The Utilization of Hyper-Thermal Neutrons for Neutron Capture Therapy

  • Yoshinori Sakurai
  • Tooru Kobayashi
  • Keiji Kanda


It is very important for Neutron Capture Therapy (NCT) to get a sufficient thermal neutron flux at the tumor part without exceeding the tolerance dose in normal tissue. In the current thermal neutron irradiation for NCT, it is difficult to obtain the sufficient thermal neutron flux in a patient with deep-seated tumor. That is because the thermal neutron flux decreases rapidly in human tissue, which mainly consists of water, through absorption and scatter by hydrogen atoms. The limit of treatable depth for tumor is dependent on some clinical conditions such as the concentration of NCT agent in tumor, the size of irradiation field etc.. From the clinical experience in Japan, the depth of 5 cm from the surface is a criterion for the application of the NCT with the thermal neutron irradiation at the present time.


Neutron Spectrum Boron Neutron Capture Therapy Thermal Neutron Flux Absorb Dose Rate Beryllium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.G.Fairchild, Development and dosimetry of an ‘epithermal’ neutron beam for possible use in neutron capture therapy, Phys. Med. Biol. 10: 491–504, 1965.CrossRefGoogle Scholar
  2. 2.
    F.J.Wheeler, D.K.Parsons, B.L.Rushton and D.W.Nigg, Epi-thermal neutron beam design for neutron capture therapy at the Power Burst Facility and the Brookhaven Medical Research Reactor, Nucl. Technol. 92: 106–117, 1990.Google Scholar
  3. 3.
    O.K.Harling, J.C.Yanch, J.R.Choi, G.R.Solares, R.D.Rogus, D.J.Moulin, L.S.Johnson, I.Olmez, S.Wirdzek, J.A.Bernard, R.G.Zamenhof, C.LNwanguma, D.E.Wazer, S.Saris, H.Madoc-Jones, C.B.Sledge and S.Shortkroff, Boron neutron capture therapy and radiation synovectomy research at the Massachusetts Institute of Technology Research Reactor, Nuel. Sci. Eng. 110: 330–348, 1992.Google Scholar
  4. 4.
    Y.Sakurai, T.Kobayashi and K.Kanda, A fundamental study on hyper-thermal neutrons for neutron capture therapy, Phys. Med. Biol. 39: 2217–2227, 1994 ).PubMedCrossRefGoogle Scholar
  5. 5.
    Y.Sakurai, T.Kobayashi and K.Kanda, Hyper-thermal neutron irradiation field for neutron capture therapy, Nucl. Instr. Meth. B 94: 433–440, 1994.CrossRefGoogle Scholar
  6. 6.
    J.F.Briesmeister, “MCNP - A Generated Monte Carlo Code for Neutron and Photon Transport - Version 3A”, LA-7936-M, Rev. 2, 1968.Google Scholar
  7. 7.
    W.S.Synder, M.J.Cook, E.S.Nasset, L.R.Karhausen, G.P.Howells and I.H.Tipon, “Report of the Task Group on Reference Man”, Pergamon Press, Oxford, 1975.Google Scholar
  8. 8.
    R.S.Caswell, J.J.Coyne and M.L.Randolph, “Kerma factors for neutron energies below 30 MeV”, Radiat. Res. 83: 217–254, 1980.CrossRefGoogle Scholar
  9. 9.
    J.H.Hubbell, “Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV”, NSRDS-NBS 29, 1969.Google Scholar
  10. 10.
    H.Fukuda, J.Hiratsuka, C.Honda, T.Kobayashi, K.Yoshino, H.Karashima, J.Takahashi, Y.Abe, K.Kanda, M.Ichihashi and Y.Mishima, “Boron neutron capture therapy of malignant melanoma using 10Bparaboronophenylalanine with special reference to evaluation of radiation dose and damage to the normal skin”, Radiat. Res. 138: 435–442, 1994.PubMedCrossRefGoogle Scholar
  11. 11.
    B.G.Douglas, “Implication of the quadratic cell survival curve and human skin radiation ‘tolerance dose’ on fractionation and superfractionation dose selection”, Int. J. Radiat. Oncol. Biol. Phys. 8:1135–1142, 1982.PubMedCrossRefGoogle Scholar
  12. 12.
    J.Overgaard, “The role of radiotherapy in recurrent and metastatic malignant melanoma: a clinical radiobiological study”, Int. J. Radiat. Oncol. Biol. Phys. 12: 867–872, 1986.PubMedCrossRefGoogle Scholar
  13. 13.
    P.Carter, “The LIDO hot neutron source experiment”, J. Nuel. Energy 25: 1 1–26, 1971.CrossRefGoogle Scholar
  14. 14.
    J.C.Young, J.A.Young, G.K.Houghton, G.D.Trimble and J.R.Beyster, “Neutron thermalization in zirconium hydride”, Nucl. Sci. Eng. 19: 209–214, 1964.CrossRefGoogle Scholar
  15. 15.
    B.G.Polosukhin, V.G.Chudinov, B.N.Goshchitskii, V.V.Gusev and M.G.Mesropov, “A hot-neutron source generator with a zirconium hydride rethermalizer”, Soy. At. Energy 47(6):412–413,1979.CrossRefGoogle Scholar
  16. 16.
    M.T.Simnad and J.B.Dee, “Equilibrium dissociation pressure and performance of pulsed U-Zrh fuels at elevated temperature”, General Atomics GA-9129, 1967.Google Scholar
  17. 17.
    M.T.Simnad, “The U-ZrH„ alloy: its properties and use in TRIGA fuel”. General Atomics E-117–833 1980.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Yoshinori Sakurai
    • 1
  • Tooru Kobayashi
    • 1
  • Keiji Kanda
    • 1
  1. 1.Research Reactor InstituteKyoto UniversityKumatoricho, Sennangun OsakaJapan

Personalised recommendations