Cell Fusion pp 181-207 | Cite as

Membrane-Membrane Interactions via Intermediates in Lamellar-to-Inverted Hexagonal Phase Transitions

  • Dave P. Siegel


Recent theoretical work (Siegel, 1984, 1986a-c)shows that vesicles whose lipids can undergo the Lα/HII(lamellar-to-inverted hexagonal) phase transition should be especially susceptible to three membrane-membrane interactions: fusion, aggregation-induced vesicle leakage, and intervesicular lipid exchange. This chapter describes this model as well as experimental results derived from relevant systems. The model shows that in HII-forming systems the relative rates of the three membrane-membrane interactions may be determined by the lipid-phase behavior and the dynamics of the Lα/HIIphase transition, i.e., the rate at which A. given lipid system can execute the Lα/HIIphase transition under given conditions.


Membrane Fusion Lipidic Particle Lipid System Aqueous Content Outer Monolayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, A. D., Sen, A., and Yeagle, P. L., 1984, The effect of calcium on the bilayer stability of lipids from bovine rod outer segment disk membranes, Biochim. Biophys. Acta 771:28–34.PubMedCrossRefGoogle Scholar
  2. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., 1983, Molecular Biology of the Cell, Garland, New York.Google Scholar
  3. Bally, M. B., Tilcock, C. P. S., Hope, M. J., and Cullis, P. R., 1983, Polymorphism of phosphatidylethanolamine-phosphatidylserine model systems: Influence of cholesterol and Mg2+on Ca2+-triggered bilayer to hexagonal (HII) transitions, Can. J. Biochem. Cell Biol 61:346–352.PubMedCrossRefGoogle Scholar
  4. Bearer, E. L., Düzgünes, N., Friend, D. S., and Papahadjopoulos, D., 1982, Fusion of phospholipid vesicles arrested by quick-freezing: The question of lipidic particles as intermediates in membrane fusion, Biochim. Biophys. Acta 693:93–98.PubMedCrossRefGoogle Scholar
  5. Bentz, J., Ellens, H., Lai, M. Z., and Szoka, F. C., 1985, On the correlation between HIIphase and contact-induced destabilization of membranes, Proc. Natl. Acad. Sci. USA.82:5742–5745.PubMedCrossRefGoogle Scholar
  6. Bentz, J., Ellens, H., Szoka, F. C., Oliver, J., and Siegel, D., 1986, Membrane fusion, isotropic intermediates and the La/HIIphase transition, Biophys. J.49:17a.Google Scholar
  7. Boni, L. T., and Hui, S. W., 1983, Polymorphic phase behaviour of dilinoleoylphosphatidyl-ethanolamine and palmitoyloleoylphosphatidylcholine mixtures: Structural changes between hexagonal, cubic, and bilayer phases, Biochim. Biophys. Acta 731:177–185.PubMedCrossRefGoogle Scholar
  8. Borovjagin, V. L., Veraga, J. A., and Macintosh, T. J., 1982, Morphology of intermediate stages of the lamellar to hexagonal lipid transition,J. Membrane Biol.69:199–212.CrossRefGoogle Scholar
  9. Brentel, I., Selstam, E., and Lindblom, G., 1985, Phase equilibria of mixtures of plant galac-tolipids: The formation of A. bicontinuous cubic phase, Biochim. Biophys. Acta 812:816–826.CrossRefGoogle Scholar
  10. Caffrey, M., 1985, Kinetics and mechanism of the lamellar gel/lamellar liquid-crystal and lamellar/inverted hexagonal phase transition in phosphatidylethanolamine: A. realtime X-ray diffraction study using synchrotron radiation, Biochemistry 24:4826–4844.PubMedCrossRefGoogle Scholar
  11. Connor, J., and Huang, L., 1985, Efficient cytoplasmic delivery of A. fluorescent dye by pH-sensitive immunoliposomes, J. Cell Biol.101:582–589.PubMedCrossRefGoogle Scholar
  12. Connor, J., Yatvin, M. B., and Huang, L., 1984, pH-sensitive liposomes: Acid-induced liposome fusion, Proc. Natl. Acad. Sci. USA. 81:1715–1718.PubMedCrossRefGoogle Scholar
