Secondary Ion Mass Spectrometry

  • J. Grimblot
  • M. Abon
Part of the Fundamental and Applied Catalysis book series (FACA)


When a solid target is bombarded by ions having energies of several keV, different complex processes may occur simultaneously. When the ion energy is low (typically less than 2 keV), the target surface can scatter the incident ions by an elastic collision mechanism. Analysis of the energetics of this collision is called ion scattering spectroscopy ISS, which is reviewed in Chapter 12. In addition to this elastic collision, in particular for higher ion energies, a certain depth of the solid is perturbed and excited, which results in emission of secondary electrons and photons and sputtering of neutral or charged fragments. Some of the incident ions may also be trapped or implanted in the solid. The mass analysis of these charged fragments (i.e., negatively or positively charged ions) is called secondary ion mass spectrometry (SIMS). Ions of chemically inert gases are generally used in SIMS as primary exciting particles but, sometimes, for given purposes, more reactive ions such as O2 + or Cs+ are also employed.


Maleic Anhydride NATO Advance Study Institute Series Substrate Tempera Ture Selvedge Region Local Bond Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. R. Grove, Phil, Mag, 5, 203 (1853); Phil, Trans. Soc. 142, 87 (1852).CrossRefGoogle Scholar
  2. 2.
    F. L. Arnot and J. C. Milligan, Proc. Roy. Soc. Ser. A 156, 538 (1936).CrossRefGoogle Scholar
  3. 3.
    R. F. K. Herzog and F. P. Viehbock, Phys. Rev. 76, 855 (1949).CrossRefGoogle Scholar
  4. 4.
    H. W. Werner and H. A. M. De Grefte, Surf. Sci. 35, 438 (1973).CrossRefGoogle Scholar
  5. 5.
    A. Benninghoven, Surf. Sci. 35, 427 (1973).CrossRefGoogle Scholar
  6. 6.
    A. Benninghoven, Surf. Sci. 53, 596 (1975).CrossRefGoogle Scholar
  7. 7.
    H. W. Werner, Surf. Sci. 47, 301 (1975).CrossRefGoogle Scholar
  8. 8.
    M. Kaminsky, Atomic and Ionic Impact Phenomena on Metal Surfaces. Springer-Verlag, Berlin (1965).CrossRefGoogle Scholar
  9. 9.
    G. K. Wehner, Methods of Surface Analysis (A. W. Czanderna, ed.), Elsevier, Amsterdam, (1975), p. 5.Google Scholar
  10. 10.
    J. A. Mc Hugh, Methods of Surface Analysis (A. W. Czanderna, ed.), Elsevier, Amsterdam, (1975), p. 223.Google Scholar
  11. 11.
    G. Blaise, Materials Characterization Using Ion Beams (J. P. Thomas and A. Cachard, eds.), Plenum Press, London, NATO Advanced Study Institute Series, Volume 28, (1978), p. 143.Google Scholar
  12. 12.
    H. W. Werner, Electron and Ion Spectroscopy of Solids, Plenum Press, New York, NATO Advanced Study Institute Series, Volume 32, Series B Physics (1978), p. 324; Developments in Applied Spectroscopy, 7A (E. L. Grove and A. J. Perkins, eds.), Plenum, New York (1969), p. 239.Google Scholar
  13. 13.
    B. Blanchard, Analyse par émission ionique secondaire SIMS, Techniques de l’ingénieur, (1981), p. 2618.Google Scholar
  14. 14.
    J. C. Pivin and C. Roques Carmes, Le Vide, les couches minces, numéro spécial mars (1979), p. 221.Google Scholar
  15. 15.
    W. Katz and J. G. Newman, Mater. Res. Bull. 40, Aug.-Sept. (1987).Google Scholar
  16. 16.
    D. Schuetzle, T. L. Riley, J. E. Devries, and T. J. Prater, Mass Spectrom. Rev. 3, 527 (1984).CrossRefGoogle Scholar
  17. 17.
    K. Wittmaack, Surf Sci. 89, 668 (1979).CrossRefGoogle Scholar
  18. 18.
    R. E. Honig, Intern. J. Mass Spectros. and Ion Proc. 66, 31 (1985).CrossRefGoogle Scholar
  19. 19.
    J. C. Vickerman, Spectroscopy of Surfaces (R. J. H. Clark and R. E. Hester, eds.), Advances in Spectroscopy, Vol. 16, John Wiley and Sons (1988), p. 155.Google Scholar
  20. 20.
    J. Lindhart, V. Nielsen, and M. Scharff, Kgl. Danska, Videnskab, Selskab, Mat. Phys. Medd. 33, 14 (1963); 36, 10 (1968).Google Scholar
  21. 21.
    W. K. Chu, Material Characterization Using Ions Beams (J. P. Thomas, A. Cachard, eds.), Plenum Press, London, NATO Advanced Study Institute Series Vol. 28, (1978), p. 3.Google Scholar
  22. 22.
