Skip to main content

Nuclear Magnetic Resonance in Heterogeneous Catalysis

  • Chapter
Catalyst Characterization

Part of the book series: Fundamental and Applied Catalysis ((FACA))

Abstract

Magnetic resonance includes both nuclear and electron magnetic resonances. The former applies to nuclei that have nonzero nuclear magnetic moments, the latter to unpaired electrons that all have the same electron magnetic moment. Laws that govern these techniques are quite similar; they differ only on the quantitative scale simply because the largest nuclear magnetic moment (that of the proton) is far smaller than that of the electron (the ratio is 1840). Table 5.1 gives the nuclear spin from which the nuclear magnetic moment derives, as a function of the parity of the mass and atomic number; the angular moment is expressed in ħ = h/2π units. The natural abundance, the relative sensitivity (compared to that of the proton), and the quadrupolar moment (where appropriate) of a limited selection of nuclei often encountered in catalysis are listed in Table 5.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. H. Farrar and E. D. Becker, Pulse and Fourier Transform NMR: Introduction to Theory and Methods, Academic, New York (1977);

    Google Scholar 

  2. L. M. Jackman and S. Sternhell, Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, Pergamon, New York (1969);

    Google Scholar 

  3. A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance, Harper and Row, New York (1967).

    Google Scholar 

  4. F. Bloch, Phys. Rev. 70, 460 (1946).

    Article  CAS  Google Scholar 

  5. V. M. Bermudez, J. Phys. Chem. 74, 4160 (1970).

    Article  CAS  Google Scholar 

  6. M. M. Mestdagh, W. E. E. Stone, and J. J. Fripiat, J. Phys. Chem. 76, 122 (1972).

    Article  Google Scholar 

  7. G. E. Pake, J. Chem. Phys. 16, 327 (1948);G. N. La Mar, W. D. Horrocks, and R. H. Holm, NMR of Paramagnetic Molecules, Academic, New York (1973).

    Google Scholar 

  8. J. L. Bonardet, A. Snobert, and J. Fraissard, C. R. Acad. Sci. 272, 1836 (1971).

    CAS  Google Scholar 

  9. J. L. Bonardet and J. Fraissard, J. Magn. Reson. 22, 1 (1976).

    Google Scholar 

  10. E. G. Derouane, J. Fraissard, J. J. Fripiat, and W. E. E. Stone, Catal. Rev. 7, 121 (1972).

    Article  CAS  Google Scholar 

  11. J. Fraissard, S. Bielikoff, and B. Imelik, Proc. of the wth Congr. on Catalysis Symposium, No.,3, Moscow (J. Hightower, ed.), The Catalysis Society, Houston, (1968), p. 1577.

    Google Scholar 

  12. E. R. Andrew, Progr. Nuclear Magn. Reson. Spectrosc. 8, 1 (1971).

    Article  CAS  Google Scholar 

  13. J. Schaeffer and O. Stejkal, J. Am. Chem. Soc. 98, 1031 (1976).

    Article  Google Scholar 

  14. E. Lippmaa, M. Alla, and T. Tuherm, Proc. of the 19th Colloque Ampère (H. Brunner, K. H. Hausser, and D. Schweitzer, eds. ), Heidelberg-Geneva (1976).

    Google Scholar 

  15. U. Haebelen, High Resolution NMR in Solids-Selective Averaging, Academic, New York (1976).

    Google Scholar 

  16. R. E. Wasylishen and C. A. Fyfe, Ann. Rep. NMR Spectrosc. 12, 1–80 and 287–290 (1982).

    Google Scholar 

  17. E. Lippmaa, M. Alla, T. J. Pehk, and G. Engelhardt, J. Am. Chem. Soc. 100, 1929 (1978).

    Article  CAS  Google Scholar 

  18. M. Magi, E. Lippmaa, A. Sampson, G. Engelhardt, and A. R. Grimmer, J. Phys. Chem. 88, 1518 (1984).

    Article  CAS  Google Scholar 

  19. E. Lippmaa, M. Magi, A. Sampson, G. Engelhardt, and A. R. Grimmer, J. Am. Chem. Soc. 102, 4889 (1980).

    Article  CAS  Google Scholar 

  20. S. Ramdas and J. Klinowbki, Nature 303, 521 (1984).

    Article  Google Scholar 

  21. J. Klinowbki, S. Ramdas, J. M. Thomas, C. A. Fyfe, and J. S. Hartman, J. Chem. Soc., Faraday Trans. II, 78, 1025 (1982).

