Advertisement

Hard Keratin IF and Associated Proteins

  • Barry C. Powell
  • George E. Rogers

Abstract

The strong and durable nature of the hairs, nails, hooves, horns, and claws of mammals derives from the synthesis and subsequent cross-linked network of keratin proteins. These proteins are traditionally known as hard keratins in distinction to those characteristic of softer, more flexible, keratinized epithelia such as stratum corneum. Hard keratin tissues typically express complex patterns of keratin proteins, yet despite obvious phenotypic variation they all appear to express common sets of keratin genes.

Keywords

Human Hair Dermal Papilla Outer Root Sheath Keratin Gene Keratin Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baden, H. P., and Kubilus, J., 1983, Fibrous proteins of bovine hoof, J. Invest. Dermatol. 81: 220–224.PubMedGoogle Scholar
  2. Blake, C. C. F., 1985, Exons and the evolution of proteins, Int. Rev. Cytol. 93: 149–185.PubMedGoogle Scholar
  3. Bonés, R. M., and Sikorski, H., 1967, The histological structure of wool fibres and their plasticity, J. Text. Inst. 58: 521–532.Google Scholar
  4. Bradbury, J. H., 1973, The structure and chemistry of keratin fibres, Adv. Protein Chem. 27: 111–211.PubMedGoogle Scholar
  5. Breathnach, R., and Chambon, P., 1981, Organization and expression of eukaryotic split genes coding for proteins, Annu. Rev. Biochem. 50: 349–383.PubMedGoogle Scholar
  6. Brown, T. D., and Onions, W. J., 1960, Anomalies in the microscopic structure of some wools, Nature 186: 93–94.PubMedGoogle Scholar
  7. Chapman, R. E., 1971, Cell migration in wool follicles of sheep, J. Cell Sci. 9: 791–803.PubMedGoogle Scholar
  8. Chapman, R. E., 1976, Electron microscopic and histochemical features of the formation of the orthocortex and paracortex in wool, in: Proceedings of the 5th International Wool Textile Research Conference, Volume 2 (K. Ziegler, ed.), German Wool Research Institute, Aachen, pp. 152–161.Google Scholar
  9. Chapman, R. E., and Gemmell, R. T., 1971, Stages in the formation and keratinization of the cortex of the wool fibre, J. Ultrastruct. Res. 36: 342–354.PubMedGoogle Scholar
  10. Cohen, J., 1961, The transplantation of individual rat and guinea pig whisker papillae, J. Embryol. Exp. Morphol. 9: 117–127.PubMedGoogle Scholar
  11. Crewther, W. G., 1976, Primary structure and chemical properties of wool, in: Proceedings of the 5th International Wool Textile Research Conference, Volume 1 (K. Ziegler, ed.), German Wool Research Institute, Aachen, pp. 1–101.Google Scholar
  12. Crewther, W. G., Inglis, A. S., and McKern, N. M., 1978, Amino acid sequences of α-helical segments from S-carboxymethylkerateine-A: Complete sequence of a Type II segment, Biochem. J. 173: 365–371.PubMedGoogle Scholar
  13. Crewther, W. G., Dowling, L. M., and Inglis, A. S., 1980a, Amino acid sequence data from a microfibrillar protein of α-keratin, in: Proceedings of the 6th International Wool Textile Research Conference, Volume 2, South African Wool Textile Research Institute, Pretoria, pp. 79–91.Google Scholar
  14. Crewther, W. G., Dowling, L. M., Gough, K. H., Marshall, R. C., and Sparrow, L. G., 1980b, The microfibrillar proteins of α-keratin, in: Fibrous Proteins: Scientific, Industrial and Medical Aspects, Volume 2 (D. A. D. Parry and L. K. Creamer, eds.), Academic Press, New York, pp. 151–159.Google Scholar
  15. Crewther, W. G., Dowling, L. M., Steinert, P. M., and Parry, D. A. D., 1983, Structure of intermediate filaments, Int. J. Biol. Macromol. 5: 267–274.Google Scholar
