Advertisement

The Biological Bases for the Design of Anticancer Agents

  • John A. Montgomery

Abstract

The problem of drug development for cancer chemotherapy is a difficult one, but it is clear that new and better drugs are needed if continuing advances are to be made in cancer treatment. Further improvements in surgery and radiation therapy will undoubtedly be made but these approaches are limited by the propensity of many solid tumors to metastasize to distant sites in the body; frequently the metastatic event occurs prior to diagnosis. Biological response modifiers may well become extremely useful adjuncts to surgery, radiation, and cytotoxic chemotherapy, but they seem unlikely to be curative alone when confronted with a large body burden of cancer cells.

Keywords

L1210 Cell Pyrimidine Nucleoside Hypoxanthine Phosphoribosyl Transferase L1210 Leukemia Deoxycytidine Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. M. Schabel, Jr., H. E. Skipper, M. W. Trader, W. R. Laster, Jr., T. H. Corbett, and D. P. Griswold, Jr., Concepts for Controlling Drug-Resistant Tumor Cells, in: “Breast Cancer, Experimental and Clinical Aspects,” H. T. Mouridsen and T. Palshof, eds., Pergamon Press, Oxford (1980).Google Scholar
  2. 2.
    J. A. Montgomery, Synthetic Chemicals, Methods Cancer Res. 16: 3 (1979).Google Scholar
  3. 3.
    J. A. Montgomery, The Nitrosoureas, in: “Chronicles of Drug Discovery,” Volume 2, J. S. Bindra and D. Lednicer, eds., John Wiley and Sons, New York (1983).Google Scholar
  4. 4.
    T. P. Johnston, G. S. McCaleb, and J. A. Montgomery, Synthesis of Chlorozotocin, the 2-Chloroethyl Analog of the Anticancer Antibiotic Streptozotocin, J. Med. Chem. 16: 104 (1978).Google Scholar
  5. 5.
    B. A. Silver, A. L. Barlock, M. E. Lippman, T. Anderson, and M. I. Fisher, Phase II Trial of Chlorozotocin in Malignant Melanoma, Breast Cancer, and Other Solid Tumors, Cancer Treat. Rep. 66: 1229 (1982).PubMedGoogle Scholar
  6. 6.
    J. A. Montgomery, Nitrosoureas, in: “Medicinal Chemistry VI,” M. A. Simkins, ed., Cotswold Press Ltd., Oxford (1979).Google Scholar
  7. 7.
    Y. F. Shealy, C. A. Krauth, R. F. Struck, and J. A. Montgomery, 2-Haloethylating Agents for Cancer Chemotherapy. 2-Haloethyl Sulfonates, J. Med. Chem. 26: 1168 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    E. S. Newlands, G. Blackledge, J. A. Slack, C. Goddard, C. J. Brindley, L. Holden, and M. F. Stevens, Phase I Clinical Trial of Mitozolomide, Cancer Treat. Rep. 67: 801 (1985).Google Scholar
  9. 9.
    L. H. Schmidt, R. Fradkin, R. Sullivan, and A. Flowers, Comparative Pharmacology of Alkylating Agents, Cancer Chemother. Rep. Suppl. 2, Pt. 1, 49: 1 (1965).Google Scholar
  10. 10.
    B. J. Bowdon, G. P. Wheeler, D. J. Adamson, and Y. F. Shealy, Chemical Properties and Biological Effects of 2-Haloethyl Sulfonates, Biochem. Pharm. 33: 2951 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    J. A. Montgomery, H. J. Thomas, R. W. Brockman, and G. P. Wheeler, Potential Inhibitors of Nucleotide Biosynthesis. 1. Nitrosoureidonucleosides. 2., J. Med. Chem. 24: 184 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. F. Shealy, C. A. Krauth, and W. R. Laster, Jr., 2-Chloroethyl (Methylsulfonyl)methanesulfonate and Related (Methylsulfonyl)methanesulfonates. Antineoplastic Activity In Vivo, J. Med. Chem. 27: 664 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    D. J. Dykes, S. D. Harrison, Jr., M. W. Trader, Y. F. Shealy, and D. P. Griswold, Jr., Antitumor Activity of 2-Chloroethyl (Methanesulfonyl)methanesulfonate (Chlomesone, NSC’38947, SoRI 6155) in Preclinical Solid Tumor and Leukemia and Drug-Resistant Leukemia Models, Proc. Am. Assoc. Cancer Res. 27: 234 (1986).Google Scholar
