymethylkeratein-A: Complete sequence of a type-I segment, Biochem. J. 173: 373–385.PubMedGoogle Scholar
  39. Gruen, L. D., and Woods, E. F., 1983, Structure studies on the microfibrillar proteins of wool: Interaction between alpha-helical segments and reassembly of a four chain structure, Biochem. J. 209: 587–595.PubMedGoogle Scholar
  40. Hatzfield, M., and Franke, W. W., 1985, Pair formation and promiscuity of cytokeratins: Formation in vitro of heterotypic complexes and intermediate filaments by homologous and heterologous recombinations of purified polypeptides, J. Cell Biol. 101: 1826–1841.Google Scholar
  41. Heid, H. W., Werner, E., and Franke, W. W., 1986, The complement of native alpha-keratin polypeptides of hair-forming cells: A subset of eight polypeptides different from epithelial cytokeratins, Differentiation 32: 101–119.PubMedGoogle Scholar
  42. Hennings, H., Michael, D., Cheng, C., Steinert, P., Holbrook, K., and Yuspa, S., 1980, Calcium regulation of growth and differentiation of mouse epidermal cells in culture, Cell 19: 245–254.PubMedGoogle Scholar
  43. Horwitz, B., Kupfer, H., Eshar, Z., and Geiger, B., 1981, Reorganization of arrays of prekeratin filaments during mitosis, Exp. Cell Res. 134: 281–290.PubMedGoogle Scholar
  44. Hronis, T. S., Steinberg, M. L., Defendi, V., and Sun, T.-T., 1984, The simple epithelial nature of some simian-virus-40-transformed human epidermal keratinocytes, Cancer Res. 44: 5797–5804.PubMedGoogle Scholar
  45. Kim, K. H., Rheinwald, J., and Fuchs, E. V., 1983, Tissue specificity of epithelial keratins: Differential expression of mRNAs from two multigene families, Mol. Cell Biol. 3: 495–502.PubMedGoogle Scholar
  46. Kim, K. H., Marchuk, D., and Fuchs, E., 1984, Expression of unusually large keratin during terminal differentiation: Balance of type I and type II keratins is not disrupted, J. Cell Biol. 99: 1872–1877.PubMedGoogle Scholar
  47. Knapp, A. E., Franke, W. W., Heid, H., Hatzfield, M., Jorcano, J. L., and Moll, R., 1986, Cytokeratin no. 9, an epidermal type I keratin characteristic of a special program of keratinocyte differentiation displaying body site specificity, J. Cell Biol 103: 657–667.PubMedGoogle Scholar
  48. Knapp, L. W., O’Guin, W. M., and Sawyer, R. H., 1983a, Drug-induced alterations of cytokeratin organization in cultured epithelial cells, Science 219: 501–503.PubMedGoogle Scholar
  49. Knapp, L. W., O’Guin, W. M., and Sawyer, R. H., 1983b, Rearrangement of the keratin cytoskeleton after combined treatment with microtubule and microfilament inhibitors, J. Cell Biol. 97: 1788–1794.PubMedGoogle Scholar
  50. Knapp, L. W., O’Guin, W. M., and Sawyer, R. H., 1985, Dependence of keratin intermediate filament organization on microtubules, microfilaments and membrane association sites, Ann. N.Y. Acad. Sci. 455: 758–761.Google Scholar
  51. Lane, E. B., Goodman, S. L., and Trejdosiewicz, K. K., 1982, Disruption of the keratin filament network during epithelial cell division, EMBO J. 1: 1365.PubMedGoogle Scholar
  52. Lee, L. D., and Baden, H. P., 1976, Organization of the polypeptide chains in mammalian keratin, Nature 164: 377–379.Google Scholar
  53. Lee, L. D., Kubilus, J., and Baden, H. P., 1979, Intraspecies heterogeneity of epidermal keratins isolated from bovine hoof and snout, Biochem. J. 177: 187–196.PubMedGoogle Scholar
  54. Lynch, M. H., O’Guin, W. M., Hardy, C., Mak, L., and Sun, T.-T., 1986, Human hair follicle differentiation: Coordinate expression of acidic and basic hair keratins in upper cortical and cuticle cells and the relationship between “hard” (hair/nail) and “soft” keratin, J. Cell Biol. 103: 2593–2606.PubMedGoogle Scholar
