Advertisement

Cell Fusion pp 331-352 | Cite as

Physicochemical Factors Underlying Lipid Membrane Fusion

  • Shinpei Ohki

Abstract

Membrane fusion is one of the essential events involved in many biological cellular processes (Poste and Allison, 1973; Rasmussen, 1970). In spite of extensive research on membrane fusion, its molecular mechanism is not well understood. This is probably due to the many possible molecular pathways for various membrane fusion events and also because of the complex nature of biological membranes (Poste and Nicolson, 1978).

Keywords

Interfacial Tension Membrane Fusion Vesicle Fusion Phospholipid Vesicle Dipicolinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, L., and Jancovici, B., 1984, Exactly soluble model for the interaction of two parallel charged plates in an ionic medium, J. Phys. Chem.88:2294–2297.CrossRefGoogle Scholar
  2. Breisblatt, W., and Ohki, S., 1975, Fusion in phospholipid spherical membrane. I. Effect of temperature and lysolecithin, J. Membrane Biol.23:385–401.CrossRefGoogle Scholar
  3. Chaudhury, M., and Ohki, S., 1981, Correlation between membrane expansion and temperature-induced membrane fusion, Biochim. Biophys. Acta 642:365–374.PubMedCrossRefGoogle Scholar
  4. Chung, L., Kaloyanides, G., McDaniel, R., McLaughlin, A., and McLaughlin, S., 1985, Interaction of gentamicin and spermine with bilayer membrane containing negatively charged phospholipids, Biochemistry 24:442–452.PubMedCrossRefGoogle Scholar
  5. Cohen, F. S., Zimmerberg, J., and Finkelstein, A., 1980, Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane, J. Gen. Physiol 75:251–270.PubMedCrossRefGoogle Scholar
  6. Davies, J. T., and Rideal, E. K., 1961, Interfacial Phenomena, Academic Press, New York.Google Scholar
  7. Düzgünes, N., and Ohki, S., 1977, Calcium-induced interaction of phospholipid vesicles and bilayer lipid membranes, Biochim. Biophys. Acta 467:301–308.PubMedCrossRefGoogle Scholar
  8. Hammoudah, M. M., Nir, S., Isac, T., Kornhauser, R., Stewart, T. P., Hui, S. W., and Vaz, W. L. C., 1979, Interaction of La3+ with phosphatidylserine vesicle: Binding, phase transition, leakage and fusion, Biochim. Biophys. Acta 558:338–343.PubMedCrossRefGoogle Scholar
  9. Herrman, A., Pratsch, L., Arnold, K., and Lassman, G., 1983, Effect of poly(ethylene glycol) on the polarity of aqueous solutions and on the structure of vesicle membranes, Biochim. Biophys. Acta 733:87–94.CrossRefGoogle Scholar
  10. Hiemenz, P. C., 1977, Principles of Colloid and Surface ChemistrY., Marcel Dekker, New York.Google Scholar
  11. Hong, K., Schuber, F., and Papahadjopoulos, D., 1983, Biological modulators of membrane fusion, Biochim. Biophys. Acta 732:469–472.PubMedCrossRefGoogle Scholar
  12. Hui, S. W., Stewart, T. P., Boni, L. T., and Yeagle, P. L., 1981, Membrane fusion through point defects in bilayers, Science 212:921–923.PubMedCrossRefGoogle Scholar
  13. Knutton, S., 1979, Studies of membrane fusion. III. Fusion of erythrocytes with polyethylene glycol, J. Cell Sci.36:61–72.PubMedGoogle Scholar
  14. LeNeveu, D. M., Rand, R. P., and Parsegian, V. A., 1976, Measurement of forces between lecithin bilayers, Nature (Lond.) 259:601–603.CrossRefGoogle Scholar
  15. London, F., 1937, The general theory of molecular forces, Trans. Faraday Soc.33:8.CrossRefGoogle Scholar
  16. Lucy, J. A., 1970, The fusion of biological membranes, Nature (Lond.) 227:814–817.CrossRefGoogle Scholar
  17. Miller, C., Arvan, P., Telford, J. N., and Racker, E., 1976, Ca2+-induced fusion of proteoliposomes: Dependence on transmembrane osmotic gradient, J. Membrane Biol. 30:271–282.CrossRefGoogle Scholar
  18. Ohki, S., and Fukuda, N., 1968, Interaction energy between water and hydrocarbon phases, J. Colloid Interface Sci.27:208–215.CrossRefGoogle Scholar
  19. Ohki, S., 1977, The oil-water interface, a model membrane system, in: The Fifty-First Colloid and Surface Science Symposium, pp. 134–135, Grand Island, New York.Google Scholar
  20. Ohki, S., 1982, A mechanism of divalent ion-induced phosphatidylserine membrane fusion, Biochim. Biophys. Acta 689:1–11.PubMedCrossRefGoogle Scholar
  21. Ohki, S., 1984, Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion, J. Membrane Biol.77:265–275.CrossRefGoogle Scholar
