Advertisement

Cell Fusion pp 209-240 | Cite as

Lipid Vesicles

Model Systems to Study Membrane-Membrane Destabilization and Fusion
  • Francis C. Szoka

Abstract

The biophysical investigator interested in membrane fusion has distilled the complexities of the biological system to the simpler event of fusion between lipid vesicles (liposomes). This approach disregards the diversity and many of the accessory elements suspected to be involved in biological fusions (Poste and Nicolson, 1978) and focuses instead on those aspects thought to be of more universal importance. The development of the lipid vesicle model fusion system has permitted studies concerning the molecular mechanism(s) involved in fusion. In particular, the use of lipid vesicles composed of acidic phospholipids, such as phosphatidylserine, has permitted precise statements to be made concerning the two universal aspects of all fusing systems: the requirement for close apposition of bilayers and the subsequent membrane destabilization preceding fusion (Nir et al, 1983a; Wilschut and Hoekstra, 1984). In addition, the role of cations, especially calcium, has been investigated extensively and considerable data have suggested that calcium induces membrane de-stabilization and fusion only after intermembrane contact (Nir et al, 1983a). Such studies have extended the basic physicochemical knowledge of interacting colloidal system and have paved the way for an understanding of the biological factor(s) involved in fusion.

Keywords

Electron Spin Resonance Membrane Fusion Lipid Vesicle Phospholipid Vesicle Dipicolinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ababei, L., and Hildenbrand, K., 1984, Kinetics of calcium-induced mixing of lipids and aqueous contents of large unilameller phosphatidylserine vesicles, Chem. Phys. Lipids 35:39–48.Google Scholar
  2. Abbs, M. T., and Phillips, T. H., 1980, Organization of the proteins of the chromaffin granule membrane, Biochim. Biophys. Acta 595:200–221.PubMedGoogle Scholar
  3. Allen, T. M., 1984, Calcein as A. tool in liposome methodology, in: Liposome Technology, Vol. 3 (G. Gregoriadis, ed.), pp. 177–182, CRC Press, Boca Raton, Florida.Google Scholar
  4. Allen, T. M., 1980, Serum-induced leakage of liposome contents, Biochim. Biophys. Acta 597:418–426.PubMedGoogle Scholar
  5. Alstiel, L., and Branton, D., 1983, Fusion of coated vesicles with lysomes: Measurement with A. fluorescence assay, Cell 32:921–929.Google Scholar
  6. Aunis, D., Hesketh, J. E., and Devilliers, G., 1979, Freeze-fracture study of the chromaffin cell during exocytosis: Evidence for connections between the plasma membrane and secretory granules and for movements of plasma membrane-associated particles, Cell Tissue Res. 197:433–441.PubMedGoogle Scholar
  7. Baker, P. F., Knight, D. E., and Whitaker, M. J., 1980, Calcium and the control of exocytosis, in: Calcium Binding Proteins: Structure and Function(F. L. Siegel, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and R. H. Wasserman, eds.), pp. 47–55, Elsevier/North-Holland, New York.Google Scholar
  8. Baker, P. F., and Whitaker, M. J., 1978, Influence of ATP and calcium on the cortical reaction in sea urchin eggs, Nature (Lond.) 276:513–515.Google Scholar
  9. Bangham, A. D., Hill, M. W., and Miller, N. G., 1974, Preparation and use of liposomes as models of biological membranes, Methods Membrane Biol. 1:1–68.Google Scholar
  10. Banks, P., 1966, An interaction between chromaffin granules and calcium ions, Biochem. J. 101:18c–20c.Google Scholar
  11. Barela, T. D., and Sherry, A. D., 1976, A. simple, one step fluormetric method for determination of nanomolar concentrations of terbium, Anal. Biochem. 71:351–357.PubMedGoogle Scholar
  12. Barenholz, Y., Gibbes, D., Litman, B. J., Goll, J., Thompson, T. E., and Carlson, F. D., 1977, A. simple method for the preparation of homogeneous phospholipid vesicle, Biochemistry 16:2806–2810.PubMedGoogle Scholar