  16. Darskus, R. L., 1972, Electrophoretic and Chromatographic characterization of sulphur-rich proteins from wool, J. Chromatogr. 69: 341–348.PubMedGoogle Scholar
  17. Dayhoff, M. O., 1978, Atlas of Protein Sequence and Structure, Volume 5, Suppl. 3, Biomedical Research Foundation, Washington, D.C.Google Scholar
  18. DeDeurwaerder, R. A., Dobb, M. G., and Sweetman, B. H., 1964, Selective extraction of a protein fraction from wool keratin, Nature 203: 48–49.Google Scholar
  19. Dopheide, T. A. A., 1973, The primary structure of a protein component 0.62, rich in glycine and aromatic residues obtained from wool keratin, Eur. J. Biochem. 34: 120–124.PubMedGoogle Scholar
  20. Dowling, L. M.L., Gough, K. H., Inglis, A. S., and Sparrow, L. G., 1979, Comparison of some microfibrillar proteins from wool, Aust. J. Biol. Sci. 32: 437–442.Google Scholar
  21. Dowling, L. M., Parry, D. A. D., and Sparrow, L. G., 1983, Structural homology between hard α-keratin and the intermediate filament proteins desmin and vimentin, Biosci. Rep. 3: 73–78.PubMedGoogle Scholar
  22. Dowling, L. M., Crewther, W. G., and Inglis, A. S., 1986, The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin, Biochem. J. 236: 695–703.PubMedGoogle Scholar
  23. Downes, A. M., Sharry, L. F., and Rogers, G. E., 1963, Separate synthesis of fibrillar and matrix proteins in the formation of keratin, Nature 199: 1059–1061.PubMedGoogle Scholar
  24. Eichner, R., Bonitz, P., and Sun, T.-T., 1984, Classification of epidermal keratins according to their immunoreactivity, isoelectric point and mode of expression, J. Cell Biol. 98: 1388–1396.PubMedGoogle Scholar
  25. Elleman, T. C., Lindley, H., and Rowlands, R. J., 1973, Periodicity in high sulphur proteins from wool, Nature 246: 530–531.PubMedGoogle Scholar
  26. Epstein, W., and Maibach, H. I., 1969, Cell proliferation and movement in human hair bulbs, in: Advances in Biology of Skin, Volume 9 (W. Montagna and R. L. Dobson, eds.), Pergamon Press, New York, pp. 83–97.Google Scholar
  27. Fraser, R. D. B., and MacRae, T. P., 1980, Molecular structure and mechanical properties of keratins, in: The Mechanical Properties of Biological Materials (J. V. F. Vincent and J. D. Currey, eds.), Cambridge University Press, London, pp. 211–246.Google Scholar
  28. Fraser, R. D. B., MacRae, T. P., and Rogers, G. E., 1972, Keratins, Their Composition, Structure and Biosynthesis, Thomas, Springfield, Ill.Google Scholar
  29. Fraser, R. D. B., Gillespie, J. M., and MacRae, T. P., 1973, Tyrosine-rich proteins in keratins, Comp. Biochem. Physiol. 44B: 943–947.Google Scholar
  30. Frenkel, M. J., 1985, Studies on hair keratin genes, Ph.D. thesis, University of Adelaide, Adelaide, South Australia.Google Scholar
  31. Frenkel, M. J., Gillespie, J. M., and Reis, P. J., 1974, Factors influencing the biosynthesis of the tyrosine-rich proteins of wool, Aust. J. Biol. Sci. 27: 31–38.PubMedGoogle Scholar
  32. Frenkel, M. J., Gillespie, J. M., and Reis, P. J., 1975, Studies on the inhibition of synthesis of the tyrosine-rich proteins of wool, Aust. J. Biol. Sci. 28: 331–338.PubMedGoogle Scholar
  33. Fuchs, E. V., and Marchuk, D., 1983, Type I and Type II keratins have evolved from lower eukaryotes to form the intermediate filaments in mammalian skin, Proc. Natl. Acad. Sei. USA 80: 5857–5861.Google Scholar
  34. Fuchs, E. V., Coppock, S. M., Green, H., and Cleveland, D. W., 1981, Two distinct classes of keratin genes and their evolutionary significance, Cell 27: 75–84.PubMedGoogle Scholar
  35. Fukuyama, K., and Epstein, W. L., 1985, Keratohyalin, in: Biology of the Integument, Volume 2 (J. Bereiter-Hahn, A. G. Matoltsy, and K. S. Richards, eds.), Springer-Verlag, Berlin, pp. 739–751.Google Scholar