  22. Ohki, S., and Ohshima, H., 1984, Divalent cation-induced surface tension increase in acidic phospholipid membranes: ion binding and membrane fusion, Biochim. Biophys. Acta 776:177–182.CrossRefGoogle Scholar
  23. Ohki, S., and Duax, J., 1986, Interaction of polyamines with phosphatidylserine membranes, Biochim. Biophys. Acta 861:177–186.PubMedGoogle Scholar
  24. Ohki, S., Düzgünes, N., and Leonards, K., 1982, Phospholipid vesicle aggregation: Effect on monovalent and divalent ions, Biochemistry 21:2127–2133.PubMedCrossRefGoogle Scholar
  25. Ohshima, H., and Ohki, S., 1985, Effects of divalent cations on the surface tension of a lipid monolayer-coated air/water interface, J. Colloid Interface Sci.102:85–94.CrossRefGoogle Scholar
  26. Pashley, R. M., McGuigganm, P. M., Ninhan, B. W., and Evans, D. F., 1985, Attractive forces between uncharged hydrophobic surfaces: Direct measurements in aqueous solution, Science 299:1085–1089.Google Scholar
  27. Papahadjopoulos, D., Vail, W. J., Newton, C., Nir, S., Jacobson, K., Poste, G., and Lazo, R., 1977, Studies on membrane fusion. III. The role of calcium-induced phase changes, Biochim. Biophys. Acta 465:579–598.PubMedCrossRefGoogle Scholar
  28. Poste, G., and Allison, A. C., 1973, Membrane fusion, Biochim. Biophys. Acta 300:421–465.PubMedCrossRefGoogle Scholar
  29. Poste, G., and Nicolson, G. L., eds., 1978, Membrane Fusion, Elsevier/North-Holland, Amsterdam.Google Scholar
  30. Rand, P., 1981, Interacting phospholipid bilayers: Measured forces and induced structural charges, Rev. Biophys. Bioeng.10:277–314.CrossRefGoogle Scholar
  31. Rasmussen, H., 1970, Cell communication, calcium ion, and cyclic adenosine monophosphate, Science 170:404–412.PubMedCrossRefGoogle Scholar
  32. Rouser, G., Bauman, A J., Kritchevsky, G., Heller, D., and O’Brien, J. S., 1961, Quantitative chromatographic fractionation of complex lipid mixtures: Brain lipids, J. Am. Oil Chem. Soc.38:544–555.CrossRefGoogle Scholar
  33. Schuber, F., Hong, K., Düzgünes, N., and Papahadjopoulos, D., 1983, Polyamines as modulators of membrane fusion: Aggregation and fusion of liposomes, Biochemistry 22:6134–6140.PubMedCrossRefGoogle Scholar
  34. Schullery, S. E., Schmidt, C. F., Felgner, P., Tillack, T. W., and Thompson, T. E., 1980, Fusion of dipalmitoyl-phosphatidylcholine vesicles, Biochemistry 19:3919–3923.PubMedCrossRefGoogle Scholar
  35. van Oss, C. J., Good, R. J., and Chaudhury, M. K., 1986, J. Colloid Interface Sci. (in press).Google Scholar
  36. Verkleij, A. J., Van Echteld, C. J. A., Gerritsen, W. J., Cullis, P. R., and DeKruijff, B., 1980, The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal HII transitions, Biochim. Biophys. Acta 600:620–624.PubMedCrossRefGoogle Scholar
  37. Verwey, E. J. W., and Overbeek, J. Th. G., 1948, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam.Google Scholar
  38. Vincent, B., 1973, The van der Waals attraction between colloid particles having adsorbed layers. II. Calculation of interaction curves, J. Colloid Interface Sci.42:270–285.CrossRefGoogle Scholar
  39. Vold, M. J., 1961, The effect of adsorption on the van der Waals interaction of spherical colloidal particles, J. Colloid Sci.16:1–12.CrossRefGoogle Scholar
  40. Weast, R. C., ed., 1965, Handbook of Chemistry and Physics, The Chemical Rubber Co., Cleveland, Ohio.Google Scholar
  41. Wilschut, J., and Papahadjopoulos, D., 1979, Ca2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents, Nature (Lond.) 281:690–692.CrossRefGoogle Scholar
  42. Wilschut, J., Düzgünes, N., and Papahadjopoulos, D., 1980, Studies on the mechanism of membrane fusion: Kinetics of Ca ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents, Biochemistry 19:6011–6021.PubMedCrossRefGoogle Scholar
  43. Wilschut, J., Düzgünes, N., and Papahadjopoulos, D., 1981, Calcium/magnesium specificity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature, Biochemistry 20:3126–3133.PubMedCrossRefGoogle Scholar
  44. Zimmermann, U., 1982, Electric field-mediated fusion and related electrical phenomena, Biochim. Biophys. Acta 694:227–277.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Shinpei Ohki
    • 1
  1. 1.Department of Biophysical Sciences, School of MedicineState University of New York at BuffaloBuffaloUSA

Personalised recommendations