  13. Barenholz, Y., Amselem, S., and Lichtenberg, D., 1979, A. new method for preparation of phospholipid vesicles (liposomes)—French press, FEBS Lett. 99:210–214.Google Scholar
  14. Bearer, E. L., Düzgünes, N., Friend, D. S., and Papahadjopoulos, D., 1982, Fusion of phospholipid vesicles arrested by quick-freezing. The question of lipidic particles as intermediates in membrane fusion, Biochim. Biophys. Acta 693:93–98.PubMedGoogle Scholar
  15. Bental, M., Lelkes, P. I., Scholma, J., Hoekstra, D., and Wilschut, J., 1984, Comparison of two liposome fusion assays monitoring the intermixing of aqueous contents and of membrane components, Biochim. Biophys. Acta 774:296–300.PubMedGoogle Scholar
  16. Bentz, J., and Düzgünes, N. 1985, Fusogenic capacities of divalent cations and the effect of liposome size, Biochemistry 24:5436–5444.PubMedGoogle Scholar
  17. Bentz, J., and Nir, S., 1981, Aggregation of phosphatidylserine vesicles modelled as A. dynamic process, Proc. Natl Acad. Sci. USA. 78:1634–1637.PubMedGoogle Scholar
  18. Bentz, J., Düzgünes, M., and Nir, S., 1983a, Kinetics of divalent cation induced fusion of phosphatidylserine vesicles: Correlation between fusogenic capacities and binding affinities, Biochemistry 22:3320–3330.Google Scholar
  19. Bentz, J., Nir, S., and Wilschut, J., 1983b, Mass action kinetics of vesicle aggregation and fusion, Colloids Surfaces 6:333–363.Google Scholar
  20. Bentz, J., Ellens, H., Lai, M. Z., and Szoka, F. C., 1985, On the correlation between HIIphase and the contact-induced destabilization of phosphatidylethanolamine-containing membranes, Proc. Natl. Acad. Sci. USA. 82:5742–5745.PubMedGoogle Scholar
  21. Boni, L. T., Stewart, T. P., Alderfer, J. L., and Hui, S. W., 1981, Lipid-polyethylene glycol interactions: I. Induction of fusion between liposomes, J. Membrane Biol. 62:65–70.Google Scholar
  22. Burgoyne, R. D., and Geisow, M. J., 1981, Specific binding of 125I-calmodulin to and protein phosphorylation in adrenal chromaffin granule membranes, FEBS Lett. 131:127–131.PubMedGoogle Scholar
  23. Burridge, K., and Phillips, J. H., 1975, Association of actin and myosin with secretory granule membranes, Nature (Lond.) 254:526–529.Google Scholar
  24. Chandler, D. E., Bennett, J. P., and Gomperts, B., 1983, Freeze-fracture studies of chemotac-tic peptide-induced exocytosis in neutrophils: Evidence for two patterns of secretory granule fusion,J. Ultrastruct. Res. 82:221–232.PubMedGoogle Scholar
  25. Creutz, C. E., 1981a, Cis-unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin,J. Cell. Biol. 91:247–256.PubMedGoogle Scholar
  26. Creutz, C. E., 1981b, Secretory vesicle-cytosol interactions in exocytosis: Isolation by Ca2+-dependent affinity chromatography of proteins that bind to the chromaffin granule membrane, Biochem. Biophys. Res. Commun. 103:1395–1400.PubMedGoogle Scholar
  27. Creutz, C. E., Pazoles, C. J., and Pollard, H. B., 1978, Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules,J. Biol. Chem. 253:2858–2866.PubMedGoogle Scholar
  28. Creutz, C. E., Dowling, L. G., Sando, J. J., Villar-Palasi, C., Whipple, J. H., and Zaks, W. J., 1983, Characterization of the chromobindins: Soluble proteins that bind to the chromaffin granule membrane in the presence of Ca2+,J. Biol Chem. 258:14664–14674.PubMedGoogle Scholar
  29. Creutz, C. E., Dowling, L. G., Kygers, E. M., and Ranson, R. C., 1985, Phosphatidylinositol-specific phospholipase C activity of chromaffin granule-binding proteins,J. Biol. Chem. 260:7171–7173.PubMedGoogle Scholar
  30. Dahl, G., Ekerdt, R., and Gratzl, M., 1979, Models for exocytotic membrane fusion, Symp. Soc. Exp. Biol. 33:349–368.PubMedGoogle Scholar
  31. Davey, J., Hurtley, S. M., and Warren, G., 1985, Reconstitution of an endocytic fusion event in A. cell-free system, Cell 43:643–652.PubMedGoogle Scholar
  32. de Duve, D., 1963, Endocytosis (footnote), in: Lysosomes, Ciba Foundation Symposium Lysosomes (A. V. S. deReuck and M. P. Cameron, eds.), p. 126, J. & A. Churchill, London.Google Scholar
  33. Douglas, W. W., 1974, Involvement of calcium in exocytosis and the exocytosis-vesiculation sequence, Biochem. Soc. Symp. 39:1–28.PubMedGoogle Scholar
