Electronic Spectroscopy

  • E. Garbowski
  • H. Praliaud
Part of the Fundamental and Applied Catalysis book series (FACA)


The absorption bands occurring in the visible and near-UV (and eventually near-IR) regions are used to obtain information on the electronic structure of homogeneous or heterogeneous catalyst supports. The observed bands are related to transitions between the electronic levels of the atoms, ions, complexes, or molecules (organic or inorganic), and various theories have been developed to help the interpretations.(1–18) Furthermore, the spectra of many compounds are known.(4–6,10–13,18–20) Thus electronic spectroscopy can give the valence state and the stereochemistry of transition metal ions used as catalysts as well as their modification during adsorption or reactions. (21) It also gives information on the interactions between adsorbed molecules and solid catalysts or on those among the various components of a liquid mixture.(22–25) The formation of reaction intermediates and reaction products, as well as kinetics of formation can also be determined. For homogeneous solutions, the transmitted light is analyzed. In the case of solid catalysts or turbid solutions, this technique is replaced by diffuse reflectance spectroscopy. (26–31) This nonconventional spectroscopy is widely used in the study of powders (e.g., catalysts, oxides, pigments) or of surfaces (e.g., pigments, papers, glasses, polymers, ceramics).


Crystal Field Electronic Spectroscopy Crystal Field Theory Ligand Field Theory Crystal Field Stabilization Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. E. Orgel, An Introduction to Transition Metal Chemistry; Ligand Field Theory, Methuen, London (1961).Google Scholar
  2. 2.
    J. R. Streitweiser, Molecular Orbital Theory for Organic Chemists, John Wiley and Sons, London (1962).Google Scholar
  3. 3.
    G. M. Barrow, Introduction to Molecular Spectroscopy, Mc Graw-Hill, New York (1962).Google Scholar
  4. 4.
    C. J. Ballhausen, Introduction to Ligand Field Theory, Mc Graw-Hill, New York (1962).Google Scholar
  5. 5.
    H. H. Jaffe and M. Orchin, Theory and Applications of Ultraviolet Spectroscopy, John Wiley and Sons, New York (1964).Google Scholar
  6. 6.
    C. K. Jorgensen, Absorption Spectra and Chemical Bonding in Complexes, Pergamon, London (1964).Google Scholar
  7. 7.
    J. N. Murrell, The Theory of the Electronic Spectra of Organic Molecules, John Wiley and Sons, New York (1963).Google Scholar
  8. 8.
    J. S. Griffith, The Theory of Transition Metal Ions, Cambridge University Press (1964).Google Scholar
  9. 9.
    T. M. Dunn, D. S. McLure, and R. G. Pearson, Some Aspects of Crystal Field Theory, Harper and Row, New York (1965).Google Scholar
  10. 10.
    B. N. Figgis, An Introduction to Ligand Fields, Interscience, New York (1966).Google Scholar
  11. 11.
    G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand, New York (1966).Google Scholar
  12. 12.
    H. L. Schlafer and G. Glieman, Basic Principles of Ligand Field Theory, Interscience, London (1969).Google Scholar
  13. 13.
    C. K. Jorgensen, Electron Transfer Spectra: Progress in Inorganic Chemistry Vol. 12, Interscience, New York (1970), p. 101.CrossRefGoogle Scholar
  14. 14.
    M. Orchin and H. H. Jaffe, Symmetry, Orbitals and Spectra, Interscience, New York (1971).Google Scholar
  15. 15.
    F. A. Cotton, Chemical Applications of Group Theory, John Wiley and Sons, New York (1971).Google Scholar