  14. 14.
    J. A. Alexander, M. A. Greer, G. P. Wheeler, and Y. F. Shealy, Alkaline Elution Studies of the Effect of SRI 6155, a New Chloroethylating Agent, on Cultured L1210 Cells Using Chlorozotocin and a Reference Compound, Proc. Am. Assoc. Cancer Res. 24: 244 (1983).Google Scholar
  15. 15.
    N. W. Gibson, J. Plowman, L. C. Erickson, and K. Kohn, Differential Cytotoxicity and DNA Crosslinking in Normal and Transformed Human Cells Exposed to 2-Chloroethyl Methylsulfonylmethanesulfonate (NSC-334947), Proc. Am. Assoc. Cancer Res. 25: 289 (1984).Google Scholar
  16. 16.
    J. A. Alexander, B. J. Bowdon, G. P. Wheeler, and Y. F. Shealy, DNA Damage in Cultured L1210 Cells by a New Agent-2-Chloroethyl (Methylsulfonyl)methanesulfonate, submitted for publication (1986).Google Scholar
  17. 17.
    B. J. Bowdon, G. P. Wheeler, L.M. Dansby, and R. Hain, DNA-Protein Cross-linking by Several Alkylating Agents, submitted for publication (1986).Google Scholar
  18. 18.
    G. A. LePage, L. S. Worth, and A. B. Kimball, Enhancement of the Antitumor Activity of Arabinofuranosyladenine by 2’-Deoxycoformycin, Cancer Res. 35: 1481 (1976).Google Scholar
  19. 19.
    F. M. Schabel, Jr., M. W. Trader, and W. R. Laster, Jr., Increased Therapeutic Activity of 9-ß-D-Arabinofuranosyladenine (AraA) Against Leukemia P388 and L1210 by an Adenosine Deaminase Inhibitor, Proc. Am. Assoc. Cancer Res. 17: 46 (1976).Google Scholar
  20. 20.
    J. A. Montgomery, Studies on the Biological Activity of Purine and Pyrimidine Analogs, Med. Res. Rev. 2: 271 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    R. W. Brockman, Y.-C. Cheng, F. M. Schabel, Jr., and J. A. Montgomery, Metabolism and Chemotherapeutic Activity of 9–13-D-Arabinofuranosyl2-fluoroadenine against Murine Leukemia L1210 and Evidence for Its Phosphorylation by Deoxycytidine Kinase, Cancer Res. 40: 3610 (1980).PubMedGoogle Scholar
  22. 22.
    J. R. Barrueco, D. M. Jacobsen, C.-H. Chang, R. W. Brockman, and F. M. Sirotnak, Higher Levels of Membrane Transport and Phosphorylation of 9-ß-D-Arabinofuranosyl-2-fluoroadenine in L1210 Cells than in Proliferative Epithelium from Mouse Small Intestine, Proc. Am. Assoc. Cancer Res. 27: 300 (1986).Google Scholar
  23. 23.
    A. Mittleman, R. Ashikari, T. Ahmed, V. Charuvanki, M. Friedland, and Z. Arlin, Phase II Trial of 2-Fluoro-AraAMP (Fludarabine Phosphate) in Patients (Pts) with Advanced Breast Cancer, Proc. Am. Assoc. Cancer Res. 26: 170 (1985).Google Scholar
  24. 24.
    R. P. Warrell, Jr., E. Berman, T. S. Gee, and S. J. Kempin, Phase I-II Trial of Fludarabine Phosphate in Acute Leukemia, Proc. Am. Assoc. Cancer Res. 26: 179 (1985).Google Scholar
  25. 25.
    R. W. Brockman, M. W. Trader, and D. P. Griswold, Jr., Increased Sensitivity of Adriamycin-Resistant P388 Murine Leukemia to Chemotherapy with 9–8-D-Arabinofuranosyl-2-fluoroadenine 5’-monophosphate (FaraAMP/NSC 312887), Proc. Am. Assoc. Cancer Res. 27: 297 (1986).Google Scholar
  26. 26.
    L. L. Bennett, Jr., and R. W. Brockman, unpublished data.Google Scholar
  27. 27.
