The Plasma Membrane Calcium Pump

  • Ernesto Carafoli
  • Danilo Guerini


The plasma membrane Ca2+ ATPase has been first described in erythrocytes by Schatzmann (1966) and is now known to be present in all cells of higher eucaryotes. The pump belongs to the family of P-type ATPases (Pedersen & Carafoli, 1987a; Pedersen & Carafoli, 1987b), i.e., it forms an aspartyl-phosphate during the reaction cycle. It is a target of calmodulin (Gopinath & Vincenzi, 1977; Jarret & Penniston, 1977), which increases its affinity for Ca2+ by one order of magnitude, to a Kd of about 0.5 µM. The pump, however, can also be activated by a number of alternative treatments: the exposure to acidic phospholipids (Ronner et al., 1977; Niggli et al., 1981a), a controlled proteolytic treatment (Enyedi et al., 1980; Caroni & Carafoli, 1981), phosphorylations by two protein kinases, (protein kinase A (PKA) (Caroni & Carafoli, 1981) and protein kinase C (PKC) (Wright et al., 1993; Furukawa et al., 1989)), and an oligomerization process (Kosk-Kosicka & Bzdega, 1988). By general consensus, calmodulin is considered the natural modulator of the pump, but it is well to remember that the pump in the membrane is surrounded by amounts of acidic phospholipids which are, in principle, sufficient for half-maximal activation (Niggli et al., 1981b). The interaction with calmodulin has been exploited to purify the pump using calmodulin columns (Niggli et al., 1981 b). The purified enzyme is active, and can be reconstituted in liposomes with optimal Ca2+ transport efficiency (Niggli, et al., 1981c): at variance with the Ca2+ pump of sarcoplasmic reticulum, whose Ca2+/ATP molar transport stoichiometry is 2.0, the pump transports only one Ca2+ per ATP hydrolyzed.


Sarcoplasmic Reticulum Transmembrane Domain Membrane Target Calcium Pump Acidic Phospholipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balls, R., Gallo R., and Kingsbury, A. (1988). Effect of depolarization on the maturation of cerebellar granule cells in culture. Dev. Brain Res. 40, 269–276.Google Scholar
  2. Brodin, P., Falchetto, R., Vorherr, T., and Carafoli, E. (1992) identification of two domains which mediate the binding of activating phospholipids to the plasma membrane Cat’ pump. Eur. J. Biochem. 204: 939–946. Carafoli, E., (199Ia) The calcium pump of the plasma membrane. Physiol Rev. 71: I29–153.Google Scholar
  3. Carafoli, E., (1991b) The calcium pump of the plasma membrane. J. Biol. Chem. 267: 2115–2118.Google Scholar
  4. Carafoli, E., (1994) Plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J. 8: 993–1007.PubMedGoogle Scholar
  5. Carafoli, E., and Guerini, D. (1993). Molecular and cellular biology of plasma membrane Ca“’ ATPase. Trends in Cardiovasc. Med. 3: 177–184.Google Scholar
  6. Carafoli, E., Garcia-Martin, E., and Guerini, D., (1996) The plasma membrane calcium pump: recent develop¬ments and future perspectives. Experientia 52: 1091–1100.PubMedCrossRefGoogle Scholar
  7. Caroni, P., and Carafoli, E. (1981). Regulation of Ca“ pumping ATPase of heart sarcolemma by a phosphoryla-tion/dephosphorylation process. J. Biol. Chem. 256: 9371–9373..Google Scholar
  8. Clarke, D.M., Loo, T.W., Inesi, G., and Mac Lennan, D.H., (1989). Location of the affinitiy Ca’’-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca“-ATPase. Nature 239: 476–478.CrossRefGoogle Scholar
  9. Enyedi, A., Sarkadi, B., Szasz, I., Bot, B., and Gardos, G. (1980). Molecular properties of the red cell calcium pump. H. Effects of proteolysis, proteolytic digestion and drugs on the calcium-induced phosphorylation by ATP in inside/out red cell membrane vesicles. Cell Calcium 1: 299–310.Google Scholar
  10. Falchetto, R., Vorherr, T., Brunner, J., and Carafoli, E. (1991). The plasma membrane Ca“ pump contains a site that interacts with its calmodulin-binding domain. J. Biol. Chem. 266: 2930–2936.Google Scholar
  11. Falchetto, R., Vorherr, T., and Carafoli, E. (1992). The calmodulin-binding site of the plasma membrane Ca“ pump interacts with the transduction domain of the enzyme. Protein. Sci. 1: 1613–1621.Google Scholar
  12. Foletti, D., Guerini, D., and Carafoli, E. (1995). Subcellular targeting of the endoplasmic reticulum and plasma membrane Ca“ pumps: a study using recombinant chimeras. FASEB J. 9: 670–680.PubMedGoogle Scholar
  13. Furukawa, K.l., Tawada, Y., and Shigekawa, M. (1989). Protein kinase C activation stimulates plasma membrane Ca`’ pump in cultured vascular smooth muscle cells. J. Biol. Chem. 264: 4844–4849.Google Scholar
  14. Gallo, V., Kingsbury, A., Balàs, R., and Jorgensen, O.S. (1987). The role of depolarization in the survival and dif-ferentiation of cerebellar granule cells in culture. J. Neurosci. 7, 2203–2213.PubMedGoogle Scholar
  15. Gopinath, and Vincenzi, F. (1977). Phosphodiesterase protein activator mimics red blood cell cytoplasmatic acti¬vator of the (Ca“ + Mg’) ATPase. Biochem. Biophys. Res. Commun. 77: 1203–1209.Google Scholar
  16. Guerini, D., Foletti, D., Vellani, F., and Carafoli, E. (1996) Mutation of conserved residues in transmembrane do¬mains 4, 6, and 8 causes loss of Ca“ transport by the plasma membrane Ca2+ pump. Biochemistry 35: 3290–3296.Google Scholar
  17. Heim, R., Iwata, T., Zvaritch, E., Adamo, H.P., Rütishauser, B., Strehler, E.E., Guerini, D., and Carafoli, E. (1992). Expression, purification and properties of the plasma membrane Ca“ pump and of its N-terminally trun¬cated 105-kDa fragment. J. Biol. Chem. 267: 24476–24484.Google Scholar
  18. Hilfiker, FI., Guerini, D., and Carafoli, E. (1994). Cloning and expression of isoform 2 of the human plasma mem¬brane Ca“ ATPase. J. Biol Chem. 268: 19717–19725.Google Scholar
  19. Hofmann, F., James, P., Vorherr, T., and Carafoli, E. (1993) The C- terminal domain of the plasma membrane Ca2+ pump contains 3 high affinity Ca“ binding sites. J. Biol. Chem. 268: 10252–10259.Google Scholar
  20. James, R, Vorherr, T., Krebs, J., Morelli, A., Castello, G., Mc Cormick, D.J., De Flora, A., and Carafoli, E. (1989). Modulation of erythrocyte Ca“ ATPase by selective calpain cleavage of the calmodulin binding domain. J. Biol. Chem. 264: 8289–8296.Google Scholar
  21. Jarrett, H.W., and Penniston J.T. (1977). Partial purification of the (Ca2+ + Mg“ -ATPase activator from human erythrocytes: its similarity to the activator of 3’-5’ cyclic nucleotide phosphodiesterase. Biochem. Biophys. Res. Commun. 77: 1210–1216.Google Scholar
  22. Keeton, T. P., Burk, S.E., and Shull, G.E (1993). Alternative splicing of exons encoding the calmodulin-binding domains and C-termini of plasma membrane Ca“-ATPase isoforms I. 2, 3 and 4. J.Biol.Chem. 268, 2740–2748.Google Scholar