  55. McGuire, J., Osber, M., and Lightfoot, L., 1984, Two keratins MW 50,000 and 56,000 are synthesized by psoriatic epidermis, Br. J. Dermatol. 111 (Suppl. 27):27–37.PubMedGoogle Scholar
  56. Marshall, R. C., 1983, Characterization of the proteins of human hair and nail by eletrophoresis, J. Invest. Dermatol. 80: 519–524.PubMedGoogle Scholar
  57. Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepier, R., 1982a, The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells, Cell 31: 11–24.PubMedGoogle Scholar
  58. Moll, R., Franke, W. W., Volc-Platzer, B., and Krepier, R., 1982b, Different keratin polypeptides in epidermis and other epithelia of human skin: A specific cytokeratin of molecular weight 46,000 in epithelia of the pilosebaceous tract and basal cell epitheliomas, J. Cell Biol. 95: 285–295.PubMedGoogle Scholar
  59. Moll, R., Krepier, R., and Franke, W. W., 1983a, Complex cytokeratin polypeptide patterns observed in certain human carcinomas, Differentiation 23: 256–269.PubMedGoogle Scholar
  60. Moll, R., Moll, I., and Wiest, W., 1983b, Changes in the pattern of cytokeratin polypeptides in epidermis and hair follicle during skin development in human fetuses, Differentiation 23: 170–178.Google Scholar
  61. Moll, R., Moll, I., and Franke, W. W., 1984, Differences of expression of cytokeratin polypeptides in various epithelial skin tumors, Arch. Dermatol. Res. 276: 349–363.PubMedGoogle Scholar
  62. Nelson, W. G., and Sun, T.-T., 1983, The 50-and 58-kdalton keratin classes as molecular markers for stratified squamous epithelia: Cell culture studies, J. Cell Biol. 97: 244–251.PubMedGoogle Scholar
  63. Nelson, W. G., Battifora, H., Santana, H., and Sun, T.-T., 1984, Specific keratins as molecular markers for neoplasms with a stratified epithelial origin, Cancer Res. 44: 1600–1603.PubMedGoogle Scholar
  64. Ochs, D., 1983, Protein contaminants of sodium dodecyl sulfate-polyacrylamide gels, Anal. Biochem. 135: 470–474.PubMedGoogle Scholar
  65. O’Guin, W. M., and Sawyer, R. H., 1982, Avian scale development. VIII. Relationships between morphogenetic and biosynthetic differentiation, Dev. Biol. 89: 485–492.PubMedGoogle Scholar
  66. O’Guin, W. M., Knapp, L. W., and Sawyer, R. H., 1982, Biochemical and immunohistochemical localization of alpha and beta keratins in avian scutate scales, J. Exp. Zool. 220: 371–376.Google Scholar
  67. O’Guin, W. M., Schermer, A., and Sun, T.-T., 1985, Immunofluorescence staining of keratin filaments in cultured epithelial cells, J. Tissue Culture Methods 9: 123–128.Google Scholar
  68. O’Guin, W. M., Galvin, S., Schermer, A., and Sun, T.-T., 1987, Patterns of keratin expression define distinct pathways of epithelial development and differentiation, Curr. Top. Dev. Biol. 22: 97–125.PubMedGoogle Scholar
  69. Osborn, M., and Weber, K., 1983, Tumor diagnosis by intermediate filament typing: A novel tool for surgical pathology, Lab. Invest. 48: 372–394.PubMedGoogle Scholar
  70. Parry, D. A. D., Steven, A. C., and Steinert, P. M., 1985, The coiled-coil molecules of intermediate filaments consist of 2 parallel chains in exact axial register, Biochem. Biophys. Res. Commun. 127: 1012–1018.PubMedGoogle Scholar
  71. Quinlan, R. A., Cohlberg, J. A., Schiller, D. L., Hatzfield, M., and Franke, W. W., 1984, Heterotypic tetramer (A2D2) complex of non-epidermal keratins isolated from cytoskeletons of rat hepatocytes and hepatoma cells, J. Mol. Biol. 178: 365–388.PubMedGoogle Scholar
  72. Quinlan, R. A., Schiller, D. L., Hatzfield, M., Achstatter, T., Moll, R., Jorcano, J. L., Magin, T. M., and Franke, W. W., 1985, Patterns of expression and organization of cytokeratin intermediate filaments, Ann. N.Y. Acad. Sci. 455: 282–306.PubMedGoogle Scholar