    L. L. Bennett, Jr., C.-H. Chang, P. W. Allan, D. J. Adamson, L. M. Rose, R. W. Brockman, J. A. Secrist III, A. Shortnacy, and J. A. Montgomery, Metabolism and Metabolic Effects of Halopurine Nucleosides in Tumor Cells in Culture, Nucleosides and Nucleotides 4: 107 (1985).CrossRefGoogle Scholar
  28. 28.
    S. H. Lee, L. K. Thomas, F. M. Unger, R. Christian, and A. C. Sartorelli, Comparative Antineoplastic Activity Against P388 Leukemia of 9–8-D-Arabinofuranosyl) (araA) and 9–8-(2’-Azido-2’-deoxy-D-arabinofuranosyl)adenine (Arazide), Int. J. Cancer 27: 703 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    D. A. Carson, D. B. Wasson, and E. Beutler, Antileukemic and Immunosuppressive Activity of 2-Chloro-2’-deoxyadenosine, Proc. Natl. Acad. Sci. U.S.A. 81: 2232 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    D. A. Carson, D. B. Wasson, J. Kaye, B. Ullman, D. W. Martin, Jr., R. K. Robins, and J. A. Montgomery, Deoxycytidine Kinase-Mediated Toxicity of Deoxyadenosine Analogs Toward Malignant Human Lymphoblasts In Vitro and Toward Murine L1210 Leukemia In Vivo, Proc. Natl. Acad. Sci. U.S.A. 77: 6865 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    T. M. Savarese, D. L. Dexter, R. E. Parks, Jr., and J. A. Montgomery, 5’-Deoxy-5’-methylthioadenosine Phosphorylase-Il. Role of the Enzyme in the Metabolism and Antineoplastic Action of Adenine-Substituted Analogs of 5’-Deoxy-5’-methylthioadenosine, Biochem. Pharm. 32: 1907 (1983).PubMedCrossRefGoogle Scholar
  32. 32.
    T. M. Savarese, R. E. Parks, Jr., J. A. Secrist III, and J. A. Montgomery, Action of Novel 2-Fluoroadenine-substituted Analogs of 5’Deoxy-5’-methylthioadenosine, Proc. Am. Assoc. Cancer Res. 25: 1381 (1984).Google Scholar
  33. 33.
    T. M. Savarese, G. W. Crabtree, and R. E. Parks, Jr., Reaction of 5’-Deoxyadenosine and Related Analogs with the 5’-Methylthioadenosine Cleaving Enzyme of Sarcoma 180 Cells, A Possible Chemotherapeutic Target, Biochem. Pharm. 28: 2227 (1979).PubMedCrossRefGoogle Scholar
  34. 34.
    J. A. Montgomery, A. T. Shortnacy, and J. A. Secrist III, Synthesis and Biological Evaluation of 2-Fluoro-8-azaadenosine and Related Compounds, J. Med. Chem. 26: 1483 (1983).PubMedCrossRefGoogle Scholar
  35. 35.
    J. A. Secrist III, A. T. Shortnacy, and J. A. Montgomery, 2-Fluoroformycin and 2-Aminoformycin. Synthesis and Biological Activity, J. Med. Chem. 28: 1740 (1985)PubMedCrossRefGoogle Scholar
  36. 36.
    A. C. Sartorelli, J. H. Anderson, and B. A. Booth, Alterations in Purine Nucleotide Biosynthesis Induced by 2-Amino-6-chloropurine, Biochem. Pharm. 17: 37 (1964).CrossRefGoogle Scholar
  37. 37.
    L. L. Bennett, Jr., D. Smithers, L. M. Rose, D. J. Adamson, and R. W. Brockman, Mode of Action of 2-Amino-6-chloro-l-deazapurine, Biochem. Pharm. 33: 261 (1984).PubMedCrossRefGoogle Scholar
  38. 38.
    P. K. Chiang, H. H. Richards, and G. L. Cantoni, S-Adenosyl-L-homocysteine Hydrolase: Analogoues of S-Adenosyl-L-bromocysteine as Potential Inhibitors, Mol. Pharmacol. 13: 939 (1977).PubMedGoogle Scholar
  39. 39.
    L. L. Bennett, Jr., P. W. Allan, and D. L. Hill, Metabolic Studies with Carbocyclic Analogs of Purine Nucleosides, Mol. Pharmacol. 4: 208 (1968).PubMedGoogle Scholar
  40. 40.
    A. Guranowski, J. A. Montgomery, G. L. Cantoni, and P. K. Chiang, Adenosine Analogues as Substrates and Inhibitors of S-Adenosylhomocysteine Hydrolase, Biochemistry 20: 110 (1981).PubMedCrossRefGoogle Scholar