    Article  Google Scholar 

  22. D. Freude and H. J. Behreus, Cryst. Res. Technol. 16, K36 (1981).

    CAS  Google Scholar 

  23. D. Muller, W. Gessner, H. J. Behreus, and G. Scheler, Chem. Phys. Lett. 79, 59 (1981).

    Article  Google Scholar 

  24. D. Muller, D. Hoebbel, and W. Gessner, Chem. Phys. Lett. 84, 25 (1981).

    Article  Google Scholar 

  25. A. P. M. Kentgens, K. F. M. Scholle, and W. S. Veeman, J. Phys. Chem. 87, 4357 (1983).

    Article  CAS  Google Scholar 

  26. R. Khouzami, G. Coudurier, F. Lefebvre, B. Mentzen, and J. C. Vedrine, Zeolites 10, 183 (1990).

    Article  CAS  Google Scholar 

  27. M. I. Davis, C. Montes, P. E. Hathaway, and J. M. B. Garces, Stud. Surf. Sci. Catal. 49A, 199 (1989).

    Article  Google Scholar 

  28. M. Kojima, F. Lefebvre, and Y. Ben Taarit, J. Chem. Soc. 86, 757 (1990).

    CAS  Google Scholar 

  29. Z. Gabelica, J. Bnagy, P. Bodart, and G. Debras, Chem. Lett., 10 59 (1984).

    Google Scholar 

  30. E. Dempsey, J. Catal. 39, 155 (1975).

    Article  CAS  Google Scholar 

  31. T. Ito and J. Fraissard, Chem. Phys. 76, 1 (1982).

    Google Scholar 

  32. L. C. Menorval and J. Fraissard, J. Chem. Soc. Faraday Trans. 178, 403 (1982).

    Google Scholar 

  33. J. Fraissard, T. Ito, L. C., Menorval, M. A. Springuel-Huet, in: Metal Microstructures in Zeolites ( P. A. Jacobs, ed.), Elsevier, Amsterdam (1982), p. 179.

    Google Scholar 

  34. M. R. Basila and T. R. Kantner, J. Phys. Chem. 70, 1681 (1966).

    Article  CAS  Google Scholar 

  35. P. Pichat, M. V. Mathieu, and B. Imelik, Bull. Soc. Chim. France 00, 2611 (1969).

    CAS  Google Scholar 

  36. I. D. Gay and S. Liang, J. Catal. 44, 306 (1976).

    Article  CAS  Google Scholar 

  37. W. H. Dawson, S. W. Kaiser, P. D. Ellis, and R. R. Inner, J. Amer. Chem. Soc. 103, 6780 (1981).

    Article  CAS  Google Scholar 

  38. J. A. Ripmeester, J. Amer. Chem. Soc. 105, 2925 (1983).

    Article  CAS  Google Scholar 

  39. G. E. Maciel, J. F. Haw, I. S. Chliang, B. L. Hawkins, T. A. Early, D. L. McKay, and L. Petrakis, J. Amer. Chem. Soc. 105, 5529 (1983).

    Article  CAS  Google Scholar 

  40. J. H. Lunsford, W. P. Rothwell, and W. Shen, J. Amer. Chem. Soc. 107, 1540 (1985).

    Article  CAS  Google Scholar 

  41. L. Baltusis, J. S. Frye, and G. E. Maciel, J. Amer. Chem. Soc. 109, 40 (1987).

    Article  CAS  Google Scholar 

  42. H. E. Rhodes, P. K. Wang, H. T. Stokes, C. P. Slichter, and J. H. Sinfelt, Phys. Rev. B26, 3559 (1982).

    Article  CAS  Google Scholar 

  43. C. P. Slichter, Surf Sci. 106, 382 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taarit, Y.B., Fraissard, J. (1994). Nuclear Magnetic Resonance in Heterogeneous Catalysis. In: Imelik, B., Vedrine, J.C. (eds) Catalyst Characterization. Fundamental and Applied Catalysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9589-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9589-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9591-2

  • Online ISBN: 978-1-4757-9589-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics