Features and Functions of Human Microglia Cells

  • Fulvia Gremo
  • Valeria Sogos
  • Maria Grazia Ennas
  • Alessandra Meloni
  • Tiziana Persichini
  • Marco Colasanti
  • Giuliana Maria Lauro
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 429)


Microglia represent a population of resident cells of the central nervous system (CNS) which have attracted much interest because of their multiple functions. Two principal forms of microglia have been described. “Ameboid” cells, also referred as gitter cells or reactive microglia, which appear during the embryonal period and after brain lesions, are morphologically similar to macrophages (Giulian and Baker, 1986; Giulian, 1987). The second form of microglia, the “ramified” cells (Ling, 1981), appear during the late postnatal period and persist through adult life (Murabe and Sano, 1983). Although the nature of the relationship between ameboid and ramified microglia is controversial, ramified microglia are generally viewed as functional quiescent microglia that lack monocytic properties, but acquire ameboid features and reactivity in the presence of tissue damage (del Rio Hortega, 1919; 1932; Oemichen, 1983).


Microglia Cell Platelet Activate Factor Basic Fibroblast Growth Factor High Affinity Site Human Fetal Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama H. (1994) Inflammatory response in Alzheimer’s disease. Tohoku J. Exp. Med. 174, 295–303Google Scholar
  2. Anderson K.J., Dam D. Lee S., Cotman C.W. (1988) Basic fibroblast growth factor prevents death of lesioned cholinergic neurons in vivo. Nature 332, 360–361Google Scholar
  3. Araujo D.M., Cotman C.W. (1992) Basic FGF in astroglial, microglial, and neuronal cultures: characterisation of binding sites and modulation of release by lymphokines and trophic factors. J. Neurosci. 12, 1668–1678PubMedGoogle Scholar
  4. Balaci L., Presta M., Ennas M.G., Dell’Era P., Sogos V., Lauro G., Gremo F. (1994) Differential expression of the fibro blast-growth factor receptors by human neurons. astrocytes and microglia. NeuroReport 6, 197–200CrossRefGoogle Scholar
  5. Basilico C., Moscatelli D. (1992) The FGF family of growth factors and oncogenes. Adv. Cancer Res. 59, 115–165Google Scholar
  6. Bito H., Nakamura M., Honda Z., lzumi T., lwatsubo T., Seyama Y., Ogura A., Kudo Y., Shimizumi T. (1992) Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Cat` in hippocampal neurons. Neuron 9, 285–294PubMedCrossRefGoogle Scholar
  7. Braquet P., Tougui L., Shern T.-Y. Vargaftig B.B. (1987) Perspectives in platelet-activating factor research. Pharmacol. Rev. 39, 97–145Google Scholar
  8. Brochet B., Orogogozo J.M., Dartigues J.F., Henry P., Loiseau P. (1992) Pilot study of Ginkogolide B, a PAFacether specific inhibitor in the treatment of acute outbreaks of multiple sclerosis. Rev. Neurol. Paris 148, 299–301Google Scholar
  9. Bussolino F., Gremo F., Tetta C., Pescarmona G.P., Camuss G. (1986) Production of platelet-activating factor by chick retina. J. Biol. Chem. 261, 16502–6508Google Scholar
  10. Bussolino F., Soldi R., Arese M., Jaranowska A., Sogos V. Gremo F. (1994) Multiple roles of platelet activating factor in the nervous system. Neurochem. Res., in pressGoogle Scholar
  11. Cabellos C., Macintyre D.E., Forrest M., Burroughs M., Prasad S., Tuomanen E. (1992) Differring roles for platelet activating factor during inflammation of the lung and subarachnoid space. The special case of Streptococcus pneumoniae.J. Clin. Invest. 90, 612–618Google Scholar
  12. Carpenter A.F., Carpenter P.W., Markesbery W.R. (1993) Morphometric analysis of microglia in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 52, 601–608Google Scholar
  13. Chao C.C., Hu S., Sheng W.S., Peterson P.K. (1995) Tumor necrosis factor-alpha production by human fetal microglial regulation by other cytokines. Dev. Neurosci. 17, 97–105Google Scholar
  14. Colasanti M., Persichini T., Di Pucchio T., Gremo F., Lauro G.M. (1995a) Human ramified microglial cells produce nitric oxide upon Escherichia coli lipopolysaccharide and tumor necrosis factor a stimulation. Neuro-sci. Lett. 200, 144–146Google Scholar
  15. Colandanti N., Di Pucchio T., Persichini T., Sogos V., Presta M., Lauro G.M. (19956) Inhibition of inducible nitric oxide synthase mRNA expression by basic fibroblast growth factor in human microglial cells. Neurosci. Lett. 196, 45–48Google Scholar
  16. Colasanti N., Persichini T. Menegazzi M., Mariotto S., Giordano E., Caldarera C.M., Sogos V., Lauro G.M., Suzuki H. (1995e) Induction of nitric oxide synthase mRNA expression. Suppression by exogenous nitric oxide. J. Biol. Chem. 270, 26731–26733Google Scholar
  17. Dell’Era P., Ennas M.G., Torelli S., Gremo F., Ragnotti G., Presta M. (1990) Basic fibroblast growth factor in human fetal brain. In Neurology and Neurobiology in Regulation of Gene Expression in the Nervous System (eds Giuffrida Stella A.M., de Vellis J., Perez-Polo J.R.) New York, Wiley-Liss, pp. 425–427Google Scholar
  18. del Rio Hortega P. (1919) El tercer elemento de los centros nerviosos. I La microglia en estado normal. II Intervencion de la microglia en los procesos patologicos. III Maturaleza propable de la microglia. Biol. Soc. Esp. Biol. 9, 69–120Google Scholar
  19. del Rio Hortega P. (1932) Microglia. In Penfield’s Cytology and Cellular Pathology of the Nervous System. (ed. Penfield W ). pp. 483–534, Harbert and Row, New YorkGoogle Scholar
  20. Denis M. (1994) Human monocytes/macrophagtes: NO or no NO ? J. Leukoc. Biol. 55, 682–684PubMedGoogle Scholar
  21. Dhib-Jalbut S., Hoffman P.M., Yamabe T., Sun D., Xia J., Eisenber Bergery G., Ruscetti F.W. (1994) Extracellular human T-cell lymphotropic virus type I Tax protein induces cytokine production in adult human microglial cells. Ann. Neurol. 36, 787–790Google Scholar
  22. Di Pucchio T., Ennas M.G., Presta M., Lauro G.M. (1996) Basic fibroblast growth factor modulates in vitro differentiation of human fetal microglia. Neuroreport 7, 2813–1817CrossRefGoogle Scholar
  23. Dolman C.L. (1985) Microglia. In Textbook of Neurophatology (eds Davis R.L. and Robertson ), Baltimora, William and WilkinsGoogle Scholar
  24. Ennas M.G., Cocchia D., Silvetti E., Sogos V., Riva A. Torelli S., Gremo F. (1992) Immunocompetent cell markers in human fetal astrocytes and neurons in culture. J. Neurosci. Res. 32, 424–436Google Scholar
  25. Fedoroff S., Hao C. (1991) Origin of microglia and their regulation by astroglia. In Plasticity and Regeneration of the Nervous System (ed. Timiras P.S. et al.) Plenum Press New York, pp. 135–142Google Scholar
  26. Ferrer I., Bernet E., Soriano E., Del Rio T., Fonseca M. (1990) Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory phagocytes. Neuroscience 39, 451–458PubMedCrossRefGoogle Scholar
  27. Florkiewicz R.Z., Baird A., Gonzales A.M. (1991) Multiple forms of bFGF: differential nuclear and cell surface localization. Growth Factors 4, 265–275PubMedCrossRefGoogle Scholar
  28. Frei K., Siepl C., Groscurth P., Bodmer S., Sewerdel C., Fontana A. (1987) Antigen presentation and tutor cytotoxicity by interferon-gamma-treated microglia cells. Eur. J. lmmunol. 17, 1271–1278Google Scholar
  29. Frei K., Fontana A. (1989a) Immunoregulatory functions of astrocytes and microglial cells within the Central Nervous System, in Neuroimmune Networks: Physiology and Diseases, pp. 127–130, Alan R. Liss Inc., New YorkGoogle Scholar
  30. Frei K., Malipiero U., Leist T., Sinkernagel R., Schwab M., Fontana A. (1989b) On the cellular source and function of interleukin-6 produced in the Central nervous system in viral diseases. Eur. J. lmmunol. 19, 689–694Google Scholar
  31. Frerichs K.U., Feuerstein G.Z. (1990) Platelet-activating factor-a key mediator in neuroinjury? Cerebrovasc. Brain. Metab. Rev. 2, 148–160Google Scholar
  32. Fujita S., Tsuchihashi Y., Kitamura T. (1981) Origin, morphology and functions ofthe microglia. Progr. Clin. Biol. Res. 59, 141–169Google Scholar
  33. Gehrmann J., Banati R.B., Kreutzberg G.W. (1993) Microglia in the immune surveillance ofthe brain: human microglia constitutively express HLA-DR molecules. J. Neuroimmunol. 48, 189–198PubMedCrossRefGoogle Scholar
  34. Gilad G.M., Gilad V.H. (1995) Chemotaxis and accumulation of nerve growth factor by microglia macrophages. J. Neurosci. Res. 41, 594–602Google Scholar
  35. Giulian D., Baker T.J. (1986) Characterisation of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6, 2163–2178PubMedGoogle Scholar
  36. Giulian D. (1987) Ameboid microglia as effectors of inflammation in the central nervous system. J. Neurosci. Res. 18, 155–171PubMedCrossRefGoogle Scholar
  37. Hanahan D.J. (1986) Platelet activating-factor. A biologically active phosphoglyceride. Annu. Rev. Biochem. 55, 483–509PubMedCrossRefGoogle Scholar
  38. Giulian D., Vaca K., Noonan C.A. (1990) Secretion of enurotoxins by mononuclear phagocytes infected with HIV-I. Science 250: 1593–1596PubMedCrossRefGoogle Scholar
  39. Giulian D., Li J., Bartel S., Broker J., Li X., and Kirkpatrick J.B. (1995) Cell surface morphology identifies micro-glia as a distinct class of mononuclear phagocyte. J. Neurosci. 15, 7712–7726PubMedGoogle Scholar
  40. Goldring C.E.P., Narayanan R., Lagadec P. and Jeannin J.F. (1995) Transcriptional inhibition of the inducible nitric oxide synthase gene by competitive binding of NF-kappa B/Rel proteins. Biochem. Biophis. Res. Commun. 209, 73–79Google Scholar
  41. Hassan N.F., Campbell D.E., Rifat S., Douglas S.D. (1991) Isolation and characterisation of human fetal brain-derived microglia in “in vitro” culture. Neuroscience 41, 149–158PubMedCrossRefGoogle Scholar
  42. Hetier E., Ayala J., Denefle P., Brousseau A., Rouget P., Mallat M., Prochiantz A. (1988) Brain macrophages synthesise interleukin-1 and interleukin-1 mRNA in vitro. J. Neurosci. Res. 21. 391–397Google Scholar
  43. Hetier E., Ayala J., Bousseau A., Denefle P. and Prochiantz A. (1990) Amoeboid microglial cells and not astrocytes synthesize TNF-a in swiss mouse brain cell cultures. Fur. J. Neurosci. 2, 762–768Google Scholar
  44. Hume D.A., Perry W.H., Gordon S. (1983) Immunohistochemical localisation of the macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglia cells to form of regular array in the plexiform layers. J. Cell Biol. 97, 253–257PubMedCrossRefGoogle Scholar
  45. Hutchins K.D., Dicksons D.W., Rashbaum W.K., Lyman W.D. (1990) Localisation of morphologically distinct microglial populations in the developing human fetal brain: implications for ontogeny. Dev. Brain Res. 55, 95–102Google Scholar
  46. Johnson D.E., Williams L.T. (1993) Structural and functional diversity in FGF receptor multigene family. Adv. Cancer Res. 60, 1–41Google Scholar
  47. Junier M.P., Tiberghien C., Rougeot C., Fafeur V., Dray F. (1988) Inhibitory effect of platelet-activating factor ( PAF) on luteinizong hormone-releasing hormone and somatostatin release form rat median eminence in vitro correlated with the characterization of specific PAF receptor sites in rat hypothalamus. Endocrinology 123, 72–80Google Scholar
  48. Killackey H.P. (1984) Glia and the elimination of transient cortical projections. Trends Neurosci. 7, 225–226CrossRefGoogle Scholar
  49. Kornechi E., Ehrlich Y.H. (1988) Neuroregulatory and neuropathological actions of the ether-phospholipid platelet-activating factor. Science 240, 1792–1794CrossRefGoogle Scholar
  50. Kochanek P.M., Nemoto E.M., Melick J.A., Evans R.W. and Burke (1988) Cerebrovascular and cerebrometabolic effects of intracarotid infused platelet-activating factor in rats. J. Cereb. Blood Flow Metab. 8, 546–551Google Scholar
  51. Lauro G.M., Babiloni D., Apollony C., Buttarelli F., Ennas M.G., Torelli S., Gremo F. (1992) Antigen processing and presenting cells in neuroimmunological network activation and maintenance. In “Recent advances in Cellular and Molecular Biology”, Wegmann and Wegmann Eds., Peeters Press. Lovanio, vol. I, pp. 107–114Google Scholar
  52. Lauro G.M., Babiloni D., Buttarelli F.R., Stare G., Cocchia D., Ennas M.G., Sogos V. and Greno F. (1995) Human microglia cultures: a powerful model to study their origin and immunoreacrive capacity. Int. J. Dev. Neuro-sci 13, 739–752Google Scholar
  53. Lee S.C., Liu W., Brosnan C.F., Dickson D.W. (1992) Characterisation of primary human fetal dissociated central nervous system cultures with an emphasis on microglia. Lab. Invest. 67, 465–476Google Scholar
  54. Lee S.C., Liu W., Dickson D.W., Brosnan C.F., and Berman J.W. (1993a) Cytokine production by human fetal microglia and astrocytes. J. Immunol. 150, 2659–2678PubMedGoogle Scholar
  55. Lee S.C., Dickson D.W., Liu W. and Brosnam C.F. (1993b) Induction of nitric oxide synthase activity in human astrocytes by interleukin-1(3 and interferon-gamma. J. Neuroimmunol. 46, 19–24PubMedCrossRefGoogle Scholar
  56. Lee S.C., Liu W., Brosnan C.F., Dickson D.W. (1994) GM-CSF promotes proliferation of human fetal and adult microglia primary cultures. Glia 12, 309–318PubMedCrossRefGoogle Scholar
  57. Linden R., Cavalcante L.A., Barradas P.C. (1986) Mononuclear phagocytes in the retina of developing rats. Histochemistry 85, 335–339PubMedCrossRefGoogle Scholar
  58. Ling E.A. (1981) The origin and nature of microglia. In Advances in cellular neurobiology (eds Fedoroff S. Hertz L. ), Academic Press, pp. 33–82Google Scholar
  59. Liu W., Brosnan C.F., Dickson D.W., Lee S.C. (1994) Macrophage colony-stimulating factore mediates astrocyteinduced microglial ramification in human fetal central nervous system. Am. J. Pathol. 145, 48–53Google Scholar
  60. Lobb R.R. and Harper J.W. (1986) Purification of heparin-binding growth factors. Anal Biochem. 154, 1–14PubMedCrossRefGoogle Scholar
  61. Loughlin A.T., Woodroodw M.N., Cuzner M.I. (1992) Regulation of Fc receptor and major histocompatibility complex antigen expression on isolated rat microglia by tumour necrosis factor, interleukin-1 and lipopolysaccharide: effects on interferon-gamma induced activation. Immunology 75, 170–5PubMedGoogle Scholar
  62. Malese K., Boniece I., De Meo D. and Wagner J.A. (1993) Peptide growth factors protect against Ischemia in culture by preventing nitric oxide toxicity. J. Neurosci 13, 3034–3040Google Scholar
  63. Marcheselli V.L., Rossowska M., Domingo M.T., Braquet P. and Bazan N. (1990) Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J. Biol. Chem. 265, 9140–9145Google Scholar
  64. Martin J.H.J. and Edwards S.W. (1993) Changes in mechanisms of monocyte/macrophage-mediated cytotoxicity during culture. J. Immunol. 150, 3478–3486.PubMedGoogle Scholar
  65. McGeer P.L., Klegeris A., Walker D.G., Yasuhara O., McGeer E.G. (1994) Pathological proteins in senile plaques. Tohoku J. Exp. Med. 174, 269–277Google Scholar
  66. Mennerick S., Benz A., Zorumski C.F. (1994) Ultrastructural identification of Ricinus communis agglutinin-1 positive cells in primary dissociated cell cultures of human embryonic brain. Arch. Histol. Cytol. 57, 481–491Google Scholar
  67. Mohammadi M., Dione C.A., Li W., Li N., Spivak T., Honegger A.M., Jaye M., Schlessinger J. (1992) Point mutation in FGF receptor eliminates phosphatidynositol hydrolysis without affecting mitogenesis. Nature 358, 681–684.Google Scholar
  68. Moncada S. Palmer R.M.J., Higgs E.A. (1991) Physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43, 109–142Google Scholar
  69. Morrison R.S., Sharm A., de Vellis J., Bradshaw R.A. (1986) Basic fibroblast growth factor supports the survival of cerebral cortical neurons primary culture. Proc. Natl. Acad. Sci. USA 83, 7537–7541Google Scholar
  70. Murabe Y., Sano Y. (1983) Morphological Studies on neuroglia. VII Distribution of brain macrophages in brains of neonatal and adult rats, as determined by means of immunohistochemistry. Cell. Tiss. Res. 229, 85–9527Google Scholar
  71. Oehmichen M. (1983) Inflammatory cells in the central nervous system. Prog. Neuropathol. 5, 277–325Google Scholar
  72. Otto D., Unsicker K., Grothe C. (1987) Pharmachological effects of nerve growth factor and fibroblast growth factor applied to the transectioned sciatic nerve on neuron death in adult rat dorsal root ganglia. Neurosci. Lett. 83, 156–160Google Scholar
  73. Peters K.G., Marie J., Wilson E., Ives H.E., Escobedo J., Del Rosario M., Mirda D., Williams L.T. (1992) Point mutation of an FGF receptor abolishes phosphatidynositol turnover and CA“ flux but not mitogenesis. Nature 358, 678–681PubMedCrossRefGoogle Scholar
  74. Peterson P.K., Hu S., Anderson W.R., Chao C.C. (1994) Nitric oxide production and neurotoxicity mediated by activated microglia form human versus mouse brain. J. Infect. Dis. 179, 457–460Google Scholar
  75. Pietraforte D., Tritarelli E., Testa U., Minetti M. (1994) gp120 HIV envelope glycoprotein increase the production of nitric oxide in human monocyte-derived macrophages. J. Leukoc. Biol. 55, 175–182Google Scholar
  76. Presta M., Rusnati M., Maier J.A.M., Ragnotti G. (1988) Purification of basic fibroblast growth factor from rat brain: Identification of a Mr 22.000 immunoreactive form. Biochem. Biophys. Res. Commun. 155, 1161–1172Google Scholar
  77. Presta M., Ennas M.G., Torelli S., Gremo F. (1990) Synthesis of urokinase-type plasminogen activator and of type 1-plasminogen activator inhibitor in neuronal cultures of human fetal brain: stimulation by phorbol ester. J. Neurochem. 55, 1647–1654PubMedCrossRefGoogle Scholar
  78. Presta M., Urbinati C., Dell’Era P., Lauro G., Sogos V., Balaci L., Ennas M.G., Gremo F. (1995) Expression of basic fibroblast growth factor and its receptors in human fetal microglia cells. J. Int. Devl. Neurosci. 13, 29–39Google Scholar
  79. Reiling N., Ulmer A.J., Duchrow M., Ernst M., Flad H.D., Hauschild S. (1994) Nitric oxide synthase: mRNA expression of different isoforms in human monocytes-macrophages. Eur. J. Immunol. 24, 1941–1944Google Scholar
  80. Roghani M., Moscatelli D. (1992) Basic fibroblast growth factor is internalized through both receptor-mediated and heparan sulphate-mediated mechanisms. J. Biol. Chem. 267, 22156–22162Google Scholar
  81. Rogister B., Leprince P., Pettmann B., Labourdette G., Sensenbrenner M., Moonen G. (1988) Brain fibroblast growth factor stimulates the release of plasminogen activator by newborn rat cultured astroglial cells. Neurosci. Lett. 91, 321–326Google Scholar
  82. Saneto R.P., de Vellis J. (1985) Characterisation of cultured rat oligodendrocytes proliferating in a serum-free, chemically defined medium. Proc. Natl. Acad. Sci. USA 82, 3509–3513PubMedCrossRefGoogle Scholar
  83. Sawada M., Kondo N.,Suzumura A., Marunouchi T. (1989) Production of tumour necrosis factor-a by microglia and astrocytes in culture. Brain Research 491, 394–397Google Scholar
  84. Sheng J.G., Boop F.A., Mrak R.E., Griffin W.S. (1994) Increased neuronal beta-amyloid precursor protein expression in temporal lobe epilepsy: association with interleukin-1 alpha immunoreactivity. J. Neurochem. 63, 1872–1879PubMedCrossRefGoogle Scholar
  85. Sheng W.S., Hu S., Kravitz F.H., Peterson P.K., Chao C.C. (1995) Tumor necrosis factor alpha upregulates human microglial cell production of interleukin-10 in vitro. Clin. Diagn. Lab. Immunol. 2, 604–608Google Scholar
  86. Sievers J., Parwaresch R., Wottge H.U. (1994) Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology. Glia 12, 245–258PubMedCrossRefGoogle Scholar
  87. Snyder F. (1985) Chemical and biochemical aspects of platelet activating factor: a novel class of acetylated ether-linked choline phospholipids. Med. Res. Rev. 5, 107–140PubMedCrossRefGoogle Scholar
  88. Sogos V., Bussolino F., Pilia E., Torelli S., Gremo F. (1990) Acetylcholine-induced production of platelet-activating factor by human fetal brain cells in culture. J. Neurosci. Res. 27, 706–711Google Scholar
  89. Suzumura A., Mezitis S.G.E., Gonatas N.K., Silberberg D.H. (1987) MHC antigen expression on bulk isolated macrophage microglia from newborn mouse brain: induction of la antigen expression by gamma interferon. J. Neuroimmun. 15, 263–278CrossRefGoogle Scholar
  90. Suzuki H., Menegazzi M., Carcereri de Prati A., Mariotto S., Armato U. (1995) Nitric oxide in the liver: physiopathological roles. Adv. Neuroimmunol. 5, 379–410Google Scholar
  91. Théry C., Chamak B., Mallat M. (1991) Cytotoxic effect of brain macrophages on developing neurons. Eur. J. Neurosci. 3, 1155–1164Google Scholar