  41. 41.
    P. M. Ueland, Pharmacological and Biochemical Aspects of S-Adenosylhomocysteine and. S-adenosylhomocysteine Hydrolase, Pharmacol. Rev. 34: 223 (1982).PubMedGoogle Scholar
  42. 42.
    J. A. Montgomery, S. J. Clayton, H. J. Thomas, W. M. Shannon, G. Arnett, A. J. Bodner, I.-K. Kim, G. L. Cantoni, and P. K. Chiang, Carbocyclic Analogue of 3-Deazaadenosine: A Novel Antiviral Agent Using S-Adenosylhomocysteine Hydrolase as a Pharmacological Target, J. Med. Chem. 25: 626 (1982).PubMedCrossRefGoogle Scholar
  43. 43.
    E. DeClercq and J. A. Montgomery, Broad-Spectrum Antiviral Activity of the Carbocyclic Analog of 3-Deazaadenosine, Antiviral Res. 3: 17 (1983).CrossRefGoogle Scholar
  44. 44.
    W. M. Shannon, G. Arnett, L. Westbrook, Y. F. Shealy, C. A. O’Dell, and R. W. Brockman, Evaluation of Carbodine, the Carbocyclic Analog of Cytidine, and Related Carbocyclic Analogs of Pyrimidine Nucleosides for Antiviral Activity Against Human Influenza Type A Viruses, Antimicrobial Agents and Chemother. 20: 769 (1981).CrossRefGoogle Scholar
  45. 45.
    Y. F. Shealy, C. A. O’Dell, W. M. Shannon, and G. Arnett, Carbocyclic Analogues of 5-Substituted Uracil Nucleosides: Synthesis and Antiviral. Activity, J. Med. Chem. 28: 156 (1983).CrossRefGoogle Scholar
  46. 46.
    Y. F. Shealy, C. A. O’Dell, W. M. Shannon, and G. Arnett, Synthesis and Antiviral. Activity of Carbocyclic Analogues of 2’-Deoxyribofuranoside of 2-Amino-6-substituted-purines and 2-Amino-6-substituted-8-azapurines, J. Med. Chem. 27: 1416 (1984).PubMedCrossRefGoogle Scholar
  47. 47.
    W. M. Shannon, personal communication.Google Scholar
  48. 48.
    R. W. Brockman, S. C. Shaddix, L. M. Rose, R. D. Elliott, and J. A. Montgomery, Activity of 5’-[(Haloacetyl)amino]-5’-deoxy Derivatives of Pyrimidine Nucleosides in Tumor Cells in Culture and In Vivo, Proc. Am. Assoc. Cancer Res. 25: 360 (1984).Google Scholar
  49. 49.
    J. P. Neenan and W. Rohde, Inhibition of Thymidine Kinase from Walker 256 Carcinoma by Thymidine Analogs, J. Med. Chem. 16: 580 (1973).PubMedCrossRefGoogle Scholar
  50. 50.
    Y.-C. Cheng and W. H. Prusoff, Mouse Ascites Sarcoma 180 Deoxythymidine Kinase. General Properties and Inhibition Studies, Biochemistry 13: 1179 (1974).PubMedCrossRefGoogle Scholar
  51. 51.
    B. P. Sani, A. Vaid, J. G. Cory, R. W. Brockman, R. D. Elliott, and J. A. Montgomery, 5’-Haloacetamido-5’-deoxythymidines: Novel Inhibitors of Thymidylate Synthase, Proc. Am. Assoc. Cancer Res. 27: 295 (1986).Google Scholar
  52. 52.
    R. D. Elliott, R. W. Brockman, and. J. A. Montgomery, Reactive 5’-Substituted Thymidine Derivatives as Potential Inhibitors of Nucleotide Biosynthesis, J. Med. Chem., in press (1986).Google Scholar
  53. 53.
    E. L. White, S. C. Shaddix, R. W. Brockman, and L. L. Bennett, Jr., Comparison of the Actions of 9- -D-Arabinofuranosyl-2-fluoroadenine and 9- -D-Arabinofuranosyladenine on Target Enzymes from Mouse Tumor Cells, Cancer Res. 42: 2260 (1982).PubMedGoogle Scholar
  54. 54.
    M-C. Huang, K. Hatfield, A. W. Roetker, J. A. Montgomery, and R. L. Blakley, Analogs of 2’-Deoxyadenosine: Facile Enzymatic Preparation and Growth Inhibitory Effects on Human Cell Lines, Biochem. Pharm. 30: 2663 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • John A. Montgomery
    • 1
  1. 1.Kettering-Meyer LaboratorySouthern Research InstituteBirminghamUSA

Personalised recommendations