  73. Ramaekers, F. C. S., Huysmans, A., Moesker, O., Kant, A., Jap, P., Herman, C., and Vooijs, P., 1983, Monoclonal antibody to keratin filaments specific for glandular epithelia and their tumors: Use in surgical pathology, Lab. Invest. 49: 353–361.PubMedGoogle Scholar
  74. Rheinwald, J. G., and Green, H., 1975, Serial cultivation of strains of human epidermal keratinocytes: The formations of keratinizing colonies from single cells, Cell 6: 331.PubMedGoogle Scholar
  75. Roop, D. R., Cheng, C. K., Titterington, L., Meyers, C. A., Stanley, J. R., Steinert, P. M., and Yuspa, S. H., 1984, Synthetic peptides corresponding to keratin subunits elicit highly specific antibodies, J. Biol. Chem. 259: 8037–8040.PubMedGoogle Scholar
  76. Sawyer, R. H., O’Guin, W. M., and Knapp, L. W., 1984, Avian scale development. X. Dermal induction of tissue specific keratins in extraembryonic ectoderm, Dev. Biol. 101: 8–18.PubMedGoogle Scholar
  77. Sawyer, R. H., Knapp, L. W., and O’Guin, W. M., 1986, The skin of birds—Epidermis, dermis and appendages, in: Biology of the Integument, Volume 2 (J. Bereiter-Hahn, A. G. Matoltsy, and K. S. Richards, eds.), Springer-Verlag, Berlin, pp. 194–238.Google Scholar
  78. Schermer, A., Galvin, S., and Sun, T.-T., 1986, Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells, J. Cell Biol. 103: 49–62.PubMedGoogle Scholar
  79. Schiller, D. L., Franke, W. W., and Geiger, B., 1982, A subfamily of relatively large and basic cytokeratin polypeptides as defined by one or several polypeptides in epithelial cells, EMBO J. 1: 761–769.PubMedGoogle Scholar
  80. Schweizer, J., Kinjo, M., Furstenberger, G., and Winter, H., 1984, Sequential expression of mRNA-encoded keratin sets in neonatal mouse epidermis: Basal cells with properties of terminally differentiating cells, Cell 37: 159–170.PubMedGoogle Scholar
  81. Skerrow, D., and Skerrow, C. J., 1983, Tonofilament differentiation in human epidermis: Isolation and polypeptide chain composition of keratinocyte subpopulations, Exp. Cell Res. 143: 27–35.PubMedGoogle Scholar
  82. Steinert, P. M., Idler, W. W., and Zimmerman, S. B., 1976, Self assembly of bovine epidermal keratin filaments in vitro, J. Mol. Biol. 108: 547–567.PubMedGoogle Scholar
  83. Steinert, P. M., Idler, W. W., and Wantz, M. L., 1980, Characterization of the keratin filament subunits unique to bovine snout epidermis, Biochem. J. 187: 913–916.PubMedGoogle Scholar
  84. Steinert, P. M., Idler, W. W., Aynardi-Whitman, M., Zackroff, R. V., and Goldman, R. D., 1982, Heterogeneity of intermediate filaments assembled in vitro, Cold Spring Harbor Symp. Quant. Biol. 46: 465–473.PubMedGoogle Scholar
  85. Steinert, P. M., Parry, D. A. D., Idler, W. W., Johnson, L. D., Steven, A. C., and Roop, D. R., 1985a, Amino acid sequences of mouse and human epidermal type II keratins of Mr 67,000 provide a systematic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits, J. Biol. Chem 260: 7142–7149.PubMedGoogle Scholar
  86. Steinert, P. M., Steven, A. C., and Roop, D. R., 1985b, The molecular biology of intermediate filaments, Cell 42: 411–419.PubMedGoogle Scholar
  87. Sun, T.-T., and Green, H., 1977, Cultured epithelial cells of cornea, conjunctiva and skin: Absence of marked intrinsic divergence of their differentiated states, Nature 269: 489–493.PubMedGoogle Scholar
  88. Sun, T.-T., and Green, H., 1978a, Keratin filaments of cultured human epidermal cells: Formation of intermolecular disulfide bonds during terminal differentiation, J. Biol. Chem. 253: 2053–2060.PubMedGoogle Scholar
