Ammonia Synthesis: Commercial Practice

  • C. W. Hooper
Part of the Fundamental and Applied Catalysis book series (FACA)


The aim of this chapter is to relate the detailed analysis of the ammonia synthesis reaction, as examined in other sections of this book, to the commercial operation of one of the major processes of the worldwide chemical industry. The present annual production of ammonia is in excess of 120 million tons per year and virtually all of this ammonia is produced from a mixture of hydrogen and nitrogen over a promoted iron catalyst operating at elevated temperature and pressure. Over 90% of ammonia produced is used as a fertilizer, principally in the form of urea or ammonium nitrate.


Heat Recovery Centrifugal Compressor Commercial Practice Ammonia Synthesis Boiler Feed Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Slack and G. Russell James, Ammonia, Parts I to IV, Marcel Dekker, New York (1977).Google Scholar
  2. 2.
    M. V. Twigg, Catalyst Handbook, Wolfe Publishing, London (1989).Google Scholar
  3. 3.
    Nitrogen 174, 23 (1988).Google Scholar
  4. 4.
    R. L. Baker and D. H. McCrea, The Benfield LoHeat Process: An Improved HPC Absorption Process, AIChE National Meeting Houston, Texas (April 1981).Google Scholar
  5. 5.
    V. A. Shah and J. McFarland, Hydrocarbon Process. 67(3), 43 (1988).Google Scholar
  6. 6.
    W. Gerhardt and W. Hefner, BASF’s Activated MDEA—A Flexible Process to Meet Specific Plant Conditions, AIChE Ammonia Safety Symposium (1988).Google Scholar
  7. 7.
    F. C. Brown and C. L. Leci, Criteria for Selecting CO2 Removal Processes, Paper read before The Fertiliser Society, London (21 October 1982).Google Scholar
  8. 8.
    S. Strelzoff, Hydrocarbon Process. 53(12), 79 (1974).Google Scholar
  9. 9.
    L. W. ter Haar, 2nd Symposium on Large Chemical Plants, Antwerp, Belgium (November 1973).Google Scholar
  10. 10.
    C. P. Marien and W. L. Slater, Manufacture of Tonnage Hydrogen by Partial Combustion—The Texaco Process, 6th World Petroleum Congress, Frankfurt, Sect 111, paper 22 (June 1963).Google Scholar
  11. 11.
    G. Hochgesand, Ind. Eng. Chem. 62(7), 37 (1971).CrossRefGoogle Scholar
  12. 12.
    T. W. Nurse, Ammonia From Coal; Choosing a Design. Proc.—Int. Symp. Large Chem. Plants: Energy, Feedstocks, Processes, 5th, p. 131 (1982).Google Scholar
  13. 13.
    Nitrogen 140, 30 (1982).Google Scholar
  14. 14.
    S. A. Topham, Catalysis Sci. Technol. 7, 1 (1985).CrossRefGoogle Scholar
  15. 15.
    S. D. Lyon, Development of the Modern Ammonia Industry, Tenth Brotherton Memorial Lecture, Chem. Ind. (London), 17, 731 (1975).Google Scholar
  16. 16.
    W. Toering, Plant/Oper. Prog. 4(3), 127 (1985).CrossRefGoogle Scholar
  17. 17.
    W. A. Zech, Centrifugal Compressors for Ammonia Plant Design and Operation Considerations, Proc. Meet. UNIDO-FAI Saf. Des. Oper. Ammonia Plants, Paper V (1976).Google Scholar
  18. 18.
    K. J. Stokes, Chem. Eng. Prog. 75(7), 88 (1979).Google Scholar
  19. 19.
    Nitrogen 31, 22 (1964).Google Scholar
  20. 20.
    V. Vek and P. Kyril, Second Generation of Radial Flow Converters in Ammonia Synthesis, Fertiliser Industry Annual Review, XI, p. 89 (1988).Google Scholar
  21. 21.
    V. Vek, Ind. Eng. Chem., Process Des. Dev. 16(3), 412 (1977).CrossRefGoogle Scholar
  22. 22.
    U. Zardi, E. Commandini, and C. Gallazzi, 4th Fer. Nitrogen Proce. Br. Sulphur. Corp. Int. Conf. Fert. Technol. 1, 173 (1981).Google Scholar
  23. 23.