    J. B. Sanders, Can. J. Phys. 46, 455 (1968).CrossRefGoogle Scholar
  23. 23.
    P. Sigmund, Sputtering Yield of Ion Bombarded Solids, Proc. 3rd Nat. Conf. on Atomic Collisions in Solids, Kiev (1974).Google Scholar
  24. 24.
    P. Sigmund, Radiation Damage Processes in Materials. Proc. 1973 NATO Advanced Study Institute, Alerta, Noordhoff, Leiden (1975), p. 3.CrossRefGoogle Scholar
  25. 25.
    D. E. Harrison, W. L. Moore, and H. T. Holcombe, Radiat, Eff 17, 167 (1973).CrossRefGoogle Scholar
  26. 26.
    P. Sigmund, Phys. Rev. 184, 383 (1969); 187, 768 (1969).Google Scholar
  27. 27.
    G. Blaise and G. Slodzian, Rev, Appl. Phys. 8, 105 (1973).Google Scholar
  28. 28.
    F. Bernhardt, H. Dechsner, and E. Stumpel, Nucl, Instrum. Meth. 132, 329 (1976).CrossRefGoogle Scholar
  29. 29.
    P. K. Rol. D. Onderlinden, and J. Kistemaker, Proc. 3rd. Intern. Vacuum Congr. Vol. 1, Pergamon, Oxford (1966), p. 75.Google Scholar
  30. 30.
    H. Oechsner, Z. Phys. 261, 37 (1973).CrossRefGoogle Scholar
  31. 31.
    N. Winograd and B. J. Garrison, Acc. Chem. Res. 13, 406 (1980).CrossRefGoogle Scholar
  32. 32.
    G. Slodzian, Surf Sci. 48, 161 (1965).CrossRefGoogle Scholar
  33. 33.
    M. Bernheim, Radiat, Eff 18, 231 (1973).Google Scholar
  34. 34.
    H. Oechsner, Z. Phys. 238, 433 (1970).CrossRefGoogle Scholar
  35. 35.
    R. Kelly and N. Q. Lam, Radiat. Eff 19, 39 (1973).CrossRefGoogle Scholar
  36. 36.
    G. Blaise and M. Bernheim, Surf. Sci. 47, 324 (1975).CrossRefGoogle Scholar
  37. 37.
    M. Shimizu, M. Ono, and K. Nakayama, Surf Sci. 36, 817 (1973).CrossRefGoogle Scholar
  38. 38.
    M. Yabumoto, K. Watanabe, and T. Yamashina, Surf. Sci. 77, 615 (1978).CrossRefGoogle Scholar
  39. 39.
    J. W. Coburn, Thin Solid Films 64, 371 (1979).CrossRefGoogle Scholar
  40. 40.
    G. Betz, Surf Sci. 92, 283 (1980).CrossRefGoogle Scholar
  41. 41.
    R. Kelly, Surf Sci. 100, 85 (1980).CrossRefGoogle Scholar
  42. 42.
    L. Leclercq, Surface Properties and Catalysis by Non-Metals (J. P. Bonnelle, B. Delmon and E. Derouane, eds.), Reidel, Dordrecht (1983), p. 433.CrossRefGoogle Scholar
  43. 43.
    E. Taglauer, Appl. Surf Sci. 13, 80 (1982).CrossRefGoogle Scholar
  44. 44.
    A. Benninghoven, Chemistry and Physics of Solid Surfaces (R. Vanselow and S. Y. Tong, eds.), CRC Press, Cleveland, OH (1977), p. 207.Google Scholar
  45. 45.
    A. Benninghoven and A. Mueller, Phys. Lett. A 40, 169 (1972).Google Scholar
  46. 46.
    J. Grimblot, P. Alnot, R. J. Behm, and C. R. Brundle, J. Electron Spectrosc. Rel. Phenom. 52, 175 (1990).CrossRefGoogle Scholar
  47. 47.
    A. Benninghoven, Surf. Sci. 28, 541 (1971).CrossRefGoogle Scholar
  48. 48.
    P. Williams, R. K. Lewis, C. A. Evans, and P. R. Hanley, Anal. Chem. 49, 2023 (1977).CrossRefGoogle Scholar
  49. 49.
    M. Bernheim and G. Slodzian, J. Phys. 38, L325 (1977).CrossRefGoogle Scholar
  50. 50.
    M. Morabito and R. K. Lewis, Anal. Chem. 45, 869 (1973).CrossRefGoogle Scholar
  51. 51.
    R. Castaing and G. Slodzian, J. Microsc. 1, 395 (1962).Google Scholar
  52. 52.
    A. Benninghoven, Z. Phys. 230, 403 (1970).CrossRefGoogle Scholar
  53. 53.
    A. Benninghoven, D. Jaspers, and W. Silktermann, Appl. Phys. 11, 35 (1976).CrossRefGoogle Scholar
  54. 54.