  13. Crowe, L. M., and Crowe, J. H., 1982, Hydration-dependent hexagonal phase lipid in A. biological membrane, Arch. Biochem. Biophys.217:582–587.PubMedCrossRefGoogle Scholar
  14. Cullis, P. R., and De Kruijff, B., 1978, The polymorphic phase behavior of phosphatidyl-ethanolamines of natural and synthetic origin, Biochim. Biophys. Acta 513:31–42.PubMedCrossRefGoogle Scholar
  15. Cullis, P. R., and Hope, M. J., 1978, Effects of fusogenic agents on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion, Nature (Lond.) 271:672–674.CrossRefGoogle Scholar
  16. Cullis, P. R., Verkleij, A. J., and Ververgaert, P. H. J. Th., 1978a, Polymorphic phase behavior of cardiolipin as detected by 31P-NMR and freeze-fracture techniques: Effects of calcium, dibucaine, and chloropromazine, Biochim. Biophys. Acta 513:11–20.PubMedCrossRefGoogle Scholar
  17. Cullis, P. R., Van Dijck, P. W. M., De Kruijff, B., and De Gier, J., 1978, Effects of cholesterol on the properties of equimolar mixtures of synthetic phosphatidylethanolamine and phosphatidylcholine, Biochim. Biophys. Acta 513:21–30.PubMedCrossRefGoogle Scholar
  18. Das, S., Rand, R. P., 1985, Diacylglycerol, A. product of phosphatidylinositol metabolism, causes major structural perturbations in lipid bilayers, Biophys. J. 41:41a.Google Scholar
  19. Dawson, R. M. C., Irvine, R. F., Bray, J., and Quinn, P. J., 1984, Long-chain unsaturated diacylglycerols cause A. perturbation in the structure of phospholipid bilayers rendering them susceptible to phospholipase attack, Biochem. Biophys. Res. Commun.125:836–842.PubMedCrossRefGoogle Scholar
  20. Dekker, C. J., Guerts van Kessel, W. S. M., Klomp, J. P. G., Pieters, J., and De Kruijff, B., 1983, Synthesis and polymorphic phase behavior of polyunsaturated phosphatidylcholines and phosphatidylethanolamines, Chem. Phys. Lipids 33:93–106.PubMedCrossRefGoogle Scholar
  21. DeKruijff, B., Verkleij, A. J., Van Echteld, C. J. A., Gerritsen, W. J., Mombers, C., Noordam, P. C., and De Gier, J., 1979, The occurrence of lipidic particles in lipid bilayers as seen by 31P-NMR and freeze-fracture electron microscopy, Biochim. Biophys. Acta 555:200–209.CrossRefGoogle Scholar
  22. DeKruijff, B., Verkleij, A. J., Leunissen-Bijvelt, J., Van Echteld, C. J. A., Hille, J., and Rijnbout, H., 1982, Further aspects of the Ca2+-dependent polymorphism of bovine heart cardiolipin, Biochim. Biophys. Acta 693:1–12.CrossRefGoogle Scholar
  23. Düzgünec, N., and Papahadjopoulos, D., 1983, Ionotropic effects on phospholipid membranes: Calcium/magnesium specificity in binding, fluidity, and fusion, Membrane Fluid. Biol 2:187–216.Google Scholar
  24. Düzgünes, N., Straubinger, R. M., Balswin, P. A., Friend, D. S., and Papahadjopoulos, D., 1985, Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes, Biochemistry 24:3091–3098.PubMedCrossRefGoogle Scholar
  25. Ellens, H., Bentz, J., and Szoka, F. C., 1984, pH-induced destabilization of phosphatidyl-ethanolamine-containing liposomes: Role of bilayer contact, Biochemistry 23:1532–1538.PubMedCrossRefGoogle Scholar
  26. Ellens, H., Bentz, J., and Szoka, F. C., 1985a, H+- and Ca2+-induced fusion and destabilization of liposomes, Biochemistry 24:3099–3106.PubMedCrossRefGoogle Scholar
  27. Ellens, H., Bentz, J., and Szoka, F. C., 1985b, Destabilization of phosphatidylethanolamine liposomes at the hexagonal phase transition temperature, Biochemistry 25:285–294.CrossRefGoogle Scholar
  28. Ellens, H., Bentz, J., and Szoka, F. C., 1986, Fusion of phosphatidylethanolamine liposomes and the mechanism of the La/HIIphase transition, Biochemistry 25:4141–4147.PubMedCrossRefGoogle Scholar
  29. Gagné, J. L., Stamatatos, L., Diacovo, T., Hui, S. W., Yeagle, P. L., and Silvius, J. R., 1985, Physical properties of membranes containing N-methylated phosphatidylethanolamines, Biochemistry 24:4400–4408.PubMedCrossRefGoogle Scholar
