Is Increased Neurotoxicity a Burden of the Ageing Brain?

  • Andrea Vaccari
  • PierLuigi Saba
  • Ignazia Mocci
  • Stefania Ruiu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 429)


Our living environment is a melting pot for more than 4.5 million natural and synthetic chemicals, which an individual may come in contact with at any given time: only 10,100 of them have been described in the Merck Index (11th Ed., 1989). It is now thought that a lifetime’s continuous exposure to trace amounts of endogenously formed and/or environmental toxins (such as industrial chemicals, pesticides, food additives, or abused and therapeutic drugs), may provoke neuronal degenerative events such as those occurring in Parkinson’s and other diseases (Barbeau et al., 1987; Schoenberg et al., 1987a; Tanner, 1989; Koller et al., 1990; Calne, 1991; see Dawson et al., 1995). A process, in other words, similar to the continuous gnawing of small wood-worms which can lead to the destruction of even huge pieces of furniture. Epidemiologic and experimental evidence supports this hypothesis. In industrialized countries, during the last 100 years, there has been an unequivocal lengthening of the life expectancy of individuals, accompanied by a dramatic increase in the rate of neurodegenerative Parkinson’s and Alzheimer’s diseases (Lilienfeld et al., 1990; Rajput, 1992). Meanwhile, the threshold age for the onset of Parkinsonism has fallen (Schoenberg, 1987b; Tanner, 1989). On the other hand, in the developing countries less likely to suffer from environmental pollution, the incidence of Parkinson’s disease is much lower (Schoenberg, 1987b), and Alzheimer’s dementia is actually absent in Nigeria (Osuntokun et al., 1991). It is true that an increase in the average age, and thus the greater number of vulnerable individuals, may play an important role in increasing the incidence of neurodegenerative diseases in developed countries. While the existence of a clear correlation has been demonstrated between neuropathies and exposure to selected environmental toxicants (Barbeau et al., 1987; Rajput et al., 1987; Schoenberg, 1987a: Tanner, 1989; Calne, 1991; Semchuk et al., 1992; Dawson et al., 1995), there is only controversial evidence that genetic factors may help neurotoxicity (Golbe, 1990; Rajput, 1992; Vieregge, 1994).


Synaptic Vesicle Striatal Dopamine Ageing Brain Vesicular Transporter Monoamine Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J.D., Klaidman, L.K. & Leung, A.C. MPP+ and MPDP+ induced oxygen radical formation with mitochondria) enzymes. Free Radical Biol.Med. 15, 181–186 (1993).CrossRefGoogle Scholar
  2. Ali, S.F., David, S.N., Newport, G.D., Cadet, J.L. & Slikker, W. MPTP-induced oxidative stress and neurotoxicity are age-dependent: evidence from measures of reactive oxygen species and striatal dopamine levels. Synapse 18, 27–34 (1994).Google Scholar
  3. Amenta, F., Zaccheo, D. & Collier, W.L. Neurotransmitters, neuroreceptors and aging. Mech.Ageing.Devl. 61, 249–273 (1991).CrossRefGoogle Scholar
  4. Ando, S. & Tanaka, Y. Synaptic membrane aging in the central nervous system. Gerontology 36 (SI), 10–14 (1990).PubMedCrossRefGoogle Scholar
  5. Bagchi, S.P. Trace dosages of the neurotoxins MPTP and MPP+ may affect brain dopamine in vivo. Life Sci. 51, 389–396 (1992).PubMedCrossRefGoogle Scholar
  6. Bannon, M.I., Poosch, M.S., Xia, Y., Goebbel, DJ., Cassin, B. & Kapatos. G. Dopamine transporter mRNA content in human substantia nigra decreases precipituously with age. Proc.Natl.Acad.Sci. USA 89, 7095–7099 (1992).PubMedCrossRefGoogle Scholar
  7. Barbeau, A., Roy, M., Bernier, G. et al. Ecogenetics of Parkinson’s disease: prevalence and environmental aspects in rural areas. C’an.J.Neurol.Sci. 14, 36–48 (1987).PubMedGoogle Scholar