  34. Dreyfus, H., Aunis, D., Harth, S., and Mandel, P., 1977, Gangliosides phospholipids of the membranes from bovine adrenal medullary chromaffin granules, Biochim. Biophys. Acta 489:89–97.PubMedGoogle Scholar
  35. Dunham, P., Babiarz, P., Israel, A., Zerial, A., and Weissman, G., 1977, Membrane fusion: studies with the calcium sensitive dye, arsenazo III, in liposomes, Proc. Natl. Acad. Sci. USA. 74:1580–1584.PubMedGoogle Scholar
  36. Dunn, L. A., and Holz, R. W., 1983, Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells,J. Biol. Chem. 258:4989–4993.PubMedGoogle Scholar
  37. Düzgünes, N., 1985, Membrane fusion, in: Subcellular Biochemistry (D. B. Roodyn, ed.), pp. 195–286, Plenum Press, New York.Google Scholar
  38. Düzgünes, N., Wilschut, J., Hong, F.L., Fraley, R., Perry, C., Friend, D., James, T. L., and Papahadjopoulos, D., 1983, Physicochemical characterization of large unilamellar phospholipid vesicles prepared by reverse-phase evaporation, Biochim. Biophys. Acta. 732:289–299.PubMedGoogle Scholar
  39. Eidelman, O., Schlegal, R., Traika, T. S., and Blumenthal, R., 1984, pH-dependent fusion induced by vesicular stomatitis virus glycoprotein reconstituted into phospholipid vesicles, J. Biol Chem. 259:4622–4628.PubMedGoogle Scholar
  40. Ekerdt, R., Dahl, G., and Gratzl, M., 1981, Membrane fusion of secretory vesicle and liposomes. Two different types of fusion, Biochim. Biophys. Acta 646:10–22.PubMedGoogle Scholar
  41. Ellens, H., Bentz, J., and Szoka, F. C., 1984, pH-induced destabilization of phospha-tidylethanolamine-containing liposomes: Role of bilayer contact, Biochemistry 23:1532–1538.PubMedGoogle Scholar
  42. Ellens, H., Bentz, J., and Szoka, F. C., 1985, H+- and Ca 2+-induced fusion and destabilization of liposomes, Biochemistry 24:3099–3106.PubMedGoogle Scholar
  43. Fraley, R., Wilschut, J., Düzgünes, N., Smith, C., Papahadjopoulos, D., 1980, Studies on the mechanism of membrane fusion: Role of phosphate in promoting calcium ion induced fusion of phospholipid vesicles, Biochemistry 19:6021–6029.PubMedGoogle Scholar
  44. Fowler, V. M., and Pollard, H. B., 1982a, Chromaffin granule membrane-F-actin interactions are calcium sensitive, Nature (Lond.) 295:336–339.Google Scholar
  45. Fowler, V. M., and Pollard, H. B., 1982b, In vitro reconstitution of chromaffin granule-cytoskeleton interactions. Ionic factors influencing the association of F-actin with purified chromaffin granule membranes, J. Cell. Biochem. 18: 295–311.PubMedGoogle Scholar
  46. Fung, B. K.-K., and Stryer, L., 1978, Surface density determination in membranes by fluorescence energy transfer, Biochemistry 17:5241–5248.PubMedGoogle Scholar
  47. Gabbiani, G., and da Parada, M., Richards, G., and Pletscher, A., 1976, Actin association with membranes of monoamine storage organelles, Proc. Soc. Exp. Biol. Med. 152:135–138.Google Scholar
  48. Gemmell, R. T., and Stacy, B. D., 1979, Granule secretion by the luteal cell of the sheep: The fate of the granule membrane, Cell Tissue Res. 197:413–419.PubMedGoogle Scholar
  49. Gibson, G. A., and Loew, L. M., 1979, Phospholipid vesicle fusion monitored by fluorescence energy transfer, Biochem. Biophys. Res. Commun. 88:135–140.PubMedGoogle Scholar
  50. Ginsberg, L., 1978, Does calcium cause fusion or lysis of unilamellar lipid vesicles? Nature (Lond.) 275:758–760.Google Scholar
  51. Goll, J., Carlson, F. D., Barenholz, K., Litman, B. J., and Thompson, T. E., 1982, Photon correlation spectroscopic study of the size distribution of phospholipid vesicles, Biophys. J. 38:7–13.PubMedGoogle Scholar
  52. Gratzl, M., and Dahl, G., 1976, Calcium-induced fusion of Golgi-derived secretory vesicles isolated from rat liver, FEBS Lett. 62:142–145.PubMedGoogle Scholar
  53. Gratzl, M., Schudt, C., Ekerdt, R., and Dahl, G., 1980, Fusion of isolated biological membranes: A. tool to investigate basic processes of exocytosis and cell-cell fusion, in: Membrane Structure and Function, Vol. 3 (E. E. Bittar, ed.), pp. 59–92, Wiley, New York.Google Scholar
