Cell Fusion pp 397-408 | Cite as

The Electrofusion Mechanism in Erythrocyte Ghosts

  • Arthur E. Sowers
  • Veena Kapoor


Electrofusion is a new method of inducing membrane fusion that uses electric field pulses. A general review of the method will be found elsewhere in this volume (Chapter 17). This chapter reviews what is known about the mechanism of electrofusion and will include a discussion of the results from our laboratory on studies using erythrocyte ghosts as a model membrane.


Electric Field Pulse Lucifer Yellow Pulse Treatment Erythrocyte Ghost Membrane Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, W. M., and Zimmermann, U., 1984, Electric field-induced fusion and rotation of cells, Biol Membranes 5:389–454.Google Scholar
  2. Benz, R., and Zimmermann, U., 1981, The resealing process of lipid bilayers after reversible electrical breakdown, Biochim. Biophys. Acta 640:169–178.PubMedCrossRefGoogle Scholar
  3. Buschel, R., Ringsdorf, H., and Zimmermann, U., 1982, Electric field-induced fusion of large liposomes from natural and polymerizable lipids, FEBS Lett. 150:38–42.CrossRefGoogle Scholar
  4. Chernomordik, L. V., Sukharev, S. I., and Abidor, I. G., 1985, Long-living defects in BLM after reversibly electrical breakdown, Biol Membrane 2:87–94.Google Scholar
  5. Dimitrov, D. S., and Jain, R. K., 1984, Membrane stability, Biochim. Biophys. Acta 779:437–468.PubMedCrossRefGoogle Scholar
  6. Hofmann, G. A., Evans, G. A., 1986, Physical and biological aspects of cellular electromanipulation, IEEE Engineering in Medicine Biology 5:6–25.CrossRefGoogle Scholar
  7. Kinosita, K., Jr., and Tsong, T. y, 1977, Formation and resealing of pores of controlled sizes in human erythrocyte membrane, Nature (Lond.) 268:438–441.CrossRefGoogle Scholar
  8. Kinosita, K., Jr., and Tsong, T. y, 1979, Voltage-induced conductance in human erythrocyte membranes, Biochim. Biophys. Acta 554:479–497.PubMedCrossRefGoogle Scholar
  9. Lieber, M. R., and Steck, T. L., 1982a, A description of the holes in human erythrocyte membrane ghosts, J. Biol Chem. 257:11651–11659.PubMedGoogle Scholar
  10. Lieber, M. R., and Steck, T. L., 1982b, Dynamics of the holes in human erythrocyte membrane ghosts, J. Biol Chem. 257:11660–11666.PubMedGoogle Scholar
  11. Oi, V. T., Glazer, A. N., and Stryer, L., 1982, Fluorescent phycobiliprotein conjugates for analyses of cells and molecules, J. Cell Biol 93:981–986.PubMedCrossRefGoogle Scholar
  12. Pilwat, G., Richter, H. P., and Zimmermann, U., 1981, Giant culture cells by electric field-induced fusion, FEBS Lett. 133:169–174.PubMedCrossRefGoogle Scholar
  13. Pohl, H. A., 1978, Dielectrophoresis, Cambridge University Press, London.Google Scholar
  14. Pohl, H. A., Pollock, K., and Rivera, H., 1984, The electrofusion of cells, Int. J. Quantum Chem.: Quantum Biol. Symposium 11:327–345.CrossRefGoogle Scholar
  15. Schwister, K., and Deuticke, B., 1985, Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown, Biochim. Biophys. Acta 816:332–348.PubMedCrossRefGoogle Scholar
  16. Serpersu, E. H., Kinosita, K., Jr., and Tsong, T. y, 1985, Reversible and irreversible modifications of erythrocyte membrane permeability by electric field, Biochim. Biophys. Acta 812:779–785.PubMedCrossRefGoogle Scholar
  17. Sowers, A. E., 1983a, Fusion of mitochondrial inner membranes by electric fields produces inside out vesicles: Visualization by freeze-fracture electron microscopy, Biochim. Biophys. Acta 735:426–428.PubMedCrossRefGoogle Scholar
  18. Sowers, A. E., 1983b, Red cell and red cell ghost membrane shape changes accompanying the application of electric fields for inducing fusion, J. Cell Biol. 97:179a.Google Scholar
  19. Sowers, A. E., 1984, Characterization of electric field-induced fusion in erythrocyte ghost membranes, J. Cell Biol. 99:1989–1996.PubMedCrossRefGoogle Scholar
  20. Sowers, A. E., 1985a, Mechanism of membrane electrofusion in erythrocyte ghosts, J. Cell Biol. 101:309a.Google Scholar
  21. Sowers, A. E., 1985b, Movement of a fluorescent lipid label from a labeled erythrocyte membrane to an unlabeled erythrocyte membrane following electric-field-induced fusion, Biophys. J. 47:519–525.PubMedCrossRefGoogle Scholar
  22. Sowers, A. E., 1985c, Electric field-induced membrane fusion in erythrocyte ghosts: Evidence that pulses induce a long-lived fusogenic state and that fusion may not involve pore formation, Biophys. J. 47:171a.CrossRefGoogle Scholar
  23. Sowers, A. E., 1986a, A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses, J. Cell Biol. 102:1358–1362.PubMedCrossRefGoogle Scholar
  24. Sowers, A. E., 1986b, Long-lived fusogenic membrane sites induced by electric field pulses are not free to diffuse laterally in the plane of the membrane, Biophys. J. 49:102a.CrossRefGoogle Scholar
  25. Sowers, A. E., and Hackenbrock, C. R., 1981, Rates of lateral diffusion of intramembrane particles: Measurement by electrophoretic displacement and rerandomization, Proc. Natl Acad. Sci. U.S.A. 78:6246–6250.PubMedCrossRefGoogle Scholar
  26. Sowers, A. E., and Lieber, M. R., 1986, Electropore diameters, lifetimes, numbers, and locations in individual erythrocyte ghosts, FEBS Lett. 205:179–189.PubMedCrossRefGoogle Scholar
  27. Speizer, L., Haugland, R., and Kutchai, H., 1985, Asymmetric transport of fluorescent glucose analogue by human erythrocytes, Biochim. Biochem. Acta 815:75–84.CrossRefGoogle Scholar
  28. Stenger, D. A., and Hui, S. W., 1986, Kinetics of ultrastructural changes during electrically-induced fusion of human erythrocytes, J. Membr. Biol., in press.Google Scholar
  29. Stewart, W. W., 1981, Lucifer dyes—highly fluorescent dyes for biological tracing, Nature (Lond.) 292:17–21.CrossRefGoogle Scholar
  30. Stulen, G., 1981, Electric field effects on lipid membrane structure, Biochim. Biophys. Acta 640:621–627.PubMedCrossRefGoogle Scholar
  31. Teissie, J., and Tsong, T. y, 1980, Evidence of voltage-induced channel opening in Na/K ATP-ase of human erythrocyte membrane, J. Membrane Biol. 55:133–140.CrossRefGoogle Scholar
  32. Teissie, J., and Tsong, T. y, 1981, Electric field induced transient pores in phospholipid bilayer vesicles, Biochemistry 20:1548–1554.PubMedCrossRefGoogle Scholar
  33. Tsong, T. y, 1983, Voltage modulation of membrane permeability and energy utilization in cells, Biosci. Rep. 3:487–505.PubMedCrossRefGoogle Scholar
  34. Zimmermann, U., 1982, Electric field-mediated fusion and related electrical phenomena, Biochim. Biophys. Acta 694:227–277.PubMedCrossRefGoogle Scholar
  35. Zimmermann, U., 1983, Electrofusion of cells: Principles and industrial potential, Trends Biotechnol. 1:149–155.CrossRefGoogle Scholar
  36. Zimmermann, U., Vienken, J., and Pilwat, G., 1984, Electrofusion of cells, in: Investigative Microtechniques in Medicine and Biology (J. Chayen and L. Bitensky, eds.), pp. 89–167, Dekker, New York.Google Scholar
  37. Zimmermann, U., Vienken, J., Halfman, J., and Emois, C. C., 1985, Electrofusion: A novel hybridization technique, in: Advances in Biotechnological Processes, Vol. 4 (A Mizrahi and A. L. van Wezel, eds.), pp. 79–150, Liss, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Arthur E. Sowers
    • 1
  • Veena Kapoor
    • 1
  1. 1.Jerome H. Holland Laboratory for the Biomedical SciencesAmerican National Red CrossRockvilleUSA

Personalised recommendations