  30. Gordon-Kamm, W. J., and Steponkus, P. L., Lamellar-to-hexagonalIIphase transitions in the plasma membrane of isolated protoplasts after freeze induced dehydration, Proc. Natl Acad. Sci. USA.81:6373–6377.CrossRefGoogle Scholar
  31. Gounaris, K., Brain, A. P. R., Quinn, P. J., and Williams, W. P., 1983a, Structural and functional changes associated with heat-induced phase-separations of non-bilayer lipids in chloroplast thylakoid membranes, FEBS Lett.153:47–52.CrossRefGoogle Scholar
  32. Gounaris, K., Sen, A., Brain, A. P. R., Quinn, P. J., and Williams, W. P., 1983b, The formation of structures in total polar lipid extracts of chloroplast membranes, Biochim. Biophys. Acta 728:129–139.CrossRefGoogle Scholar
  33. Gounaris, K., Mannock, D. A., Sen, A., Brain, A. P. R., Williams, W. P., and Quinn, P. J., 1983c, Polyunsaturated fatty acyl residues of galactolipids are involved in the control of bilayer/non-bilayer lipid transitions higher plant chloroplasts, Biochim. Biophys. Acta 732:229–242.CrossRefGoogle Scholar
  34. Gruner, S. M., Rothschild, K. J., and Clark, N. A., 1982, X-ray diffraction and electron microscope study of phase separation in rod outer segment photoreceptor membrane multilayers, Biophys. J.39:241–251.PubMedCrossRefGoogle Scholar
  35. Gruner, S. M., 1985, Intrinsic curvature hypothesis for biomembrane lipid composition: A. role for nonbilayer lipids, Proc. Natl. Acad. Sci. USA.82:3665–3669.PubMedCrossRefGoogle Scholar
  36. Gruner, S. M., Cullis, P. R., Hope, M. J., and Tilcock, C. P. S., 1985, Lipid polymorphism: The molecular basis of nonbilayer phases, Annu. Rev. Biophys. Biophys. Chem.142:211–238.CrossRefGoogle Scholar
  37. Gutman, H., Arvidson, G., Fontell, K., and Lindblom, G., 1984,31P-NMR and 2H-NMR studies of phase equilibria in the three component system monoolein-dioleoylphos-phatidylcholine-water, in: Surfactants in Solution, Vol. 1 (K. L. Mittal and B. Lindman, eds.), pp. 143–152, Plenum Press, New York.Google Scholar
  38. Ho, R. J. Y., and Huang, L., 1985, Interactions of antigen-sensitized liposomes with immobilized antibody: A. homogeneous solid-phase immunoliposome assay,J. Immunol.134:4035–4040.PubMedGoogle Scholar
  39. Hong, K., Baldwin, P. A., Allen, T. M., and Papahadjopoulos, D., 1986, Fluorometric detection of bilayer to hexagonal phase transitions in liposomes, Biochim. Biophys. Acta (submitted).Google Scholar
  40. Hope, M. J., Walker, D. C., and Cullis, P. R., 1983, Ca2+and pH-induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively-charged phospholipids: A. freeze-fracture study, Biochem. Biophys. Res. Commun.110:15–22.PubMedCrossRefGoogle Scholar
  41. Hui, S. W., and Stewart, T. P., 1981, “Lipidic Particles” are intermembrane attachment sites, Nature (Lond.) 290:427–428.CrossRefGoogle Scholar
  42. Hui, S. W., Stewart, T. P., Yeagle, P. L., and Albert, A. D., 1981, Bilayer to non-bilayer transition in mixtures of phosphatidylethanolamine and phosphatidylcholine: Implications for membrane properties, Arch. Biochem. Biophys.207:227–240.PubMedCrossRefGoogle Scholar
  43. Hui, S. W., Stewart, T. P., and Boni, L. T., 1983, The nature of lipidic particles and their roles in polymorphic transitions. Chem. Phys. Lipids 33:113–126.PubMedCrossRefGoogle Scholar
  44. Kirk, G. L., Gruner, S. M., and Stein, D. L., 1984, A. thermodynamic model of the lamellar to inverse hexagonal phase transition of lipid membrane-water systems, Biochemistry 23:1093–1102.CrossRefGoogle Scholar
  45. Lai, M. Z., Vail, W. J., and Szoka, F. C., 1985, Acid and calcium-induced structural changes in phosphatidylethanolamine membranes stabilized by cholesterylhemisuccinate, Biochemistry 24:1654–1661.PubMedCrossRefGoogle Scholar
