Calcium Concentration Microdomains

  • Rodolfo Llinás
  • Mutsuyuki Sugimori
  • Robert Silver


A question often posed in the field of neuroscience is that of the mechanism by which extracellular calcium releases transmitter from the presynaptic terminal (Katz & Miledi, 1965). Results from two decades ago, indicated that spatially restricted zones of transient high calcium concentration in the neuronal cytosol, could be produced as a result of the opening of voltage gated calcium channels in the plasmalemma (Llinás, 1977). This hypothesis together with the finding that the latency for calcium activation of transmitter release was in the range of 200 msec, suggests that calcium, at the presynaptic active zone, acts at a location very close to the release site and that the calcium channels themselves might be part of this active zone (Llinés, 1977).


Active Zone Transmitter Release Presynaptic Terminal Voltage Gated Calcium Channel Presynaptic Spike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chad, J.E. & Eckert, R. (1984). Calcium domains associated with individual channels may account for anomalous voltage relation of Ca-dependent response. Biophys. J. 45: 993–1000.PubMedCrossRefGoogle Scholar
  2. Fogelson, A.L. & Zucker, R.S. (1985). Presynaptic calcium diffusion from various arrays of single channels. Implication for transmitter release and synaptic facilitation. Biophys. J. Vol. 48: 1003–1017.Google Scholar
  3. Katz, B. & Miledi, R. (1965). The measurement of synaptic delay and the time course of acetylcholine release at the neuromuscular junction. Proc. Royal Soc. Lond. ( Biol.) Vol. 161: 483–495.CrossRefGoogle Scholar
  4. Llinâs, R. (1977). Calcium and transmitter release in squid synapse. In: Society for Neuroscience Symposia, eds. W.M. Cowan and J.A. Ferendelfi, Bethesda: Society for Neuroscience, 2: 139–160.Google Scholar
  5. Llinâs, R., Steinberg, I.Z. & Walton, K. (1981a). Presynaptic calcium currents in squid giant synapse. Biophys. J. 33: 289–322.PubMedCrossRefGoogle Scholar
  6. Llinâs, R., Steinberg, I.Z. & Walton, K. (1981b). Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys. J. 33: 323–352.PubMedCrossRefGoogle Scholar
  7. Llinâs, R., Sugimori, M., Lin, J-W., Leopold, P. & Brady, S. (1989). ATP-dependent directional movement of rat synaptic vesicles injected into the presynaptic terminal of squid giant synapse. Proc. Natl. Acad. Sci. USA, 86: 5656–5660.PubMedCrossRefGoogle Scholar
  8. Llinâs, R., Sugimori, M. & Silver, R.B. (1992). Microdomains of high calcium concentration in a presynaptic terminal. Science, 256: 677–679.PubMedCrossRefGoogle Scholar
  9. Llinzís, R.. Sugimori, M. & Silver, R.B. (1995). The concept of calcium concentration microdomains in synaptic transmission. Neuropharmacology, 34: 1443–1451.Google Scholar
  10. Llintis, R., Sugimori, M. & Silver, R.B. (1995). Time resolved calcium microdomains and synaptic transmission. J. Physiology (Paris) 89: 77–81.CrossRefGoogle Scholar
  11. Llinâs, R., Sugimori, M. & Simon, S.M. (1982). Transmission by presynaptic spike-like depolarization in the squid giant synapse. Proc. Natl. Acad. Sci. USA 79: 2415–2419.PubMedCrossRefGoogle Scholar
  12. Monck, J.R., Robinson, I.M., Escobar, A.L., Vergara, J.L. & Fernandez, M. (1994). Pulsed laser imaging of rapid Ca“ gradients in excitable cells. Biophys. J. 67: 505–514.PubMedCrossRefGoogle Scholar
  13. Perin, M.S., Fried, V.A., Mignery, G., Jahn, R. & Südhof, T. C. (1990). Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345: 260–263.Google Scholar
  14. Pumplin, D.W. & Reese, T.W. (1978). Membrane ultrastructure of the giant synapse of the squidLoligo pealei. Neuroscience 3: 685–696.PubMedCrossRefGoogle Scholar
  15. Pumplin, D.W., Reese, T.W. & Llinâs, R. (1981). Are the presynaptic membrane particles the calcium channels? Proc. Natl. Acad. Sci. ( USA ) 78: 7210–7218.Google Scholar
  16. Silver, R.B., Sugimori, M., Lang, E.J. & Llinâs, R. (1994). Time resolved imaging of Ca“-dependent acquorin luminescence of microdomains and QEDs in synaptic terminals. Biol. Bull. 187: 293–299.PubMedCrossRefGoogle Scholar
  17. Simon, S. & Llinâs, R. (1985). Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys. J. 48:485–498,.Google Scholar
  18. Stanley, E.F. (1993). Single calcium channels and acetylcholine release at a presynaptic nerve terminal. Neuron 11: 1007–1011.PubMedCrossRefGoogle Scholar
  19. Sugimori, M., Lang, E.J., Silver, R.B. & Ulnas, R. (1994). High-resolution measurement of the time course ofcal-cium-concentration microdomains at squid presynaptic terminals. Biol. Bull. 187: 300–303.PubMedCrossRefGoogle Scholar
  20. Usowicz,M.M., Sugimori, M., Cherksey, B. & Hinds, R. (1992). P-type calcium channels in the somata and den-drites of adult cerebellar Purkinje cells. Neuron 9: 1185–1199.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Rodolfo Llinás
    • 1
  • Mutsuyuki Sugimori
    • 1
  • Robert Silver
    • 2
  1. 1.Department of Physiology and NeurosciencesNew York University Medical CenterNew YorkUSA
  2. 2.Section and Department of PhysiologyCornell UniversityIthacaUSA

Personalised recommendations