    R. J. Colton, J. Vac. Sci. Technol. 18, 737 (1981).CrossRefGoogle Scholar
  55. 55.
    S. J. Pachuta and R. G. Cooks, Chem. Rev. 87, 647 (1987).CrossRefGoogle Scholar
  56. 56.
    G. M. Lancaster, F. Honda, Y. Fukuda, and J. W. Rabalais, J. Am. Chem. Soc. 101, 1951 (1979).CrossRefGoogle Scholar
  57. 57.
    R. J. Day, S. E. Unger and R. G. Cooks, Anal. Chem. 52, 557A (1980).CrossRefGoogle Scholar
  58. 58.
    M. Barber, R. W. S. Bordoli, J. C. Vickerman, and J. Wolstenholme, Proc. 3rd Intern. Conf on solid Surfaces (P. Dobrozensky et al.,eds.), (1977), p. 983.Google Scholar
  59. 59.
    H. Hopster and C. R. Brundle, J. Vac. Sci. Technol. 16, 548 (1979).CrossRefGoogle Scholar
  60. 60.
    H. Niehus and E. G. Bauer, Electron Fisc. Apli. 17, 53 (1974).Google Scholar
  61. 61.
    B. Sakakini, A. J. Swift, J. C. Vickerman, C. Harendt, and K. Christmann, J. Chem. Soc., Faraday. Trans. I 83, 1975 (1987).Google Scholar
  62. 62.
    A. Shepard, R. W. Hewitt, W. E. Baitinger, G. J. Slusser, N. Winograd, G. L. Ott, and W. N. Delgass, Quantitative Surface Analysis of Materials (N. S. Mc Intyre, ed. ), American Society for Testing and Materials (1978), p. 187.CrossRefGoogle Scholar
  63. 63.
    W. N. Delgass, L. L. Lauderback, and D. G. Taylor, Chemistry and Physics of Solid Surfaces IV, Springer Series in Chemical Physics, Vol. 20, 51 (1981).CrossRefGoogle Scholar
  64. 64.
    C. R. Brundlej, R. J. Behm, P. Alnot, J. Grimblot, G. Polzonetti, H. Hopster, and K. Wandelt, Catalyst Characterization Science, ACS Symposium Series (M. L. Deviney and J. L. Gland, e4.s.), Vol. 288 (1985), p. 317, and references therein.Google Scholar
  65. 65.
    A. Brown and J. C. Vickerman, Surf. Interface Anal. 6, 1 (1984).CrossRefGoogle Scholar
  66. 66.
    X. Y. Zhu, S. Akhter, M. E. Castro, and J. M. White, Surf. Sci. 195, L145 (1988).CrossRefGoogle Scholar
  67. 67.
    a) K. M. Ogle and J. M. White, Surf. Sci. 139, 43 (1984). (b) P. L. Radloff and J. M. White, Acc. Chem. Res. 19, 287 (1986).Google Scholar
  68. 68.
    J. Hass, C. Plog, W. Maunz, K. Mittag, K. D. Gollmer, and B. Klopries, Proc 9th Intern. Cong. on Catalysis, Vol. 4, (M. J. Phillips and M. Terman eds. ), (1988), p. 1632.Google Scholar
  69. 69.
    P. Pomonis and J. C. Vickerman, J. Chem. Soc. Faraday Disc. 72, 247 (1981).CrossRefGoogle Scholar
  70. 70.
    E. De Paw and J. Marien, J. Phys. Chem. 85, 3551 (1981); Intern. J. Mass Spectrom. 46, 519 (1982).Google Scholar
  71. 71.
    S. Bourgeois, L. Gitton, and M. Perdereau, J. Chim. Physique 85, 413 (1988).Google Scholar
  72. 72.
    R. L. Chin and D. M. Hercules, J. Phys. Chem. 86, 360 (1982).CrossRefGoogle Scholar
  73. 73.
    L. Rodriguo, A. Adnot, P. C. Roberge, and S. Kaliaguine, J. Catal. 105, 175 (1987).CrossRefGoogle Scholar
  74. 74.
    S. Jaras, Appl. Catal. 2, 207 (1982).CrossRefGoogle Scholar
  75. 75.
    E. L. Kluger and D. P. Leta. J. Catal. 109, 387 (1988).CrossRefGoogle Scholar
  76. 76.
    A. K. Coverdale, P. F. Dearing, and A. Ellison, J. Chem. Soc., Chem. Comm., 567 (1983).Google Scholar
  77. 77.
    N. Takahashi, T. Mori; A. Furuta, S. Komai, A. Miyamoto, T. Hattori, and Y. Murakami, J. Catal. 110, 410 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. Grimblot
    • 1
  • M. Abon
    • 2
  1. 1.Laboratoire de Catalyse Hétérogène et Homogène, URA CNRSUniversité des Sciences et Technologies de LilleVilleneuve D’AscqFrance
  2. 2.Institut de Recherches sur la CatalyseCNRSVilleurbanneFrance

Personalised recommendations