  36. Geisler, N., and Weber, K., 1982, The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins, EMBO J. 1: 1649–1656.PubMedGoogle Scholar
  37. Gillespie, J. M., 1962, The isolation and properties of some soluble proteins from wool. IV. The isolation of the high sulphur proteins SCMKB1, Aust. J. Biol. Sei. 15: 572–588.Google Scholar
  38. Gillespie, J. M., 1972, Proteins rich in glycine and tyrosine from keratins, Comp. Biochem. Physiol. 41B: 723–734.Google Scholar
  39. Gillespie, J. M., 1983, The structural proteins of hair: Isolation, characterization and regulation of biosynthesis, in: Biochemistry and Physiology of the Skin, Volume 1 (L. A. Goldsmith, ed.), Oxford University Press, London, pp. 475–510.Google Scholar
  40. Gillespie, J. M., and Darskus, R. L., 1971, Relation between the tyrosine content of various wools and their content of a class of protein rich in tyrosine and glycine, Aust. J. Biol. Sci. 24: 1189–1197.PubMedGoogle Scholar
  41. Gillespie, J. M., and Frenkel, M. J., 1976, The tyrosine-rich proteins of keratins, Proceedings of the 5th International Wool Textile Research Conference, Volume 2 (K. Ziegler, ed.), German Wool Research Institute, Aachen, pp. 265–276.Google Scholar
  42. Gillespie, J. M., and Marshall, R. C., 1977, Proteins of the hard keratins of echidna, hedgehog, rabbit, ox and man, Aust. J. Biol. Sci. 30: 401–409.PubMedGoogle Scholar
  43. Gillespie, J. M., and Marshall, R. C., 1980, Variability in the proteins of wool and hair, in: Proceedings of the 6th International Wool Textile Research Conference, Volume 2, South African Wool Textile Research Institute, Pretoria, pp. 61–11.Google Scholar
  44. Gillespie, J. M., and Marshall, R. C., 1981, The proteins of normal and aberrant hair keratins, in: Hair Research (C. E. Orfanos, W. Montagna, and G. Stuttgen, eds.), Springer-Verlag, Berlin, pp. 76–83.Google Scholar
  45. Gillespie, J. M., and Marshall, R. C., 1983, A comparison of the proteins of normal and trichothiodystrophic human hair, J. Invest. Dermatol. 80: 195–202.PubMedGoogle Scholar
  46. Gillespie, J. M., and Reis, P. J., 1966, The dietary-regulated biosynthesis of high sulphur wool proteins, Biochem. J. 98: 669–677.PubMedGoogle Scholar
  47. Gillespie, J. M., Haylett, T., and Lindley, H., 1968, Evidence of homology in a high sulphur protein fraction (SCMK-B2) of wool and hair α-keratins, Biochem. J. 110: 193–200.PubMedGoogle Scholar
  48. Gillespie, J. M., Frenkel, M. J., and Reis, P. J., 1980, Changes in the matrix proteins of wool and mouse hair following the administration of depilatory components, Aust. J. Biol. Sci. 33: 125–136.PubMedGoogle Scholar
  49. Gillespie, J. M., Marshall, R. C., Moore, G. P. M., Panaretto, B. A., and Robertson, D. M., 1982, Changes in the proteins of wool following treatment of sheep with epidermal growth factors, J. Invest. Dermatol. 79: 197–200.PubMedGoogle Scholar
  50. Goodman, M., Romero-Herrera, A. E., Dene, H., Czelusniak, J., and Tashian, R. E., 1982, Amino acid sequence evidence on the phylogeny of primates and other eutherians, in: Macromolecular Sequences in Systematic and Evolutionary Biology (M. Goodman, ed.), Plenum Press, New York, pp. 115–191.Google Scholar
  51. Gough, K. H., Inglis, A. S., and Crewther, W. G., 1978, Amino acid sequences from S-carboxymethylkerateine-A: Complete sequence of a Type I segment, Biochem. J. 173: 373–385.PubMedGoogle Scholar
  52. Hanukoglu, I., and Fuchs, E., 1982, The cDNA sequence of a human epidermal keratin: Divergence of sequence but conservation of structure among intermediate filament proteins, Cell 31: 243–252.PubMedGoogle Scholar