  89. Sun, T.-T., and Green, H., 1978b, Immunofluorescent staining of keratin fibers in cultured cells, Cell 14: 469–476.PubMedGoogle Scholar
  90. Sun, T.-T., Shih, C., and Green, H., 1979, Keratin cytoskeletons in epithelial cells or internal organs, Proc. Natl. Acad. Sci, USA 76: 2813–2817.PubMedGoogle Scholar
  91. Sun, T.-T., Eichner, R., Nelson, W. G., Tseng, S. C. G., Weiss, R. A., Jarvinen, M., and Woodcock-Mitchell, J., 1983, Keratin classes: Molecular markers for different types of epithelial differentiation, J. Invest. Dermatol 81: 109s–15s.PubMedGoogle Scholar
  92. Sun, T.-T., Eichner, R., Schermer, A., Cooper, D., Nelson, W. G., and Weiss, R. A., 1984, Classification, expression, and possible mechanisms of evolution of mammalian epithelial keratins: A unifying model, in: The Cancer Cell, Volume 1 (A. Levine, W. Topp, G. Van de Woude, and J. D. Watson, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 169–176.Google Scholar
  93. Sun, T.-T., Tseng, S. C. G., Huang, A. J.-W., Cooper, D., Schermer, A., Lynch, M. H., Weiss, R., and Eichner, R., 1985, Monoclonal antibody studies of mammalian epithelial keratins: A review, Ann. N.Y. Acad. Sei. 455: 307–329.Google Scholar
  94. Tseng, S. C. G., Jarvinen, M., Nelson, W. G., Huang, A. J.-W., Woodcock-Mitchell, J., and Sun, T.-T., 1982, Correlation of specific keratins with different types of epithelial differentiation: Monoclonal antibody studies, Cell 30: 361–372.PubMedGoogle Scholar
  95. Tseng, S. C. G., Hatchell, D., Tierney, N., Huang, A. J.-W., and Sun, T.-T., 1984, Expression of specific keratin markers by rabbit corneal, conjunctival and esophageal epithelia during vitamin A deficiency, J. Cell Biol. 99: 2279–2286.PubMedGoogle Scholar
  96. Tyner, A. L., Eichman, M. J., and Fuch, E., 1985, The sequence of a type II keratin gene expressed in human skin: Conservation of structure among intermediate filament genes, Proc. Natl. Acad. Sci. USA 82: 4683–4687.PubMedGoogle Scholar
  97. Van Neste, D., Staquet, M. J., Viac, J., Lachapelle, J. M., and Thivolet, J., 1983, A new way to evaluate the germinative compartment in human epidermis using 3H-thymidine incorporation and immunoperoxidase staining of 67K polypeptide, Br. J. Dermatol. 108: 433–439.PubMedGoogle Scholar
  98. Venetianer, A., Schiller, D. L., Magin, T., and Franke, W. W., 1983, Cessation of cytokeratin expression in a rat hepatoma cell line lacking differentiated functions, Nature 305: 730–733.PubMedGoogle Scholar
  99. Watt, F. M., and Green, H., 1982, Stratification and terminal differentiation of cultured epidermal cells, Nature 295: 434–436.PubMedGoogle Scholar
  100. Weiss, R. A., Eichner, R., and Sun, T.-T., 1984, Monoclonal antibody analysis of keratin expression in epidermal diseases: A 48Kd and a 56Kd keratin as molecular markers for hyperproliferative keratinocytes, J. Cell Biol. 98: 1397–1406.PubMedGoogle Scholar
  101. Woodcock-Mitchell, J., Eichner, R., Nelson, W. G., and Sun, T.-T., 1982, Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies, J. Cell Biol. 95: 580–588.PubMedGoogle Scholar
  102. Wu, Y.-J., Parker, L. M., Binder, N. E., Beckett, M. A., Sinard, J. H., Griffiths, C. T., and Rheinwald, J. G., 1982, The mesothelial keratins: A new family of cytoskeletal proteins identified in cultured mesothelial cells and nonkeratinizing epithelia, Cell 31: 693–703.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • W. Michael O’Guin
    • 1
  • Alexander Schermer
    • 1
  • Marion Lynch
    • 1
  • Tung-Tien Sun
    • 1
  1. 1.Epithelial Biology Unit, Departments of Dermatology and Pharmacology, The Kaplan Cancer CenterNew York University School of MedicineNew YorkUSA

Personalised recommendations