Advertisement

Applications of Electrical Conductivity Measurements in Heterogeneous Catalysis

  • J.-M. Herrmann
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

The use of electrical conductivity measurements in catalysis was developed in the 1950s when the Electronic Theory of Catalysis appeared. As the catalytic process is a succession of chemical reactions with the rupture of chemical bonds and the creation of new ones, it was natural to look at the electronic properties of the different partners — the reactants and the catalyst. It was expected that by controlling the electronic properties of the solid, its reactivity with respect to a given catalytic reaction could be controlled. However, as electronic processes are very fast phenomena, they do not constitute the rate-limiting step of a catalytic reaction. Thus the electronic theory of catalysis was found not to apply in numerous examples. By contrast, electical conductivity appeared as a fruitful technique to characterize many catalytic systems, as exemplified in this chapter.

Keywords

Mixed Oxide Oxygen Pressure Anionic Vacancy Doping Effect Hydrogen Spillover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. M. Arghiropoulos and S. J. Teichner, J. Catal. 3, 477 (1964).CrossRefGoogle Scholar
  2. 2.
    M. Breysse, B. Claudel, M. Guénin, H. Latreille, and J. Véron, J. Catal. 27, 275 (1972).CrossRefGoogle Scholar
  3. 3.
    R. N. Blumenthal, P. W. Lee, and R. J. Panlener, J. Electrochem. Soc. 118, 123 (1971).CrossRefGoogle Scholar
  4. 4.
    J. M. Herrmann, J. Chim. Phys. 73, 474 (1976)Google Scholar
  5. J. M. Herrmann, J. Chim. Phys. 73, 479 (1976).Google Scholar
  6. 5.
    J. M. Herrmann, J. L. Portefaix, M. Forissier, F. Figueras, and P. Pichat, J. Chem. Soc., Faraday Trans. 175, 1346 (1979).Google Scholar
  7. 6.
    J. M. Herrmann, P. Vergnon, and S. J. Teichner, Bull. Soc. Chim. Fr. (1976), p. 1056.Google Scholar
  8. 7.
    C. M. Osbum and R. W. West. J. Chem. Solids 32, 1331 (1971).CrossRefGoogle Scholar
  9. 8.
    J. M. Herrmann, J. Disdier, and P. Pichat, J. Chem. Soc., Faraday Trans. 177, 2815 (1980).Google Scholar
  10. 9.
    J. M. Herrmann, J. Disdier, M. N. Mozzanega, and P. Pichat, J. Catal. 60, 369 (1979).CrossRefGoogle Scholar
  11. 10.
    A. Ovenston and J. R. Walls, J. Phys. 18, 1859 (1985).Google Scholar
  12. 11.
    G. M. Pajonk, S. J. Teichner and J. E. Germain (ed.), Spillover of Adsorbed Species, Studies in Surface Science and Catalysis, Vol. 17, Elsevier, Amsterdam (1983).Google Scholar
  13. 12.
    S. J. Tauster and S. G. Fung, J. Catal. 55, 29 (1978).CrossRefGoogle Scholar
  14. 13.
    J. M. Herrmann, J. Catal. 118, 43 (1989).CrossRefGoogle Scholar
  15. 14.
    D. M. Belton, Y. M. Sun, and J. M. White, J. Phys. Chem. 88, 5172 (1984).CrossRefGoogle Scholar
  16. 15.
    D. E. Resasco and G. L. Haller, Adv. Catal. 36, 173–235 (1989).CrossRefGoogle Scholar

Literature

  1. E. Spenke, Semiconducteurs électroniques, Dunod, Paris (1959).Google Scholar
  2. A. Many, Y. Golstein, and N. B. Grover, Semiconductor Surfaces, North Holland, Amsterdam (1971).Google Scholar
  3. N. B. Hannay, Solid-State Chemistry, Prentice-Hall, Englewood Cliffs, NJ (1967).Google Scholar
  4. J. P. Suchet, Chimie Physique des Semiconducteurs, Monographie Dunod, Paris (1972).Google Scholar
  5. A. Rose, Photoconductivité: Modèles et problèmes annexes, Monographie Dunod, Paris (1966).Google Scholar
  6. R. H. Bube, Photoconductivity of Solids, John Wiley and Sons, New York (1967).Google Scholar
  7. S. R. Morisson, The Chemical Physics of Surfaces, Plenum, New York (1977).CrossRefGoogle Scholar
  8. J. Mort and D. M. Pai, Photoconductivity and Related Phenomena, Elsevier, Amsterdam (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J.-M. Herrmann
    • 1
  1. 1.Laboratoire de Photocatalyse, Catalyse et Environnement, URA CNRSEcole Centrale de LyonEcullyFrance

Personalised recommendations