  53. Happey, F., and Johnson, A. G., 1962, Some electron microscopic observations on hardening in the human hair follicle, J. Ultrastruct. Res. 7: 373–385.Google Scholar
  54. Haylett, T., Swart, L. S., Parris, D., and Joubert, F. J., 1971, The primary structure of some high sulphur proteins of reduced wool, Appl. Polymer Symp. 18: 37–44.Google Scholar
  55. Jahoda, C. A. B., Home, K. A., and Oliver, R. F., 1984, Induction of hair growth by implantation of cultured dermal papilla cells, Nature 311: 560–562.PubMedGoogle Scholar
  56. Johnson, L. D., Idler, W. W., Zhou, X.-M., Roop, D. R., and Steinert, P. M., 1985, Structure of a gene for the human epidermal 67 kD keratin, Proc. Natl. Acad. Sci. USA 82: 1896–1900.PubMedGoogle Scholar
  57. Jonas, E., Sargent, T. D., and Dawid, I. B., 1985, Epidermal keratin genes expressed in embryos of Xenopus laevis, Proc. Natl. Acad. Sci. USA 82: 5413–5417.PubMedGoogle Scholar
  58. Kaplin, I. J., and Whiteley, K. J., 1978, An electron microscopic study of fibril matrix arrangement in high and low-crimp wool fibres, Aust. J. Biol. Sci. 31: 231–240.PubMedGoogle Scholar
  59. Kimura, M., 1983, The neutral theory of molecular evolution, in: Evolution of Genes and Proteins (M. Nei and R. K. Koehn, eds.), Sinauer Associates, Sunderland, Mass., pp. 208–233.Google Scholar
  60. Kretschmer, P. J., Coon, H. C., Davis, A., Harrison, M., and Nienhuis, A. W., 1981, Hemoglobin switching in sheep: Isolation of the fetal γ-globin gene and demonstration that the fetal γ-and adult β-globin genes lie within eight kilobase segments of homologous DNA, J. Biol. Chem. 256: 1975–1982.PubMedGoogle Scholar
  61. Krieg, T. M., Schafer, M. P., Cheng, C. K., Filpula, D., Flaherty, P., Steinert, P. M., and Roop, D. R., 1985, Organization of a Type I keratin gene: Evidence for evolution of intermediate filaments from a common ancestral gene, J. Biol. Chem. 260: 5867–5870.PubMedGoogle Scholar
  62. Kuczek, E. S., and Rogers, G. E., 1985, Sheep keratins: Characterization of cDNA clones for the glycine + tyrosine-rich wool proteins using a synthetic probe, Eur. J. Biochem. 146: 89–93.PubMedGoogle Scholar
  63. Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature 283: 249–256.PubMedGoogle Scholar
  64. Lazarides, E., 1982, Intermediate filaments: A chemically heterogeneous, developmentally regulated class of proteins, Annu. Rev. Biochem. 51: 219–250.PubMedGoogle Scholar
  65. Ley, K. F., and Crewther, W. G., 1980, The proteins of wool cuticle, in: Proceedings of the 6th International Wool Textile Research Conference, Volume 2, South African Wool Textile Research Institute, Pretoria, pp. 13–28.Google Scholar
  66. Lindley, H., 1977, The chemical composition and structure of wool, in: Chemistry of Natural Protein Fibres (R. S. Asquith, ed.), Plenum Press, New York, pp. 147–191.Google Scholar
  67. Lindley, H., and Elleman, T. C., 1972, The preparation and properties of a group of proteins from the high sulphur fraction of wool, Biochem. J. 128: 859–867.PubMedGoogle Scholar
  68. Lynch, M. H., Hardy, C. L., Mak, L., and Sun, T.-T., 1985, Biochemical and immunological characterization of human hair and nail α-keratins, J. Cell Biol. 101 (Part 2):21a.Google Scholar
  69. McGarry, T. J., and Lindquist, S., 1985, The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader, Cell 42: 903–911.PubMedGoogle Scholar
  70. McKeon, F. D., Kirschner, M. W., and Caput, D., 1986, Homologies in both primary and secondary structures between nuclear envelope and intermediate filament proteins, Nature 319: 463–468.PubMedGoogle Scholar
  71. Marchuk, D., McCrohon, S., and Fuchs, E. V., 1985, Complete sequence of a gene encoding a human Type I keratin: Sequences homologous to enhancer elements in the regulatory region of the gene, Proc. Natl. Acad. Sci. USA 82: 1609–1613.PubMedGoogle Scholar
  72. Marshall, R. C., 1980, Genetic variations in the proteins of human nail, J. Invest. Dermatol. 75: 264–269.PubMedGoogle Scholar
  73. Marshall, R. C., 1983, Characterization of the proteins of human hair and nail by electrophoresis, J. Invest. Dermatol. 80: 519–524.PubMedGoogle Scholar
  74. Marshall, R. C., 1985, Nail, claw, hoof and horn keratin, in: Biology of the Integument, Volume 2 (J. Bereiter-Hahn, A. G. Matoltsy, and K. S. Richards, eds.), Springer-Verlag, Berlin, pp. 722–738.Google Scholar
  75. Marshall, R. C., and Gillespie, J. M., 1977, The keratin proteins of wool, horn and hoof from sheep, Aust. J. Biol. Sci. 30: 389–400.Google Scholar
  76. Marshall, R. C., and Gillespie, J. M., 1981, Changes in wool protein components following chemical defleecing, in: Proceedings of the 2nd National Conference on Wool Harvesting Research and Development (P. R. W. Hudson, ed.), Sydney, pp. 117-121.Google Scholar
  77. Marshall, R. C., Frenkel, M. J., and Gillespie, J. M., 1977, High sulphur proteins in mammalian keratins: A possible aid in classification, Aust. J. Zool. 25: 121–132.Google Scholar
  78. Marshall, R. C., Gillespie, J. M., Inglis, A. S., and Frenkel, M. J., 1980, High tyrosine proteins of wool, heterogeneity and biosynthetic regulation, Proceedings of the 6th International Wool Textile Research Conference, Volume 2, South African Wool Textile Research Institute, Pretoria, pp. 147–158.Google Scholar
  79. Marshall, R. C., Gillespie, J. M., McGuirk, B. J., Marier, J. W., Reis, P. J., Rogan, I. M., and Whiteley, K. J., 1985, Investigation of the relationship of variation in fibre protein composition upon fleece properties and fabric performance, Proceedings of the 7th International Wool Textile Research Conference, Volume 2, Society of Fibre Science and Technology, Japan, pp. 36–44.Google Scholar
  80. Mercer, E. H., 1961, Keratin and Keratinization, Pergamon Press, New York.Google Scholar
  81. Moll, R., Franke, W. W., Volc-Platzer, B., and Krepier, R., 1982a, Different keratin polypeptides in epidermis and other epithelia of human skin: A specific cytokeratin of molecular weight 46,000 in epithelia of the pilosebaceous tract and basal cell epitheliomas, J. Cell Biol. 95: 285–295.PubMedGoogle Scholar
  82. Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepier, R., 1982b, The catalogue of human cytokeratins: Patterns of expression in normal epithelia, tumours and cultured cells, Cell 31: 11–24.PubMedGoogle Scholar
  83. Montagna, W., and Parakkal, P. F., 1974, The Structure and Function of Skin, 3rd ed., Academic Press, New York.Google Scholar
  84. Novacek, M. J., 1982, Information for molecular studies from anatomical and fossil evidence on higher eutherian phylogeny, in: Macromolecular Sequences in Systematic and Evolutionary Biology (M. Goodman, ed.) Plenum Press, New York, pp. 3–41.Google Scholar
  85. Oliver, R. F., 1970, The induction of hair follicle formation in the adult hooded rat by vibrissa dermal papillae, J. Embryol. Exp. Morphol. 23: 219–236.PubMedGoogle Scholar
  86. Orwin, D. F. G., 1971, Cell differentiation in the lower, outer sheath of the Romney follicle: A companion cell layer, Aust. J. Biol. Sci. 24: 989–999.PubMedGoogle Scholar
  87. Orwin, D. F. G., 1979, The cytology and cytochemistry of the wool follicle, Int. Rev. Cytol. 60: 331–374.PubMedGoogle Scholar