  54. Gregoriadis, G., ed., 1984, Liposome Technology, Vol. 1, 2, and 3, CRC Press, Boca Raton, Florida.Google Scholar
  55. Hagins, W. A., and Yoshikami, S., 1978, Intracellular transmission of visual excitation in photoreceptors: Electrical effects of chelating agents introduced into rods by vesicle fusion, in: Vertebrate receptors (P. Fattand H. B. Barlow, eds.), pp. 97–126, Academic Press, New York.Google Scholar
  56. Hamilton, R. L., Goerke, J., Guo, L. S. S., Williams, M. C., and Havel, R. J., 1980, Unilamellar liposomes made with the French pressure cell: A. simple preparative and semiquantitative technique,J. Lipid Res. 21:981–992.PubMedGoogle Scholar
  57. Hoekstra, D., 1982, Kinetics of intermixing of lipids and mixing of aqueous contents during vesicle fusion, Biochem. Biophys. Acta 692:171–175.Google Scholar
  58. Hoekstra, D., Yaron, A., Carmel, A., and Scherphof, G., 1979, Fusion of phospholipid vesicles containing A. trypsin-sensitive fluorogenic substrate and trypsin. A. new method to study membrane fusion activity in A. model system, FEBS Lett. 106:176–180.PubMedGoogle Scholar
  59. Holz, R., and Stratford, C., 1979, Effects of divalent ions on vesicle-vesicle fusion studied by A. new luminescence assay for fusion,J. Membrane Biol. 46:331–358.Google Scholar
  60. Huang, C., 1969, Studies on phosphatidylcholine vesicles. Formation and physical characteristics, Biochemistry 8:344–352.PubMedGoogle Scholar
  61. Huber, E., Konig, P., Schuler, G., Aberer, W, Plattner, H., and Winkler, H., 1979, Characterization and topography of the glycoproteins of adrenal chromaffin granules,J. Neurochem. 32:35–47.PubMedGoogle Scholar
  62. Ingolia, T., and Koshland, D., 1978, The role of calcium in fusion of artificial vesicles, J. Biol. Chem. 253:3821–3829.PubMedGoogle Scholar
  63. Izumi, F., Kashimoto, T., Miyashita, T., Wada, A., and Oka, M., 1977, Involvement of membrane associated protein in ADP-induced lysis of chromaffin granules, FEBS Lett. 78:177–180.PubMedGoogle Scholar
  64. Izumi, F., Oka, M., Morita, K., and Azuma, H., 1975, Catecholamine releasing factor in bovine adrenal medulla, FEBS Lett. 56:73–76.PubMedGoogle Scholar
  65. Jockusch, B. M., Burger, M. M., daPrada, M., Richards, J. G., Chaponnier, C., and Gabbiani, G., 1977, Actinin attached to membranes of secretory vesicles, Nature (Lond.) 270:628–629.Google Scholar
  66. Judah, J. D., and Quinn, P. S., 1978, Calcim ion-independent vesicle fusion in the conversion of proalbumin to albumin, Nature (Lond.) 271:384–385.Google Scholar
  67. Kantor, H. L., and Prestegard, J., 1975, Fusion of fatty acid containing lecithin vesicles, Biochemistry 14:1790–1794.PubMedGoogle Scholar
  68. Kataoka, T., Williamson, J. R., and Kinsky, S. C., 1973, Release of macromolecular marker (enzymes) from liposomes treated with antibody and complement, Biochim. Biophys. Acta 298:158–179.PubMedGoogle Scholar
  69. Keller, P. M., Person, S., and Snipes, W., 1977, A. fluorescence enhancement assay of cell fusion,J. Cell Sci. 28:167–177.PubMedGoogle Scholar
  70. Kendall, D. A., and MacDonald, R. C., 1982, A. fluorescence assay to monitor vesicle fusion and lysis,J. Biol. Chem. 257:13892–13895.PubMedGoogle Scholar
  71. Klausner, R. D., Kumar, N., Weinstein, J. N., Blumenthal, R., and Flavin, M., 1981, Interaction of tubulin with phospholipid vesicles with phospholipid vesicles. I. Association with vesicles at the phase transition,J. Biol. Chem. 256:5879–5886.PubMedGoogle Scholar
  72. Knutton, S., and Pasternak, C. A., 1979, The mechanism of cell-cell fusion, Trends Biochem. Sci. 4:220–223.Google Scholar
  73. Konings, F., and DePotter, W., 1981, Calcium-dependent in vitro interaction between bovine adrenal medullary cell membranes and chromaffin granules as A. model for exocytosis, FEBS Lett. 126:103–106.PubMedGoogle Scholar
  74. Lagunoff, D., 1973, Membrane fusion during mast cell secretion, J. Cell. Biol. 57:252–259.PubMedGoogle Scholar