  8. Borowsky, B. & Hoffman, B.J. Neurotransmitter transporters: molecular biology, function, and regulation. Int.RecNeurohiol. 38, 139–199 (1995).Google Scholar
  9. Breese, G.R. & Taylor, T.D. Effects of 6-hydroxydopamine on brain norepinephrine and dopamine: evidence of selective degeneration of catecholamine neurons. J.Pharmacol.Exp.Ther. 174, 413–420 (1970).PubMedGoogle Scholar
  10. Caine, D.B. Neurotoxins and degeneration in the central nervous system. Neurotoxicology 12, 335–340 (1991).Google Scholar
  11. Carlsson, A. & Winblad, D.B. Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. J.Neural Transm. 38, 271–276 (1976).PubMedCrossRefGoogle Scholar
  12. Collins, M. A possible neurochemical mechanism for brain and nerve damage associated with chronic alcoholism. Trends Pharmacol.Sci. 3, 373–375 (1982).CrossRefGoogle Scholar
  13. Darchen, F., Scherman, D. & Henry, J.-P. Reserpine binding to chromaffin granules suggests the existence of two conformations of the monoamine transporter. Biochemistry 28, 1692–1697 (1989).PubMedCrossRefGoogle Scholar
  14. Dawson, R. Jr., Beal, M.F., Bondy, S.C., Di Monte, D.A. & Isom, G.E. Excitotoxins, aging, and environmental neurotoxins: implications for understanding human neurodegenerative diseases. Toxicol.Appl.Pharntacol. 134, 1–17 (1995).CrossRefGoogle Scholar
  15. Del Zompo, M., Piccardi, M.P., Ruiu, S., Quartu, M., Gessa, G.L. & Vaccari, A. Selective MPP+ uptake into synaptic dopamine vesicles: possible involvement in MPTP toxicity. BI:J.Pharmacol. 109, 411–414 (1993).CrossRefGoogle Scholar
  16. Desai, V.G., Feuers, R.J., Hart, R.W. & Ali, S.F. MPP+-induced neurotoxicity in mouse is age-dependent: evidence by the selective inhibition of complexes of electron transport. Brain Res. 715, 1–8 (1996).PubMedCrossRefGoogle Scholar
  17. Dobrev, D., Bergsträsser, E., Fischer, H.-D. & Andreas, K. Restriction and functional changes of dopamine release in rat striatum from young adult and old rats. Mech.Ageing Devl. 80, 107–119 (1995).CrossRefGoogle Scholar
  18. Edwards, R.H. Neural degeneration and the transport of neurotransmitters. Ann.Neurol. 34, 638–643 (1993).PubMedCrossRefGoogle Scholar
  19. Emerich, D.F., McDermott, P., Krueger, P. et al. Locomotion of aged rats: relationship to neurochemical but not morphologic changes in nigrostriatal dopaminergic neurons. Brain Res.Bull. 32, 477–486 (1993).PubMedCrossRefGoogle Scholar
  20. Erickson, J.D., Schäfer, M.K.-H., Bonner, T.I., Eiden, L.E. & Weihe, E. Distinct pharmacological properties and distribution in nervous and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc.Natl.Acad.Sci.USA 93, 5166–5171 (1996).PubMedCrossRefGoogle Scholar
  21. Finnegan, K.T., Irwin, I., Delanney, L.E. & Langston, J.W. Age-dependent effects of the 2’-methyl analog of Imethyl-4-phenyl-1,2,3,6-tetrahydropyridine: prevention by inhibitors of monoamine oxidase-B. J.Pharmocol.Exp.Ther. 273, 716–720 (1995).Google Scholar
  22. Forster, M.J., Dubey, A., Dawson, K.M., Stutts, W.A., Lai, H. & Sohal, R.S. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Pmc.Natl.Acad.Sci.USA 93, 4765–4769 (1996).CrossRefGoogle Scholar
  23. Golbe, L.I. The genetics of Parkinson’s disease: a reconsideration. Neurology 40 (S3) 7–14 (1990).PubMedGoogle Scholar
  24. Gupta, M., Gupta, B.K., Thomas, R., Bruemmer, V., Sladek, J.R. & Felten, D.L. Aged mice arc more sensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine than young adults. Neurosci.Lett. 70, 326–331 (1986).PubMedCrossRefGoogle Scholar
  25. Henry, J.-P. & Seherman, D. Radioligands of the vesicular monoamine transporter and their use as markers of monoamine storage vesicles. Biochem.Pharmacol. 38, 2395–2404 (1989).PubMedCrossRefGoogle Scholar