  16. 16.
    C. K. Jorgensen, Modern Aspects of Ligand Field Theory, North-Holland, Amsterdam (1971).Google Scholar
  17. 17.
    M. Gerloch and R. C. Slade, Ligand Field Parameters, Cambridge University Press (1978).Google Scholar
  18. 18.
    D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy. An Introduction to Vibrational and Electronic Spectroscopy, Oxford University Press (1978).Google Scholar
  19. 19.
    A. I. Scott, Interpretation of the Ultraviolet Spectra of Natural Products, Monographs Organic Chemistry, Vol. 7, Pergamon, London (1964).Google Scholar
  20. 20.
    H. H. Hershenson, Ultraviolet and Visible Absorption Spectra, Academic, London (1966).Google Scholar
  21. 21.
    J. P. Lefti and H. C. Hobson, Adv. Catal. 14, 115 (1963).CrossRefGoogle Scholar
  22. 22.
    A. Terenin, Adv. Catal. 15, 227 (1964).CrossRefGoogle Scholar
  23. 23.
    K. Tanabe, Solid Acids and Bases, Academic, New York (1970).Google Scholar
  24. 24.
    M. Noboru and K. Tanekazu, Molecular Interactions and Electronic Spectra, Marcel Dekker, New York (1970).Google Scholar
  25. 25.
    C. N. R. Rao, Ultraviolet and Visible Spectroscopy: Chemical Applications, Butterworths, London (1970).Google Scholar
  26. 26.
    W. W. Wendlandt and H. G. Hecht, Reflectance Spectroscopy, Interscience, New York (1966).Google Scholar
  27. 27.
    K. Klier, Catal. Rev. 1, 207 (1968).CrossRefGoogle Scholar
  28. 28.
    W. W. Wendlandt, Modern Aspects of Reflectance Spectroscopy, Plenum, New York (1968).CrossRefGoogle Scholar
  29. 29.
    G. Kortum, Reflectance Spectroscopy: Principles, Methods, and Applications, Springer Verlag, Berlin (1969).CrossRefGoogle Scholar
  30. 30.
    R. W. Frei and J. O. MacNiel, Diffuse Reflectance Spectroscopy in Environmental Problem Solving, CRC, Cleveland, OH (1973).Google Scholar
  31. 31.
    W. N. Delgass, G. L. Haller, R. Kellerman, and J. H. Lunsford, Spectroscopy in Heterogeneous Catalysis, Academic, New York (1979).Google Scholar
  32. 32.
    H. Praliaud and G. Coudurier, J. Chem. Soc. Faraday Trans. I 75, 2601 (1979).Google Scholar
  33. 33.
    E. Garbowski and M. V. Mathieu, C. R. Acad. Sci. Paris 280C, 1125 (1975).Google Scholar
  34. 34.
    E. Garbowski, M. Primet, and M. V. Mathieu, in: Molecular Sieves II, ACS Symposium Series 40, 281 (1977).CrossRefGoogle Scholar
  35. 35.
    E. Garbowski, M. V. Mathieu, and M. Primet, Chem. Phys. Lett. 49, 247 (1977).CrossRefGoogle Scholar
  36. 36.
    H. Praliaud, J. Less Common Metals 54, 387 (1977).CrossRefGoogle Scholar
  37. 37.
    M. Che, F. Figueras, M. Forissier, J. McAteer, M. Perrin, J. L. Portefaix, and H. Praliaud, Proc. 6th Int. Congr. on Catalysis, Vol. 2, The Royal Chemical Society, London, (1977), p. 261.Google Scholar
  38. 38.
    H. Praliaud and M. Forissier, React. Kin. and CataL Lett. 8, 451 (1978).CrossRefGoogle Scholar
  39. 39.
    M. Primet, E. D. Garbowski, M. V. Mathieu, and B. Imelik, J. Chem. Soc. Faraday Trans. I76, 1942 (1980).CrossRefGoogle Scholar
  40. 40.
    M. Primet, E. D. Garbowski, M. V. Mathieu, and B. Imelik, J. Chem. Soc. Faraday Trans. I76, 1953 (1980).CrossRefGoogle Scholar
  41. 41.
    E. D. Garbowski and H. Praliaud, J. Chim. Phys. 76, 687 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • E. Garbowski
    • 1
  • H. Praliaud
    • 1
  1. 1.Institut de Recherches sur la CatalyseCNRSVilleurbanneFrance

Personalised recommendations