  46. Lawaczeck, R., Kainosho, M., and Chan, S. I., 1976, The formation and annealing of structural defects in lipid bilayer vesicles, Biochim. Biophys. Acta 443:313–330.PubMedGoogle Scholar
  47. Lis, L., McAlister, M., Fuller, N., Rand, R. P., and Parsegian, V A., 1982, Interactions between neutral phospholipid membranes, Biophys. J.37:657–666.PubMedGoogle Scholar
  48. Mandersloot, J. G., Gerritsen, W. J., Leunissen-Bijvelt, J., Van Echteld, C. J. A., Noordam, P. C., and De Gier, J., 1981, Ca2+-induced changes in the barrier properties of cardiolipin/ phosphatidylcholine bilayers, Biochim. Biophys. Acta 640:106–113.PubMedCrossRefGoogle Scholar
  49. Majerus, P. W., Neufeld, E. J., and Wilson, D. B., 1984, Production of phosphoinositide-derived messengers, Cell 37:701–703.PubMedCrossRefGoogle Scholar
  50. Nicolay, K., Van der Neut, R., Fok, J. J., and De Kruijff, B., 1985, Effects of adriamycin on lipid polymorphism in cardiolipin-containing model and mitochondrial membranes, Biochim. Biophys. Acta 819:55–65.PubMedCrossRefGoogle Scholar
  51. Nicolussi, A., Massari, S., and Colonna, R., 1982, Effect of lipid mixing on the permeability and fusion of saturated lecithin membranes, Biochemistry 21:2134–2140.PubMedCrossRefGoogle Scholar
  52. Nir, S., Bentz, J., Wilschut, J., and Düzgünes, N., 1983, Aggregation and fusion of phospholipid vesicles, Prog. Surface Sci.13:1–124.CrossRefGoogle Scholar
  53. Papahadjopoulos, D., Vail, W. J., Newton, C., Nir, S., Jacobson, N., Poste, G., and Lazo, R., 1977, Studies of membrane fusion. III. The role of calcium-mediated phase changes, Biochim. Biophys. Acta 465:579–598.PubMedCrossRefGoogle Scholar
  54. Portis, A., Newton, C., Pangborn, W., and Papahadjopoulos, D., 1979, Studies on the mechanism of membrane fusion: Evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin, Biochemistry 18:780–790.PubMedCrossRefGoogle Scholar
  55. Quinn, P. J., and Williams, W. P., 1983, The structural role of lipids in photosynthetic membranes, Biochim. Biophys. Acta 737:223–266.CrossRefGoogle Scholar
  56. Ranck, J. L., Letellier, L., Schecter, E., Krop, B., Pernot, P., and Tardieu, A., 1984, X-ray analysis of the kinetics of E. coli lipid and membrane structural transitions, Biochemistry 23:4955–4961.PubMedCrossRefGoogle Scholar
  57. Rand, R. P., and Sengupta, S., 1972, Cardiolipin forms hexagonal structures with divalent cations, Biochim. Biophys. Acta 255:484–492.PubMedCrossRefGoogle Scholar
  58. Reiss-Husson, F., 1968, Structure des phases liquide-crystalline de différents phospholipides, monoglycerides, sphingolipides, anhydres ou en presence d’eau, J. Mol. Biol.25:363–382.CrossRefGoogle Scholar
  59. Seddon, J. M., Kaye, R. D., and Marsh, D., 1983, Induction of the lamellar-inverted hexagonal phase transition in cardiolipin by protons and monovalent cations, Biochim. Biophys. Acta 734:347–352.CrossRefGoogle Scholar
  60. Siegel, D. P., 1984, Inverted micellar structures in bilayer membranes, Biophys. J.45:399–420.PubMedCrossRefGoogle Scholar
  61. Siegel, D. P., 1986a, Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. I. Mechanism of the La-HIIphase transitions, Biophys. J.49:1155–1170.PubMedCrossRefGoogle Scholar
  62. Siegel, D. P., 1986b, Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion, Biophys. J.49:1171–1183.PubMedCrossRefGoogle Scholar
  63. Siegel, D. P., 1986c, Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. III. Isotropic and inverted cubic state formation via intermediates in transitions between Laand HIIphases, Chem. Phys. Lipids(in press).Google Scholar