  23. Kosk-Kosicka, D., and Bzdega, T. (1988). Activation of the erythrocyte Ca“-ATPase either by self-association or interaction with calmodulin. J. Biol. Chem. 263: 22–27.Google Scholar
  24. Machamer, C.E. (1993) Targeting and retention of Golgi membrane proteins. Curr. Opin. Cell Biol. 5:606–617. Monteith, G.R., and Roufogalis, B.D. (1995) The plasma membrane calcium pump–a physiological perspective on its regulation. Cell Calcium 18: 459–476.Google Scholar
  25. Niggli, V., Adunyah, E.S., and Carafoli, E. (1981a). Acidic phospholipids, unsaturated fatty acids, and limited pro¬teolysis mimic the effect of calmodulin on the purified erythrocyte Ca“-ATPase. J. Biol. Chem. 256: 8588–8592.Google Scholar
  26. Niggli, V., Adunyah, E.S., Penniston, J.T., and Carafoli, E. (1981b). Purified (Ca“ + Mg`’)-ATPase of the erythrocyte membrane: reconstitution and effect of calmodulin and phospholipids. J. Biol. Chem. 256: 395–401. Niggli, V., Adunyah, E.S., Penniston, J.T., and Carafoli, E. (1981c). Purification of the (Ca`’ + Mg”)-ATPase fromGoogle Scholar
  27. human erythrocyte membranes using a calmodulin affinity column. J. Biol. Chem. 254: 9955–9958. Pedersen, P.L., and Carafoli. E. (1987a). Ion motive ATPases I: ubiquity, properties, and significance to cell function. Trends Biochem. Sci. 12: 146–150.Google Scholar
  28. Pedersen, P.L., and Carafoli, E. (1987b). Ion motive ATPases H: energy-coupling and work output. Trends Bio¬chem. Sci. 12: 186–189.Google Scholar
  29. Penniston, J.T., and Enyedi, A. (1994) Plasma membrane Ca2+ pump: recent developments. Cell Physiol. and Bio¬chem. 4: 148–159.CrossRefGoogle Scholar
  30. Rega, A.F., and Garrahan, P.J. (1986) The Ca’-’ pump of plasma membranes, CRC Press. Inc., Boca Raton. FL, USA.Google Scholar
  31. Ronner, P., Gazzotti, P., and Carafoli, E. (1977). A lipid requirement for the (Ca“ Mg”)-activated ATPase oferyth¬rocyte membranes. Arch. Biochem. Biophys. 179: 578–583.Google Scholar
  32. Schatzmann, H.J. (1982). The calcium pump of erythrocytes and other animal cells. in Membrane Transport of Calcium, edited by E. Carafoli. Academic Press, London: 41–108.Google Scholar
  33. Schatzmann, H.J. (1996). ATP-dependent Ca’’ extrusion from human red cells. Experientia, 22: 364–368.CrossRefGoogle Scholar
  34. Stauffer, T. P., Hilfiker, H., Carafoli, E., and Strehler, E.E. (1993). Quantitative analysis of alternative splicing options for human plasma membrane calcium pump genes. J. Biol. Chem. 268: 25993–26003.Google Scholar
  35. Stauffer, T., Guerini, D., and Carafoli E. (1995). Tissue distribution of the four gene products of the plasma membrane Ca“ pump. J.Biol.Chem. 270, 12184–12190.PubMedCrossRefGoogle Scholar
  36. Wright, L.C., Chen, S., and Roufogalis, B.D. (1993). Regulation of the activity and phosphorylation of the plasma membrane Ca“ATPase by protein kinase C in intact human erythrocytes. Arch. Biochem. Biophys. 306, 277–284.Google Scholar
  37. Zvaritch, E., Vellani F., Guerini, D., and Carafoli, E. (1995). A signal for endoplasmic reticulum retention located at the carboxyl terminus of the plasma membrane Ca“-ATPase isoform 4CI. J.Biol. Chem. 270: 2679–2688.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ernesto Carafoli
    • 1
  • Danilo Guerini
    • 1
  1. 1.Institute of BiochemistryFederal Institute of Technology (ETH)ZurichSwitzerland

Personalised recommendations