  75. Lai, M. Z., Vail, W. J., and Szoka, F. C., 1985, Acid- and calcium-induced structural changes in phosphatidylethanolamine membranes stabilized by cholesteryl hemisuccinate, Biochemistry 24: 1654–1661.PubMedGoogle Scholar
  76. Liao, M. J., and Prestergard, J. H., 1979, Fusion of phosphatide acid-phosphatidylcholine mixed lipid vesicles, Biochem. Biophys. Acta. 550:157–173.PubMedGoogle Scholar
  77. Livett, B. G., 1984, The secretory process in adrenal medulla cells, in: Cell Biology of the Secretory Process(M. Cantin, ed.), pp. 309–358, Karger, Basel.Google Scholar
  78. Lucy, J. A., 1984, Do hydrophobic sequences cleaved from cellular polypeptides induce membrane fusion reactions in vivo?, FEBS Lett. 166:223–231.PubMedGoogle Scholar
  79. MacDonald, R. I., 1985, Membrane Fusion due to dehydration by polyethylene glycol, dex-tran, or sucrose, Biochemistry 24:4058–4064.PubMedGoogle Scholar
  80. Maeda, T., and Ohnishi, S. I., 1974, Membrane fusion transfer of phospholipid molecules between phospholipid bilayer membranes, Biochem. Biophys Res. Commun. 60:1509–1516.PubMedGoogle Scholar
  81. Marsh, D., and Watts, A., 1981, ESR spin label studies of liposomes, in: Liposomes: from physical structure to therapeutic applications (C. G. Knight, ed.), pp. 139–188, Elsevier/North-Holland, New York.Google Scholar
  82. Marsh, M., Bolzau, E., White, J., and Helenius, A., 1983, Interactions of Semliki Forest virus spike glycoprotein rosettes and vesicles with cultured cells, J. Cell Biol. 96:455–461.PubMedGoogle Scholar
  83. Mayhew, E., Lazo, R., Vail, W. J., King, J. J., and Siciliano, A. A., 1984, Characterization of liposomes prepared using A. microemulsifier, Biochim Biophys. Acta 775:169–176.PubMedGoogle Scholar
  84. Meyer, D. I., and Burger, M. M., 1976, The chromaffin granule surface: Localization of carbohydrate on the cytoplasmic surface of an intracellular organelle, Biochim, Biophys. Acta 443:428–436.Google Scholar
  85. Meyer, D. I., and Burger, M. M., 1979a, Isolation of A. protein from the plasma membrane of adrenal medulla which binds to secretory vesicles, J. Biol. Chem. 254:9854–9859.PubMedGoogle Scholar
  86. Meyer, D. I., and Burger, M. M., 1979b, The chromaffin granule surface: The presence of actin and the nature of its interaction with the membrane, FEBS Lett. 101:129–133.PubMedGoogle Scholar
  87. Morris, S. J., and Schober, R., 1977, Demonstration of binding sites for divalent and trivalent ions on the outer surface of chromaffin granule membranes, Eur. J. Biochem. 75:1–12.PubMedGoogle Scholar
  88. Morris, S. J., Chiu, V. C. K., and Haynes, D. J., 1979, Divalent cation-induced aggregation of chromaffin granule membranes, Membrane Biochem. 2:163–201.Google Scholar
  89. Morris, S. J., Gibson, C. C., Smith, P. D., Greif, P. C., Stirk, C. W., Bradley, D., Haynes, D. H., and Blumenthal, R., 1985, Rapid kinetics of Ca 2+-induced fusion of phosphatidyl-serine/phosphatidylethanolamine vesicles,J. Biol. Chem. 260:4122–4127.PubMedGoogle Scholar
  90. Nir, S., Bentz, J., and Wilschut, J., 1980, Mass action kinetics of phosphatidyleserine vesicle fusion as monitored by coalescence of internal vesicle volumes, Biochemistry 19:6030–6036.PubMedGoogle Scholar
  91. Nir, S., Wilschut, J., and Bentz, J., 1982, The rate of fusion of phospholipid vesicles and the role of bilayer curvature, Biochim. Biophys. Acta 688:275–278.PubMedGoogle Scholar
  92. Nir, S., Bentz, J., Wilschut, J., and Düzgünes, N., 1983a, Aggregation and fusion of phospholipid vesicles, Prog. Surface Sci. 13:1–124.Google Scholar
  93. Nir, S., Düzgünes, N., and Bentz, J., 1983b, Binding of monovalent cations to phosphatidyl-serine and modulation of Ca 2+- and Mg +-induced vesicle fusion, Biochim. Biophys. Acta 735:160–172.PubMedGoogle Scholar
  94. Oates, P. J., and Touster, O., 1976, In vitrofusion of Acanthamoeba phagolysosomes. II. Quantitative characterization of in vitro vacuole fusion by improved electron microscope and new light microscope techniques, J. Cell Biol. 79:217–234.Google Scholar