  26. Huang, R.-L., Wang, C.-T., Tai, M.-Y., Tsai, Y.-F. & Peng, M.-Y. Effects of age on dopamine release in the nucleus aecumbens and amphetamine-induced locomotor activity in rats. Neurosci.Lett. 200, 61–64 (1995).PubMedCrossRefGoogle Scholar
  27. Hyde, C.E. & Bennett, B.A. Similar properties of fetal and adult amine transporters in the rat brain. Brain Res. 646, 118–123 (1994).PubMedCrossRefGoogle Scholar
  28. Irwin, I., Ricaurte, G.A., Delanney, L.E. & Langston, J.W. The sensitivity of nigro-striatal dopamine neurons to MPP` does not increase with age. Neurosci.Lett. 87, 51–56 (1988).PubMedCrossRefGoogle Scholar
  29. Irwin, I., Finnegan, K.T., Delanney, L.E., Di Monte, D. & Langston, J.W. The relationships between aging, monoamine oxidase, striatal dopamine and the effects of MPTP in C57BL/6 mice: a critical reassessment. Brain Res. 572, 224–231 (1992).PubMedCrossRefGoogle Scholar
  30. Jarvis, M.F. & Wagner, G.C. Age-dependent effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuropharmacology 24, 581–583 (1985).PubMedCrossRefGoogle Scholar
  31. Johannessen, J.N. A model of chronic neurotoxicity: long-term retention of the neurotoxin 1-methyl-4-phenylpyridinium (MPP`) within catecholaminergic neurons. Neurotoxicologr 12, 285–302 (1991).Google Scholar
  32. Johnson, R.G. Jr. Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport. Physiol.Rev. 68, 232–307 (1988).PubMedGoogle Scholar
  33. Jonec, V. & Finch, C.E. Senescence and noradrenaline uptake by subcellular fractions of the C57BL/6J male mouse brain. Brain Res. 91, 197–203 (1975).PubMedCrossRefGoogle Scholar
  34. Kabuto, H., Yokoi, I., Mori, A., Murakami, M. & Sawada, S. Neurochemical changes related to ageing in the senescence-accelerated mouse brain and the effect of chronic administration of nimodipine. Mech.Ageing Devi. 80, 1–9 (1995).CrossRefGoogle Scholar
  35. Koller, W., Vetere-Overfield, B., Gray, C. et al. Environmental risk factors in Parkinson’s disease. Neurology 40, 1218–1221 (1990).PubMedCrossRefGoogle Scholar
  36. Langston, J.W., Irwin, I. & Delanney, L.E. The biotransformation of MPTP and disposition of MPP’: the effects of aging. Life Sci. 40, 749–754 (1987).PubMedCrossRefGoogle Scholar
  37. Lilienfeld, D., Chan, E., Ehland, J. et al. Two decades of increasing mortality from Parkinson’s disease among the US elderly. Arch.Neurol. 47, 731–734 (1990).PubMedCrossRefGoogle Scholar
  38. Liu, Y., Peter, D., Roghani, A., Schuldiner, S., Privé, G.G., Eisenberg, D., Brecha, N. & Edwards, R.H. A cDNA that suppresses MPP+ toxicity encodes a vesicular monoamine transporter. Cell 70, 539–551 (1992).PubMedCrossRefGoogle Scholar
  39. Liu, Z., Stafstrom, C.E., Sarkisian, M., Tandon, P., Yang, Y., Hori, A. & Holmes, G.L. Age-dependent effects of glutamate toxicity in the hippocampus. Devl.Brain Res. 97, 178–184 (1996).CrossRefGoogle Scholar
  40. Makino, Y., Ohta, S., Tachikawa, O. & Hirobe, M. Presence of tetrahydroisoquinoline and 1-methyl-tetrahydroisoquinoline in foods: compounds related to Parkinson’s disease. Life Sci. 43, 373–378 (1988).PubMedCrossRefGoogle Scholar
  41. Milgram, N.W., Racine, R.J., Nellis, P., Mendonca, A. & Ivy, G.O. Maintenance on L-deprenyl prolongs life in aged male rats. Life Sci. 47, 415–420 (1990).PubMedCrossRefGoogle Scholar
  42. Myers, R.D. Isoquinolines, beta-carbolines and alcohol drinking: involvement of opioid and dopaminergic mechanisms. Experientia 45, 436–443 (1989).PubMedCrossRefGoogle Scholar
  43. Nakano, M. & Mizuno, T. Age-related changes in the metabolism of neurotransmitters in rat striatum: a microdialysis study. Mech.Ageing Devl. 86, 95–104 (1996).CrossRefGoogle Scholar
  44. Naudon, L., Raisman-Vozari, R., Edwards, R.H., Leroux-Nicolet, L, Peter, D., Liu, Y. & Costentin, J. Reserpine affects differentially the density of the vesicular monoamine transporter and dihydrotetrabenazine binding sites. Eur.J.Neurosci. 8, 842–846 (1996).PubMedCrossRefGoogle Scholar