    R. Weicken, Ammonia Plants. High Performance Reactor Reduces Energy Consumption, Chem. Ind. (Dusseldorf) No. 8, p. 674 (1986). (In German.).Google Scholar
  24. 24.
    T. R. Tomlinson and W. H. Isalski, Developments in Hydrogen Recovery Processes, XV International Congress of Refrigeration, Venice (Sept. 1979).Google Scholar
  25. 25.
    A. Finn, Nitrogen 175, 25 (1988).Google Scholar
  26. 26.
    E. Perry, UK Patent 2017071A “Ammonia Synthesis Process,” Monsanto Company (1978).Google Scholar
  27. 27.
    J. A. Finneran and H. C. Mayo, US Patent No. 3441393 “Process for the Production of Hydrogen-Rich Gas,” Pullman Incorporated (1966).Google Scholar
  28. 28.
    A. V. Slack and G. Russell James, Ammonia, Part III, p. 293, Marcel Dekker, New York (1977).Google Scholar
  29. 29.
    J. R. Le Blanc, Energy Prog. 5(1), 4 (1985).Google Scholar
  30. 30.
    A. Hickman, Fertilizer Focus 4(9), 24 (1987).Google Scholar
  31. 31.
    O. J. Quartulli and G. A. Wagner, Hydrocarbon Process. 57(12), 115 (1978).Google Scholar
  32. 32.
    S. E. Handman and J. R. Le Blanc, Chem. Eng. Prog. 79(5), 56 (1983).Google Scholar
  33. 33.
    B. J. Grotz, US Patent No 3442613 “Hydrocarbon Reforming for Production of a Synthesis Gas from which Ammonia can be Prepared,” C. F. Braun & Company (1965).Google Scholar
  34. 34.
    B. J. Grotz, Nitrogen 100, 71 (1976).Google Scholar
  35. 35.
    K. C. Wilson, B. J. Grotz, M. L. Bhakta, and J. H. Gosnell, Nitrogen 151, 31 (1984).Google Scholar
  36. 36.
    J. H. Gosnell, B. J. Grotz, and L. Grisolia, Ammonia Plant Saf. 25, 38 (1985).Google Scholar
  37. 37.
    W. A. Glover and J. P. Yoars, Two-Stage Adiabatic Ammonia Synthesis Converter, AIChE Safety Symposium, Minneapolis (Aug 29, 1972).Google Scholar
  38. 38.
    G. R. Prescott, Plant/Oper. Prog. 1(2), 94 (1982).CrossRefGoogle Scholar
  39. 39.
    J. S. Uschold, Fertilizer Focus 4(9), 47 (1987).Google Scholar
  40. 40.
    I. B. Dybkjaer and E. A. Gam, Chem. Econ. Eng. Rev. 16(9), 29 (1984).Google Scholar
  41. 41.
    I. B. Dybkjaer, Ammonia Plant Saf. 25, 15 (1985).Google Scholar
  42. 42.
    I. B. Dybkjaer, NATO Adv. Study Inst. Ser., Ser. E 110, 795 (1986).Google Scholar
  43. 43.
    P. Pederson, Fertilizer Focus 4(9), 38 (1987).Google Scholar
  44. 44.
    J. G. Livingstone and A. Pinto, Chem. Eng. Prog. 79(5), 62 (1983).Google Scholar
  45. 45.
    Nitrogen 162, 27 (1986).Google Scholar
  46. 46.
    W. K. Taylor and A. Pinto, Plant/Oper. Prog. 6(2), 106 (1987).CrossRefGoogle Scholar
  47. 47.
    C. W. Hooper and A. Pinto, Development and Operation of the ICI AMV Ammonia Process, Fertilizer Industry Annual Review, XI, p. 61 (1988).Google Scholar
  48. 48.
    W. F. Van Weenen and J. Tielrooy, Chem. Age India 31(12), 2 (1980).Google Scholar
  49. 49.
    P. Kalthoff Fertilizer Focus 4(9), 32 (1987).Google Scholar
  50. 50.
    Nitrogen 163, 41 (1986).Google Scholar
  51. 51.
    K. I. Arkley and A. Pinto, Expansion of Ammonia Capacity by Smaller Modern Plants, FAI Seminar, New Delhi (Dec. 1986).Google Scholar
  52. 52.
    J. M. Halstead, A. M. Haslett, and A. Pinto, Design and Operating Experience of the ICI LCA Ammonia Process, FAI Seminar, New Delhi (Dec. 1988).Google Scholar
  53. 53.
    H. D. Marsch and N. Thiagarajan, CAR, A New Reformer Technology, AIChE Ammonia Safety Symposium, Denver, Colorado (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • C. W. Hooper
    • 1
  1. 1.ICI KatalcoBillingham, ClevelandEngland

Personalised recommendations