  95. Olson, F., Hunt, C. A., Szoka, F. C., Vail, W. J., and Papahadjopoulos, D., 1979, Preparation of liposomes of defined size distrubution by extrusion through polycarbonate membranes, Biochim. Biophys. Acta 557:9–23.PubMedGoogle Scholar
  96. Orci, L., Amherdt, M., Malaisse-Lagae, F., Rouiller, C., Renold, A. E., 1973, Insulin release by exocytosis: Demonstration with freeze-etching technique, Science 179:82–84.PubMedGoogle Scholar
  97. Owens, C. S., 1980, A. membrane-bound fluorescent probe to detect phospholipid vesicle-cell fusion, J. Membrane Biol. 54:13–20.Google Scholar
  98. Palade, G. E., 1959, Functional changes in the structure of cell components, in: Subcellular Particles (T. Hayashi, ed.), pp. 64–80, Ronald Press, New York.Google Scholar
  99. Palade, G., 1975, Intracellular aspects of the process of protein synthesis, Science 189:347–358.PubMedGoogle Scholar
  100. Papahadjopoulos, D., and Miller, N., 1967, Structural characteristics of hydrated liquid crystals, Biochim. Biophys. Acta 135:624–638.PubMedGoogle Scholar
  101. Papahadjopoulos, D., Poste, G., Schaeffer, B. E., and Vail, W. J., 1974, Membrane fusion and molecular segregation in phospholipid vesicles, Biochim. Biophys. Acta 352:10–28.PubMedGoogle Scholar
  102. Papahadjopoulos, D., Vail, W. J., Pangborn, W. A., and Poste, G., 1976, Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by calcium and other divalent metals, Biochim. Biophys. Acta 448:265–283.PubMedGoogle Scholar
  103. Papahadjopoulos, D., Poste, G., and Vail, W. J., 1979, Studies on membrane fusion with natural and model membranes, Methods Membrane Biol. 10:1–121.Google Scholar
  104. Parente, R. A., and Lentz, B. R., 1984, Phase behavior of large, unilamellar vesicles composed of synthetic phospholipids, Biochemistry 23:2353–2362.PubMedGoogle Scholar
  105. Parente, R. A., and Lentz, B. R., 1985, Advantages and limitations of l-palmitoyl-3-((2-(4(-6- phenyl-trans-1,3,5,-hexatrienyl)phenyl)ethyl)carbonyl)-2-sn-phosphatidylcholine as a fluorescent membrane probe, Biochemistry 24:6178–6186.PubMedGoogle Scholar
  106. Parente, R. A., Hoechli, M., and Lentz, B. R., 1985, Morphology and phase behavior of two types of unilamellar vesicles prepared from synthetic phosphatidylcholines studied by freeze-fracture electron microscopy and calorimetry, Biochim. Biophys. Acta 812:493 – 502.PubMedGoogle Scholar
  107. Pidgeon, C., and Hunt, C. A., 1981, Calculating number and surface area of liposomes in any suspension,J. Pharm. Sci. 70:173–176.PubMedGoogle Scholar
  108. Poisner, A. M., and Trifaro, J. M., eds., 1982, The Secretory Granule, Elsevier, New York.Google Scholar
  109. Portis, A., Newton, C., Pangborn, W., and Papahadjopoulos, D., 1979, Studies on the mechanism fusion: evidence for an intermembrane Ca 2+-phospholipid complex, synergism with Mg +, and inhibition by spectrin, Biochemistry 18:780–790.PubMedGoogle Scholar
  110. Poste, G., and Allison, A. C., 1973, Membrane fusion, Biochem. Biophys. Acta 300:421–465.PubMedGoogle Scholar
  111. Poste, G., and Nicolson, G. L., eds., 1978, Membrane Fusion, Elsevier/North-Holland, Amsterdam.Google Scholar
  112. Prestegard, J. H., and Fellmeth, B., 1974, Fusion of dimyristoyl lecithin vesicles as studied by proton magnetic resonance spectroscopy, Biochemistry 13:1122–1126.PubMedGoogle Scholar
  113. Pryor, C., Bridge, M., and Loew, L. M., 1985, Aggregation, lipid exchange, and metastable phases of dimyristoylphosphatidylethanolamine vesicles, Biochemistry 24:2203–2209.PubMedGoogle Scholar
  114. Quinn, P. S., and Judah, J. D., 1978, Calcium-dependent Golgi-vesicle fusion and cathepsin B in the conversion of proalbumin into albumin in rat liver, Biochem. J. 172:301 – 309.PubMedGoogle Scholar
  115. Raz, A., and Goldman, R., 1974, Spontaneous fusion of rat liver lysosomes in vitro, Nature (Lond.) 247:206–208.Google Scholar
  116. Rosenberg, J., Düzgünes, N., and Kayalar, C., 1983, Comparison of two liposome fusion assays monitoring the intermixing of aqueous contents and of membrane components, Biochim. Biophys. Acta 735:173–180.PubMedGoogle Scholar