  45. Osterburg, H.H., Donahue, H.G., Severson, J.A. & Finch, C.E. Catecholamine levels and turnover during aging in brain regions of male C57BL/6J mice. Brain Res. 224, 337–352 (1981).PubMedCrossRefGoogle Scholar
  46. Osuntokun, B.O., Ogunniyi, A.O., Lekwauka, G.U. et al. Epidemiology of age-related dementias in the third-world and etiologic clues of Alzheimer’s disease. Tropical Geogr.Med. 43, 345–351 (1991).Google Scholar
  47. Pradhan, S.N. Central neurotransmitters and aging. Life Sci. 26, 1643–1656 (1980).PubMedCrossRefGoogle Scholar
  48. Rajput, A.H. Epidemiology of Parkinson’s disease. Can.J.Neurol.Sci. 11S, 154–161 (1984).Google Scholar
  49. Rajput, A.H., Uitti, R.G., Stern, W. et al. Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson’s disease. Can.J.Neurol.Sci. 14, 414–418 (1987).PubMedGoogle Scholar
  50. Rajput, A.H. Frequency and cause of Parkinson’s disease. Can.J.Neurol.Sci. 19, 103–107 (1992).PubMedGoogle Scholar
  51. Ramsay, R.R., Krueger, M.J., Youngster, S.K. & Singer, T.P. Evidence that the inhibition sites of the neurotoxic amine 1-methyl-4-phenylpyridinium (MPP*) and the respiratory chain inhibitor piericidin A are the same. Biochem.J., 273, 481–484 (1991).PubMedGoogle Scholar
  52. Reinhard, J.F. Jr., Carmichael, S.W. & Daniels, A.J. Mechanisms of toxicity and cellular resistance to I-methy1–4phenyl-1,2,3,6-tetrahydropyridine and I-methyl-4-phenyl-pyridinium in adrenomedullary chromaffin cell cultures.J.Neurochem. 55, 311–320 (1990).CrossRefGoogle Scholar
  53. Ricaurte, G.A., Irwin, I., Forno, L.S., Delanney, L.E., Langston, E.B. & Langston, J.W. Aging and I-methyl-4phenyl-1,2,3,6-tetrahydropyridine-induced degeneration of dopaminergic neurons in the substantia nigra. Brain Res. 403, 43–51 (1987a).PubMedCrossRefGoogle Scholar
  54. Ricaurte, G.A., Delanney, L.E., Irwin, I. & Langston, J.W. Older dopaminergic neurons do not recover from the effects of MPTP. Neuropharmacology 26, 97–99 (1987b).Google Scholar
  55. Riekkinen, P. Jr., Riekkinen, M., Valjakka, A., Riekkinen, P. & Sirviö, J. DSP-4, a noradrenergic neurotoxin, produces more severe biochemical and functional deficits in aged than young rats. Brain Res. 570, 293–299 (1992).PubMedCrossRefGoogle Scholar
  56. Riekkinen, M., Aroviita, L., Kivipelto, M., Taskila, K. & Riekkinen, P. Jr. Depletion of serotonin, dopamine and noradrenaline in aged rats decreases the therapeutic effect of nicotine, but not of tetrahydroaminoacridine. Eur.J.Phafmacol. 308, 243–250 (1996).CrossRefGoogle Scholar
  57. Ross, S.B. Long-term effects of N-2-chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride on noradrenergic neurones in the rat brain and heart. BrJ.Pharmacol. 58, 521–527 (1976).CrossRefGoogle Scholar
  58. Rothstein, J.D., Jin, L., Dykes-Hoberg, M. & Kuncl, R.W. Chronic inhibition of glutamate uptake provides a model of slow neurotoxicity. Proc.Natl.Acad.Sci.GSA 90, 6591–6595 (1993).CrossRefGoogle Scholar
  59. Saransaari, P. & Oja, S.S. Age-related changes in the uptake and release of glutamate and aspartate in the mouse brain. Mech.Ageing Devl. 81, 61–71 (1995).CrossRefGoogle Scholar
  60. Scherman, D., Raisman, R., Ploska, A. & Agid, Y. [3H]Dihydrotetrabenazine, a new in vitro monoaminergic probe for human brain. J.Neurochem. 50. 1131–1136 (1988)Google Scholar
  61. Scherman, D., Desnos, C., Darchen, F., Pollak, P., Javoy-Agid, F. & Agid, Y. Striatal dopamine deficiency in Parkinson’s disease: role of aging. Ann.Neurol. 26, 551–557 (1989).PubMedCrossRefGoogle Scholar
  62. Schoenberg, B.S. Environmental risk factors for Parkinson’s disease: the epidemiologic evidence. Can.J.Neurol.Sci. 14, 407–413 (1987a).PubMedGoogle Scholar