  92. Thomas W.E. (1992) Brain macrophages: evaluation of microglia and their functions. Brain Res. Rev. 17, 61–74CrossRefGoogle Scholar
  93. Torelli S., Dell’Era P., Ennas M.G., Sogos V., Gremo F., Ragnotti G., Presta M. (1990) Basic fibroblast growth factor in neuronal cultures of human fetal brain. J. Neurosci. Res. 27, 78–83Google Scholar
  94. Torelli S., Sogos V., Ennas M.G., Marcello C., Cocchia D., Gremo F. (1991) Human fetal brain cultures: a model to study neuronal proliferation,differentiation and immunocompetence. In “Plasticity and Regeneration of the Nervous System”, (eds Timiras P.S. et al.) New York: Plenum Press, pp. 121–134Google Scholar
  95. Ulvestad E., Williams K., Mork S., Antel J., Nyland H. (1994a) Phenotypic differences between human monocytes/macrophages and microglial cells studied in situ and in vitro. J. Neuropathol. Exp. Neurol. 53, 492–501Google Scholar
  96. Ulvestad E., Williams K., Bo L., Trapp B., Antel J., Mork S. (19946) HLA class II molecules (HLA-DR, -DP,–DQ) on cells in the human studied in situ and in vitro. Immunology 82, 535–541Google Scholar
  97. Unsicker K., Reichert-Preibsch H., Schmidt R., Pettmann B., Labourdette G., Sensenbrenner M. (1987) Astroglial and fibroblast growth factor have neurotrophic functions for cultured peripheral and central nervous system neurons. Proc. Natl. Acad. Sci. USA 84, 5459–5463Google Scholar
  98. Walicke P., Cowan W.M., Ueno N., Baird A., Guillemin R. (1986) Fibroblast growth factor promotes survival of dissociated hyppocampal neurons and enhances neurite extension. Proc. Natl. Acad. Sci. USA 83, 3012–3016Google Scholar
  99. Watkins B.A., Dorn H.H., Kelly W.B., Armstrong R.C., Potts B., Michaels F., Kufta C.V., Dubois-Dalcq M. (1990) Specific tropism of HIV-1 for microglial cells in primary human brain cultures. Science 249, 549–553PubMedCrossRefGoogle Scholar
  100. Weis S., Neuhaus B., Mehraein R. (1994) Activation of microglia in HIV-1 infected brains is not dependent on the presence of HIV-1 antigens. Neuroreport 21, 1514–1516CrossRefGoogle Scholar
  101. Woodroofe M.N., Hayes G.M., Cuzner M.L. (1989) Fe receptor density, MHC antigen expression and superoxide production are increased in interferon gamma-treated microglia isolated from adult rat brain. Immunol. 68, 421–426Google Scholar
  102. Yayon A., Klangsbrun M., Esko J.D., Lader P., Ornitz D.M. (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64, 841–848.PubMedCrossRefGoogle Scholar
  103. Yue T-L., Lysko P.G., Feuerstein G. (1990) Production of platelet-activating factor from rat cerebellar granule cells in culture. J. Neurochem. 54, 1809–1811PubMedCrossRefGoogle Scholar
  104. Yue T-L., Feuerstein G.Z. (1994) Platelet-activating factor:a putative neuromodulator and mediator in the pathophysiology of brain injury. Critical Review in Neurobiology 8, 11–24Google Scholar
  105. Zielasek J., Hartung H.P. (1996) Molecular of microglia activation. Adv. Neuroimmunol. 6, 191–222Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Fulvia Gremo
    • 1
    • 2
  • Valeria Sogos
    • 1
    • 2
  • Maria Grazia Ennas
    • 1
    • 2
  • Alessandra Meloni
    • 1
    • 2
  • Tiziana Persichini
    • 1
    • 2
  • Marco Colasanti
    • 1
    • 2
  • Giuliana Maria Lauro
    • 1
    • 2
  1. 1.Department of CytomorphologySchool of MedicineCagliariItaly
  2. 2.Department of Cell BiologyIII UniversityRomaItaly

Personalised recommendations