Advertisement

Raman Spectroscopy

  • E. Garbowski
  • G. Coudurier
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

Raman spectroscopy gives information about rotational and vibrational energy levels of a molecule, like IR spectroscopy. The technique has improved, especially during the past two decades, owing to the development of better technology, i.e., laser sources, solid state detectors, photon counting, charge coupled device camera, signal sampling and averaging and noise filtering with computers, ultralow stray light monochromators, etc. For catalysis and adsorption, this spectroscopy is complementary to classical IR transmission because the selection rules are different, but in some cases it is the only spectroscopy able to detect adsorbent vibrations in a wave number range where the support itself is not transparent to IR radiation.

Keywords

Raman Spectrum Raman Spectroscopy Raman Line Stokes Line Vibrational Energy Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. S. Tobias, J. Chem. Educ. 44, 1 (1967).CrossRefGoogle Scholar
  2. 2.
    J. A. Koningstein, Introduction to the Theory of the Raman Effect,Reidel, Dordrecht (1972), Ch. 1.Google Scholar
  3. 3.
    L. A. Woodward, Raman Spectroscopy,Vol. I (M. A. Szymanski, ed.), Plenum, New York (1967), Ch. 1.Google Scholar
  4. 4.
    G. Herzberg, Molecular Spectra and Molecular Structure, II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York (1950).Google Scholar
  5. 5.
    M. C. Tobin, Laser Raman Spectroscopy, John Wiley and Sons, New York (1971).Google Scholar
  6. 6.
    C. E. Hathaway, The Raman Effect,Vol. I (A. Anderson, ed.), Marcel Dekker, New York (1971), Ch. 4.Google Scholar
  7. 7.
    P. J. Hendra, Spex Speaker 19, 1 (1974).Google Scholar
  8. 8.
    T. A. Egerton and A. H. Hardin, Cat. Rev. Sci. Eng. 11, 71 (1975).CrossRefGoogle Scholar
  9. 9.
    R. P. Cooney, G. Curthoys, and N. T. Tam, Adv. Cat. 24, 293 (1975).CrossRefGoogle Scholar
  10. 10.
    W. H. Delgass, G. L. Haller, R. Kellerman, and J. H. Lunsford, Spectroscopy in Heterogeneous Catalysis,Academic, New York (1979), Ch. 3.Google Scholar
  11. 11.
    I. R. Beattie and T. R. Gilson, Proc. Roy. Soc. A. 307, 407 (1968).CrossRefGoogle Scholar
  12. 12.
    I. Matsuura, R. Schuit, and K. Kirakawa, J. Catal. 63, 152 (1980).CrossRefGoogle Scholar
  13. 13.
    J. Medema, C. Van Stam, V. H. J. De Beer, A. J. A. Konings, and D. C. Koningsberger, J. Catal. 53, 386 (1978).CrossRefGoogle Scholar
  14. 14.
    E. Payen, J. Grimblot, and S. Kasztelan, J. Phys. Chem. 91, 6642 (1987).CrossRefGoogle Scholar
  15. 15.
    E. Payen, M. C. Dhamelincourt, P. Dhamelincourt, J. Grimblot, and J. P. Bonnelle, Appl. Spectrosc. 36, 30 (1982).CrossRefGoogle Scholar
  16. 16.
    E. Payen, S. Kasztelan, J. Grimblot, and J. P. Bonnelle, J. Mol. Struct. 143, 259 (1986).CrossRefGoogle Scholar
  17. 17.
    E. Payen, S. Kasztelan, J. Grimblot, and J. P. Bonnelle, J. Mol. Struct. 174, 71 (1988).CrossRefGoogle Scholar
  18. 18.
    E. Payen, S. Kasztelan, J. Grimblot, and J. P. Bonnelle, Catalysis Today 4, 57 (1988).CrossRefGoogle Scholar
  19. 19.
    S. Kasztelan, E. Payen, H. Toulhoat, J. Grimblot, and J. P. Bonnelle, Polyhedron 5, 157 (1986).CrossRefGoogle Scholar
  20. 20.
    T. A. Egerton, A. H. Hardin, and N. Sheppard, Can. J. Chem. 54, 586 (1976).CrossRefGoogle Scholar
  21. 21.
    A. H. Hardin, M. Klemes, and B. A. Morrow, J. CataL 62, 316 (1980).CrossRefGoogle Scholar
  22. 22.
    W. Krasser, A. Fadini, and A. Renouprez, J. CataL 62, 94 (1980).CrossRefGoogle Scholar
  23. 23.
    M. Deeba, B. J. Strensand, G. L. Schrader, and B. C. Gates, J. Catal. 69, 218 (1981).CrossRefGoogle Scholar
  24. 24.
    W. Krasser, H. Ervens, A. Fadini, A. J. Renouprez, J. Raman Spectrosc. 9, 80 (1980).CrossRefGoogle Scholar
  25. 25.
    A. W. Klaasen and C. G. Hill, Jr., J. CataL 69, 299 (1981).CrossRefGoogle Scholar
  26. 26.
    D. P. Dilella, A. Gonin, R. H. Lipson, P. Mc Breen, and M. Moskovits, J. Chem. Phys. 73, 4282 (1980).CrossRefGoogle Scholar
  27. 27.
    M. Ueba and S. Ichimura, J. Chem. Phys. 74, 3070 (1981).CrossRefGoogle Scholar
  28. 28.
    T. E. Furtak and J. Reyes, Surf. Sci. 93, 351 (1980).CrossRefGoogle Scholar
  29. 29.
    S. Efrima and J. Metiu, J. Chem. Phys. 70, 1602 (1979).CrossRefGoogle Scholar
  30. 30.
    G. Coudurier, unpublished results.Google Scholar
  31. 31.
    T. Hirschfeld, AppL Spectrosc. 30, 68 (1976).CrossRefGoogle Scholar
  32. 32.
    T. Hirschfeld and B. Chase, AppL Spectrosc. 40, 133 (1986).CrossRefGoogle Scholar
  33. 33.
    B. Chase, J. Am. Chem. Soc. 108, 7485 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • E. Garbowski
    • 1
  • G. Coudurier
    • 1
  1. 1.Institut de Recherches sur la CatalyseCNRSVilleurbanneFrance

Personalised recommendations