  117. Rubin, R. P., 1974, Calcium and the Secretory Process, Plenum Press, New York.Google Scholar
  118. Schober, R., Nitsch, C., Rinne, U., and Morris, S. J., 1977, Calcium-induced displacement of membrane-associated particles upon aggregation of chromaffin granules, Science 195:495–497.PubMedGoogle Scholar
  119. Schullery, S. E., and Schmidt, C. F., Feigner, P., Tillack, T. W., and Thompson, T. E., 1980, Fusion of dipalmitoylphosphatidylcholine vesicles, Biochemistry 19:3919–3923.Google Scholar
  120. Siegel, D. P., Ware, B. R., Green, D. J., and Westhead, E. W., 1978, The effects of calcium and magnesium on the electrophoretic mobility of chromaffin granules measured by elec- trophoretic light scattering, Biophys. J. 22:341–346.PubMedGoogle Scholar
  121. Smolarsky, M., Teitelbaum, D., Sela, M., and Gitler, C., 1977, A. simple method to determine complement-mediated liposome immune lysis,J. Immunol. Meth. 15:255–265.Google Scholar
  122. Stossel, T. P., Bretscher, M. S., Ceccarelli, B., Dales, S., Helenius, A., Heuser, J. E., Hubbard, A. L., Kartenbeck, J., Kinne, R., Papahadjopoulos, D., Pearse, B., Plattner, H., Pollard, T. D., Reutter, W., Satir, B. H., Schliwa, M., Schneider, Y. J., Silverstein, S. C., and Weber, K., 1978, Membrane dynamics group report, in: Transport of Macromolecules in Cellular Systems (S. C. Silverstein, ed.), pp. 503–516, Dahlem Konferenzen, Berlin.Google Scholar
  123. Struck, D. K., Hoekstra, D., and Pagano, R. E., 1981, Use of resonance energy transfer to monitor membrane fusion, Biochemistry 20:4093–4099.PubMedGoogle Scholar
  124. Sudhof, T. C., Ebbecke, M., Walker, J. H., Fritsche, U., and Boustead, C., 1984, Isolation of mammalian calelectrins: A. new class of ubiquitous Ca regulated proteins, Biochemistry 23:1103–1109.PubMedGoogle Scholar
  125. Summers, T. A., and Creutz, C. E., 1985, Phosphorylation of A. chromaffin granule-binding protein by protein kinase C., J. Biol Chem. 260:2437–2443.PubMedGoogle Scholar
  126. Sun, S. T., Day, E. P., and Ho, J. T., 1978, Temperature dependence of calcium-induced fusion of sonicated phosphatidyleserine vesicles, Proc. Natl Acad. Sci. USA. 75:4325–4328.PubMedGoogle Scholar
  127. Sun, S. T., Hsang, C. C., Day, E. P., and Ho, J. T., 1979, Fusion of phosphatidylserine and mixed phosphatidylserine-phosphatidylcholine vesicles, Biochim. Biophys. Acta 557:45–52.PubMedGoogle Scholar
  128. Sunamoto, J., Iwamoto, K., Tezuka, T., Katsunoi, K., and Kondo, H., 1983, Liposomal membranes XIV. Fusion of liposomal membranes induced by polyisoprenoids as monitored by fluorescence quenching method, Chem. Phys. Lipids. 33:127–133.PubMedGoogle Scholar
  129. Szoka, F., and Papahadjopoulos, D., 1978, Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation, Proc. Natl. Acad. Sci. USA. 75:4194–4198.PubMedGoogle Scholar
  130. Szoka, F., and Papahadjopoulos, D., 1980, Comparative properties and methods of preparation of lipid vesicles (liposomes), Annu. Rev. Biophys. Bioeng. 9:467–508.PubMedGoogle Scholar
  131. Szoka, F., and Papahadjopoulos, D., 1981, Liposomes: Preparation and characterization, in: Liposomes: From Physical Structure to Therapeutic Applications(C. G. Knight, ed.), pp. 51–82, Elsevier/North-Holland, New York.Google Scholar
  132. Szoka, F. C., Jacobson, K., and Papahadjopoulos, D., 1979, The use of aqueous space markers to determine the mechanism of interaction between phospholipid vesicles and cells, Biochim. Biophys. Acta 551:295–303.PubMedGoogle Scholar
  133. Szoka, F., Olson, F., Heath, T., Vail, W., Mayhew, E.,and Papahadjopoulos, D., 1980, Preparation of unilamellar liposomes of intermediate size (0.1–0.2 urn) by A. combination of reverse phase evaporation and extrusion through polycarbonate membranes, Biochim. Biophys. Acta 601:559–571.PubMedGoogle Scholar
  134. Taupin, C., and McConnell, H. M., 1972, Membrane fusion, in: Mitochondria/Biomembranes, FEBS Eighth Meeting (S. G. van den Burgh, P. Borst, L. L. M. van Deenen, J. C. Riemeroma, E. C. Slater, and J. M. Tager, eds.), pp. 219–229, Elsevier/North-Holland, Amsterdam.Google Scholar
