Auger Electron Spectroscopy

  • J. C. Bertolini
  • J. Massardier
Part of the Fundamental and Applied Catalysis book series (FACA)


Different energetic beams can be used for excitation of solids with the creation of holes in electronic levels: photons, ions, electrons. In this chapter only the electron impact excitation will be taken into account, but many of the conclusions can easily be extended to other excitation modes. Incident electrons with primary energy (E p ) larger than the energy of a core electronic level (E x ) of the impacted material can generate a core hole by ionization. The excited atom then relaxes by filling the hole via a transition from an outer level E y . The excess energy released can be accommodated by the atom in either of two ways: by emitting an X-ray photon at that energy or by giving this excess energy to another electron which is ejected from the atom. A schematic representation of the electron impact Auger process is given in Figure 9.1. The kinetic energy of the ejected electron is characteristic of the electronic levels involved and therefore of the analyzed material. This process was first discovered by Auger(1,2) and the ejected electrons are called (XYZ) Auger electrons, where X indicates the deep level (K, L 1,...) on which has been created the hole which is then filled by an electron coming from the Y level (L 1, L 2,..., V), the Auger electron being ejected from an outer level Z (L 2 ,..., V); the Auger transition therefore is written as XYZ.


Auger Electron Auger Electron Spectroscopy Primary Beam Ionization Cross Section Auger Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Auger, C. R. Acad. Sci. Paris 177, 169 (1923).Google Scholar
  2. 2.
    P. Auger, Surf. Sci. 48, 1 (1975).CrossRefGoogle Scholar
  3. K. Siegbahn, et al., Electron Spectroscopy for Chemical Analysis,Nova Acta Regiae Science, Uppsala (1968).Google Scholar
  4. 4.
    P. W. Palmberg, C. E. Riach, R. E. Weber, and N. C. MacDonald, Handbook of Auger Electron Spectroscopy, Physical Electronics Industries, Edina, MN (1972).Google Scholar
  5. 5.
    D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, John Wiley and Sons, New York (1985).Google Scholar
  6. 6.
    F. J. Kuijers, Thesis, Leyden, The Netherlands (1978).Google Scholar
  7. 7.
    S. Ichimura and R. Shimizu, Surf. Sci. 112, 386 (1982).CrossRefGoogle Scholar
  8. 8.
    R. Shimizu, Jpn. J. Appl. Physics 22, 1631 (1983).CrossRefGoogle Scholar
  9. 9.
    M. P. Seah and W. A. Dench, Surf. Interf Anal. 1, 2 (1979).CrossRefGoogle Scholar
  10. 10.
    T. S. King and R. G. Donnelly, Surf. Sci. 151, 374 (1985).CrossRefGoogle Scholar
  11. 11.
    A. O. van Langeveld and V. Ponec, Appl. Surf. Sci. 16, 405 (1983).CrossRefGoogle Scholar
  12. 12.
    S. A. Chambers, T. R. Greenlee, C. P. Smith, and J. M. Weaver, Phys. Rev. B 32, 4245 (1985).Google Scholar
  13. 13.
    J. P. Segaud, E. Blanc, C. Lauroz, and R. Baudoing, Surf. Sci. 203, 297 (1988).CrossRefGoogle Scholar
  14. 14.
    M. M. Bhasin, J. Catal. 34, 356 (1974).CrossRefGoogle Scholar
  15. 15.
    A. Sulyok and G. Gergely, Surf. Sci. 213, 327 (1989).CrossRefGoogle Scholar
  16. 16.
    J. C. Bertolini, J. Brissot, T. Le Mogne, H. Montes, Y. Calvayrac, and J. Bigot, Appl. Surf. Sci. 29, 29 (1987).CrossRefGoogle Scholar
  17. 17.
    J. P. Petrakian and P. Renucci, Surf. Sci. 186, 447 (1987).CrossRefGoogle Scholar
  18. 18.
    T. E. Madey, C. D. Wagner, A. Joshi, J. Electron Spectrosc. Rel. Phenom. 10, 359 (1977).CrossRefGoogle Scholar
  19. 19.
    S. L. Suib, G. D. Stucky, and R. J. Blattner, J. Catal. 65, 174 (1985).CrossRefGoogle Scholar
  20. 20.
    S. L. Suib, G. D. Stucky, and R. J. Blattner, J. Catal. 65, 179 (1985).CrossRefGoogle Scholar
  21. 21.
    G. Praline, N. Pacia, J. J. Ehrhardt, A. Cassuto, and J. P. Langeron, Surf Sci. 105, 289 (1981).CrossRefGoogle Scholar
  22. 22.
    S. Kohiki, Appl. Surf. Sci. 25, 81 (1986).CrossRefGoogle Scholar
  23. 23.
    G. Dalmai, J. C. Bertolini, and J. Rousseau, Surf. Sci. 27, 379 (1971).CrossRefGoogle Scholar
  24. 24.
    T. W. Haas, J. T. Grant, and J. C. Dooley, Adsorption-Desorption Phenomena (F. Ricca, ed.), Academic, London (1972), p. 359.Google Scholar
  25. 25.
    S. D. Foulias, K. J. Rawlings, and B. J. Hopkins, Surf. Sci. 114, 1 (1982).CrossRefGoogle Scholar
  26. 26.
    A. Cros, F. Salvan, M. Commandre, and J. Derrien, Surf. Sci. Lett. 103, 109 (1981).CrossRefGoogle Scholar
  27. 27.
    R. Vidal, M. C. G. Passeggi, E. C. Goldberg, and J. Ferron, Surf. Sci. 201, 97 (1988).CrossRefGoogle Scholar
  28. 28.
    K. Hangi, H. Shimizu, H. Shindo, T. Onishi, and K. Tamaru, J. Res. Inst. Cacai., Hokkaido Univ. 28, 175 (1980).Google Scholar
  29. 29.
    G. Ertl and D. Prigge, J. Catal. 79, 359 (1983).CrossRefGoogle Scholar
  30. 30.
    C. G. Pantano and T. E. Madey, Appl. Surf. Sci. 7, 115 (1981).CrossRefGoogle Scholar
  31. 31.
    A. Van Oostrom, Surf. Sci. 89, 615 (1979).CrossRefGoogle Scholar
  32. 32.
    S. Thomas, J. Appl. Phys. 45, 161 (1974).CrossRefGoogle Scholar
  33. 33.
    K. W. Nebesny and N. R. Armstrong, J. Electron Spectrosc. Rel. Phenom. 37, 355 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. C. Bertolini
    • 1
  • J. Massardier
    • 1
  1. 1.Institut de Recherches sur la CatalyseCNRSVilleurbanneFrance

Personalised recommendations