  88. Parry, D. A. D., and Fraser, R. D. B., 1985, Intermediate filament structure: 1. Analysis of IF protein sequence data, Int. J. Biol. Macromol. 7: 203–213.Google Scholar
  89. Pollitt, R. J., and Stonier, P. D., 1971, Proteins of normal hair and of cysteine-deficient hair from mentally retarded siblings, Biochem. J. 122: 433–444.PubMedGoogle Scholar
  90. Powell, B. C., and Rogers, G. E., 1986, Hair keratin: Composition, structure and biogenesis, in: Biology of the Integument, Volume 2 (J. Bereiter-Hahn, A. G. Matoltsy, and K. S. Richards, eds.), Springer-Verlag, Berlin, pp. 695–721.Google Scholar
  91. Powell, B. C., Sleigh, M. J., Ward, K. A., and Rogers, G. E., 1983, Mammalian keratin gene families: Organization of genes coding for the B2 high sulphur proteins of sheep wool, Nucleic Acids Res. 11: 5327–5346.PubMedGoogle Scholar
  92. Powell, B.C., Cam, G. R., Fietz, M. J., and Rogers, G. E., 1986, Clustered arrangement of keratin intermediate filament genes, Proc. Natl. Acad. Sci. USA 83: 5048–5052.PubMedGoogle Scholar
  93. RayChaudhury, A., Marchuk, D., Lindhurst, M., and Fuchs, E., 1986, Three tightly linked genes encoding human Type I keratins: Conservation of sequence in the 5′-untranslated leader and 5′-upstream regions of coexpressed keratin genes, Mol. Cell Biol. 6: 539–548.PubMedGoogle Scholar
  94. Reiger, M., Jorcano, J. L., and Franke, W. W., 1985, Complete sequence of a bovine Type I cytokeratin gene: Conserved and variable intron positions in genes of polypeptides of the same cytokeratin subfamily, EMBO J. 4: 2261–2267.Google Scholar
  95. Reis, P. J., 1979, Effects of amino acids on the growth and properties of wool, in: Physiological and Environmental Limitations to Wool Growth (J. L. Black and P. J. Reis, eds.), University of New England Publications Unit, New South Wales, pp. 223–242.Google Scholar
  96. Rogers, G. E., 1959a, Electron microscopic studies of hair and wool, Ann. N.Y. Acad. Sci. 83: 378–399.PubMedGoogle Scholar
  97. Rogers, G. E., 1959b, Electron microscopy of wool, J. Ultrastruct. Res. 2: 309–330.PubMedGoogle Scholar
  98. Rogers, G. E., 1964, Structural and biochemical features of the hair follicle, in: The Epidermis (W. Montagna and W. C. Lobitz, eds.), Academic Press, New York, pp. 179–236.Google Scholar
  99. Rogers, G. E., 1983, The occurrence of citrulline in structural proteins of the hair follicle, in: Biochemistry and Physiology of the Skin, Volume 1 (L. A. Goldsmith, ed.), Oxford University Press, London, pp. 511–521.Google Scholar
  100. Roth, S., and Helwig, E. B., 1964, The cytology of the dermal papilla, the bulb and the root sheath of mouse hair, J. Ultrastruct. Res. 11: 33–51.PubMedGoogle Scholar
  101. Rothnagel, J. A., and Rogers, G. E., 1986, Trichohyalin and intermediate filament-associated protein of the hair follicle, Cell Biol. 102: 1419–1429.Google Scholar
  102. Ryder, M. L., and Stephenson, S. K., 1968, Wool Growth, Academic Press, New York.Google Scholar
  103. Skerrow, D., 1985, Epidermal α-keratin: Structure and chemical composition, in: Biology of the Integument, Volume 2 (J. Bereiter-Hahn, A. G., Matoltsy, and K. S. Richards, eds.), Springer-Verlag, Berlin, pp. 621–643.Google Scholar
  104. Sparrow, L. G., and Inglis, A. S., 1980, Characterization of the cyanogen bromide peptides of component 7c, a major microfibrillar protein from wool, in: Proceedings of the 6th International Wool Textile Research Conference, Volume 2, South African Wool Research Institute, Pretoria, pp. 237–246.Google Scholar