  135. Unanue, E. R., Ungewickell, E., and Branton, D., 1981, The binding of clathrin triskelions to membranes from coated vesicles, Cell 26:439–446.PubMedGoogle Scholar
  136. Ungar, A., and Phillips, J. H., 1983, Regulation of the adrenal medulla, Physiol. Rev. 63:787–843.PubMedGoogle Scholar
  137. Uster, P. S., and Deamer, D. W., 1981, Fusion competence of phosphatidylserine-containing liposomes quantitatively measured by A. fluorescence resonance energy transfer assay, Arch. Biochem. Biophys. 209:385–395.PubMedGoogle Scholar
  138. Van der Bosch, J., and McConnell, H. M., 1975, Fusion of dipalmitoylphosphatidylcholine vesicle membranes induced by concanavalin A., Proc. Natl. Acad. Sci. USA. 72:4409–4413.PubMedGoogle Scholar
  139. Vanderwerf, P., and Ullman, E. F., 1980, Monitoring of phospholipid vesicle fusion by fluorescence energy transfer between membrane-bound dye labels, Biochim. Biophys. Acta 596:302–314.PubMedGoogle Scholar
  140. Verkleij, A. J., 1984, Lipidic intramembranous particles, Biochim. Biophys. Acta 779:43–63.PubMedGoogle Scholar
  141. Verkleij, A. J., and deGier, J., 1981, Freeze fracture studies on aqueous dispersions of membrane lipids, in: Liposomes: From Physical Structure to Therapeutic Application (C. G. Knight, ed.), pp 83–104, Elsevier/North-Holland, New York.Google Scholar
  142. Wang, C. Y., and Huang, L., 1984, Polyhistidine mediates an acid-dependent fusion of negatively charged liposomes, Biochemistry 23:4409–4416.PubMedGoogle Scholar
  143. Weinstein, J. N., Yoshikami, S., Henkart, P., Blumenthal, R., and Hagins, W. A., 1977, Liposome-cell interactions: Transfer and intracellular release of trapped fluorescent marker, Science 195:489–503.PubMedGoogle Scholar
  144. Weinstein, J. N., Klausner, R. D., Innerarity, T., Ralston, E., and Blumenthal, R., 1981, “Phase transition release,” A. new approach to the interaction of proteins with lipid vesicles: Applications to liposomes, Biochim. Biophys. Acta 647:270–282.PubMedGoogle Scholar
  145. Weinstein, J. N., Ralston, E., Leserman, L. D., Klausner, R. D., Dragsten, P., Henkart, P., and Blumenthal, R., 1984, Self-quenching of carboxyfluorescein fluorescence: Uses in studying liposome stability and liposome—cell interactions, in: Liposome Technology, Vol. 3 (G. Gregoriadis, ed.), pp. 183–204, CRC Press, Boca Raton, Florida.Google Scholar
  146. Wilschut, J., and Hoekstra, D., 1984, Membrane Fusion: From liposomes to biological membranes, Trends in Biochem. Sci. 9:479–483.Google Scholar
  147. Wilschut, J., and Papahadjopoulos, D., 1979, Ca 2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents, Nature (Lond.) 281:690–692.Google Scholar
  148. Wilschut, J., Düzgünes, N., Fraley, R., and Papahadjopoulos, D., 1980, Studies on the mechanism of membrane fusion: Kinetics of calcium ion induced fusion of phospha-tidylserine vesicles followed by A. new assay for mixing of aqueous vesicle contents, Biochemistry 19:6011–6021.PubMedGoogle Scholar
  149. Wilschut, J., Düzgünes, N., Hong, K., Hoekstra, D., and Papahadjopoulos, D., 1983, Retention of aqueous contents during divalent cation-induced fusion of phospholipid vesicles, Biochim. Biophys. Acta 734:309–318.Google Scholar
  150. Wilson, S. P., and Kirshner, N., 1983, Calcium-evoked secretion from digitonin-perme-abilized adrenal medullary chromaffin cells, J. Biol. Chem. 258:4994–5000.PubMedGoogle Scholar
  151. Winkler, G., and Carmichael, S. W., 1982, The chromaffin granule, in: The Secretory Granule (A. M. Poisner and J. M. Trifaro, eds.), pp. 3–80, Elsevier, New York.Google Scholar
  152. Wong, M., and Thompson, T. E., 1982, Aggregation of dipalmitoylphosphatidylcholine vesicles, Biochemistry 21:4133–4139.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Francis C. Szoka
    • 1
  1. 1.Departments of Pharmacy and Pharmaceutical Chemistry, School of PharmacyUniversity of California at San FranciscoSan FranciscoUSA

Personalised recommendations