  64. Straubinger, R. M., Düzgünes, N., and Papahadjopoulos, D., 1985, pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated contents, FEBS Lett. 179:148–154.PubMedCrossRefGoogle Scholar
  65. Struck, D. K., Hoekstra, D., and Pagano, R. E., 1981, Use of resonance energy transfer to monitor membrane fusion, Biochemistry 20:4093–4099.PubMedCrossRefGoogle Scholar
  66. Tilcock, C. P. S., and Cullis, P. R., 1982, The polymorphic phase behavior and miscibility properties of synthetic phosphatidylethanolamines, Biochim. Biophys. Acta 684:212–218.CrossRefGoogle Scholar
  67. Tilcock, C. P. S., Bally, M. B., Farren, S. B., and Cullis, P. R., 1982, Influence of cholesterol on the structural preferences of dioleoylphosphatidylethanolamine-dioleoylphospha-tidylethanolamine systems: A. 31P-NMR and 2H-NMR Study, Biochemistry 21:4596–4601.PubMedCrossRefGoogle Scholar
  68. Tilcock, C. P. A., Hope, M. J., and Cullis, P. R., 1984, Influence of cholesterol esters of varying unsaturation on the polymorphic phase preferences of egg phosphatidylethanolamine, Chem. Phys. Lipids 35:363–370.CrossRefGoogle Scholar
  69. Valtersson, C., Van Duyn, G., Verkleij, A. J., Chojnacki, T., De Kruijff, B., and Dalner, G., 1985, The influence of dolichol, dolichol esters, and dolichol phosphate on phospholipid polymorphism and fluidity in model membranes,J. Biol. Chem.260:2742–2751.PubMedGoogle Scholar
  70. Van Venetië, R., and Verkleij, A. J., 1982, Possible role of non-bilayer lipids in the structure of mitochondria: A. freeze-fracture electron microscopy study, Biochim. Biophys. Acta 692:397–405.PubMedCrossRefGoogle Scholar
  71. Verkleij, A. J., 1984, Lipidic intramembranous particles, Biochim. Biophys. Acta 779:43–64.PubMedCrossRefGoogle Scholar
  72. Verkleij, A. J., Mombers, C., Leunissen-Bijvelt, J., and Ververgaert, P. H. J., 1979a, Lipidic intramembranous particles, Nature (Lond.) 279:162–163.CrossRefGoogle Scholar
  73. Verkleij, A. J., Mombers, C., Gerritsen, W. J., Leunissen-Bijvelt, L., and Cullis, P. R., 1979b, Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze fracturing, Biochim. Biophys. Acta 555:358–361.PubMedCrossRefGoogle Scholar
  74. Verkleij, A. J., Van Echteld, C. J. A., Gerritsen, W. J., Cullis, P. R., and De Kruijff, B. D., 1980, The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal (HII) transitions, Biochim. Biophys. Acta 600:620–624.PubMedCrossRefGoogle Scholar
  75. Verkleij, A. J., De Maagd, R., Leunissen-Bijvelt, J., and De Kruijff, B., 1982, Divalent cations and chloropromazine can induce non-bilayer structures in phosphatidic acid-containing bilayers, Biochim. Biophys. Acta 684:255–262.PubMedCrossRefGoogle Scholar
  76. Wilschut, J., Duzgune§, N., Fraley, R., and Papahadjopoulos, D., 1980, Studies on the mechanism of membrane fusion: Kinetics of calcium ion induced fusion of phosphati-dylserine vesicles followed by A. new assay for mixing of aqueous contents, Biochemistry 19:6011–6021.PubMedCrossRefGoogle Scholar
  77. Wilschut, J., Holsappel, M., and Jansen, R., 1982, Ca2+-induced fusion of cardiolipin/ phosphatidylcholine vesicles monitored by mixing of aqueous contents, Biochim. Biophys. Acta 690:297–301.PubMedCrossRefGoogle Scholar
  78. Wilschut, J., Nir, S., Scholma, J., and Hoekstra, D., 1985, Kinetics of Ca2+-induced fusion of cardiolipin-phosphatidylcholine vesicles: Correlation between vesicle aggregation, bilayer destabilization, and fusion, Biochemistry 24:4630–4636.PubMedCrossRefGoogle Scholar
  79. Yager, P., and Chang, E. L., 1983, Destabilization of A. lipid non-bilayer phase by high pressure, Biochim. Biophys. Acta 731:491–494.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Dave P. Siegel
    • 1
  1. 1.Miami Valley LaboratoriesProctor and Gamble CompanyCincinnatiUSA

Personalised recommendations