  105. Steinert, P. M., and Parry, D. A. D., 1985, Intermediate Filaments, Annu. Rev. Cell Biol. 1: 41–65.PubMedGoogle Scholar
  106. Steinert, P. M., Parry, D. A. D., Racoosin, E. L., Idler, W. W., Steven, A. C., Trus, B. L., and Roop, D. R., 1984, The complete cDNA and deduced amino acid sequence of a Type II mouse epidermal keratin of 60,000 Da: Analysis of sequence differences between Type I and Type II keratins, Proc. Natl. Acad. Sci. USA 81: 5709–5713.PubMedGoogle Scholar
  107. Steinert, P. M., Steven, A. C., and Roop, D. R., 1985a, The molecular biology of intermediate filaments, Cell 42: 411–419.PubMedGoogle Scholar
  108. Steinert, P. M., Parry, D. A. D., Idler, W. W., Johnson, L. D., Steven, A. C., and Roop, D. R., 1985b, Amino acid sequences of mouse and human epidermal Type II keratins of Mr 67,000 provide a systematic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits, J. Biol. Chem. 260: 7142–7149.PubMedGoogle Scholar
  109. Swart, L. S., 1973, Homology in the amino acid sequences of the high sulphur proteins from wool, Nature New Biol. 243: 27–29.PubMedGoogle Scholar
  110. Swart, L. S., and Haylett, T., 1971, Studies on the high sulphur proteins of reduced merino wool: Amino acid sequence of protein SCMKB-IIIB4, Biochem. J. 123: 201–210.PubMedGoogle Scholar
  111. Swart, L. S., Jourbert, F. J., and Parris, D., 1976, Homology in the amino acid sequences of the high sulphur proteins from keratings, in: Proceedings of the 5th International Wool Textile Research Conference, Volume 2 (K. Ziegler, ed.), German Wool Research Institute, Aachen, pp. 254–263.Google Scholar
  112. Swift, J. A., 1977, The histology of keratin fibres, in: Chemistry of Natural Protein Fibres (R. A. Asquith, ed.), Plenum Press, New York, pp. 81–146.Google Scholar
  113. Swift, J. A., 1981, The hair surface, in: Hair Research (C. E. Orfanos, W. Montagna, and G. Stüttgen, eds.), Springer-Verlag, Berlin, pp. 65–72.Google Scholar
  114. Tenenhouse, H. S., and Gold, R. J. M., 1976, Loss of a homologous group of proteins in a dominantly inherited ectodermal malformation, Biochem. J. 159: 149–160.PubMedGoogle Scholar
  115. Tyner, A. L., Eichman, M. J., and Fuchs, E. V., 1985, The sequence of a Type II keratin gene expressed in human skin: Conservation of structure among all intermediate filament genes, Proc. Natl. Acad. Sci. USA 82: 4683–4687.PubMedGoogle Scholar
  116. Ward, K. A., Sleigh, M. J., Powell, B. C., and Rogers, G. E., 1982, The isolation and analysis of the major wool keratin gene families, in: Proceedings of the 2nd World Congress of Genetics Applied to Livestock Production, Volume 6, pp. 146-156, Editorial Garsi, Londres 17, Madrid-28, Spain.Google Scholar
  117. Weber, K., and Geisler, N., 1982, The structural relation between intermediate filament proteins in living cells and the α-keratins of sheep wool, EMBO J. 1: 1155–1160.PubMedGoogle Scholar
  118. Whiteley, K. J., and Kaplin, I. J., 1977, The comparative arrangement of microfibrils in ortho-, meso-and paracortical cells of merino wool fibres, J. Text. Inst. 68: 384–386.Google Scholar
  119. Woods, J. L., and Orwin, D. F. G., 1980, Studies on the surface layers of the wool cuticle, in: Fibrous Proteins: Scientific, Industrial and Medical Aspects, Volume 2 (D. A. D. Parry and L. K. Creamer, eds.), Academic Press, New York, pp. 141–149.Google Scholar
  120. Ycas, M., 1972, De novo origin of periodic proteins, J. Mol. Evol. 2: 17–27.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Barry C. Powell
    • 1
  • George E. Rogers
    • 1
  1. 1.Department of BiochemistryUniversity of AdelaideAdelaideAustralia

Personalised recommendations