  63. Schoenberg, B.S. Descriptive epidemiology of Parkinson’s disease: disease distribution and hypothesis formulation. Adv. Neurol. 45, 277–283 (1987b).PubMedGoogle Scholar
  64. Semchuk, K.M., Love, E.J. & Lee, R.G. Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology 42, 1328–1335 (1992).PubMedCrossRefGoogle Scholar
  65. Simantov, R. Neurotransporters: regulation, involvement in neurotoxicity, and the usefulness of antisense nucleic acids. Biochem.Pharmacol. 50, 435–442 (1995).PubMedCrossRefGoogle Scholar
  66. Sirviö, J., Riekkinen, P. Jr., Valjakka, A., Jolkkonen, J. & Riekkinen, P.J. The effects of noradrenergic neurotoxin, DSP-4, on the performance of young and aged rats in spatial navigation task. Brain Res. 563, 297–302 (1991).PubMedCrossRefGoogle Scholar
  67. Slivka, A. & Cohen, G. Hydroxyl radical attack on dopamine. J.Biol.Chem. 260, 15466–15472 (1985).PubMedGoogle Scholar
  68. Tanner, C.M. The role of environmental toxins in the etiology of Parkinson’s disease. Trends Neurosci. 12, 49–54 (1989).PubMedCrossRefGoogle Scholar
  69. Tipton, K.F. & Singer, T.P. Advmces in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J.Nelrochem. 61, 1191–1206 (1993).Google Scholar
  70. Vaccari, A. High-affinity binding of [31–1]-tyramine in the central nervous system. BrJ.Pharmacol. 89, 15–25 (1986).CrossRefGoogle Scholar
  71. Vaccari, A. The tyramine binding site in the central nervous system: An overview. Neurochern.Res. 18. 861–868 (1993).CrossRefGoogle Scholar
  72. Vaccari, A. & Gessa, G.L. [31–1]Tyramine binding: a comparison with neuronal [3H]dopamine uptake and [31-]mazindol binding processes. Neurochem.Res. 14, 949–955 (1989).PubMedCrossRefGoogle Scholar
  73. Vaccari, A., Del Zompo, M., Melis, F., Gessa, G.L. & Rossetti, Z.L. Interaction of l-methyl-4-phenylpyridinium ion and tyramine with a site putatively involved in the striatal vesicular release of dopamine. BrJ.Pharmacol. 104, 573–574 (1991).CrossRefGoogle Scholar
  74. Vaccari, A., Saba, P.L., Gessa, G.L. & Del Zompo, M. Differential interaction of I-methyl-4-phenylpyridinium ion with the putatively vesicular binding site of [3H]tyramine in dopaminergic and nondopaminergic brain regions. J.Neurochem. 60, 758–760 (1993).PubMedCrossRefGoogle Scholar
  75. Vaccari, A. & Saba, P.L. The tyramine-labelled vesicular transporter for dopamine: a putative target of pesticides and neurotoxins. Eur.J.Pharmacol.(ETPS) 202, 309–314 (1995).Google Scholar
  76. Vaccari, A., Saba, P.L., Ruiu, S., Collu, M. & Devoto, P. Disulfiram and diethyldithiocar-bamate intoxication affects the storage and release of striatal dopamine. Toxicol.Appl.Pharmacol. 139, 102–108 (1996).PubMedCrossRefGoogle Scholar
  77. Vieregge, P. Genetic factors in the etiology of idiopathic Parkinson’s disease. J.Neural Transco. (P-D Sect.) 8, 1–37 (1994).CrossRefGoogle Scholar
  78. Vingerhoets, F.J., Snow, B.J., Tetrud, J.W., Langston, J.W., Schulzer, M. & Caine, D.B. Positron emission tomographic evidence for progression of human MPTP-induced dopaminergic lesions. Ann.Neurol. 36, 765–770 (1994).PubMedCrossRefGoogle Scholar
  79. Walsh, S.L. & Wagner, G.C. Age-dependent effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): correlation with monoamine oxidase B. Synapse 3, 308–314 (1989).PubMedCrossRefGoogle Scholar
  80. Wustmann, C., Schmidt, J., Ihle, W., Gross, J. & Fischer, H.-D. Dopamine release from striatum slices of rats at different age: influence of hypoxia. Biomed.Biochem.Acta 42, 265–273 (1983).Google Scholar
  81. Zelnik, N., Angel, I., Paul, S.M. & Kleinman, J.E. Decreased density of human striatal dopamine uptake sites with age. Eur.J.Pharmacol. 126, 175–176 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Andrea Vaccari
    • 1
  • PierLuigi Saba
    • 1
  • Ignazia Mocci
    • 1
  • Stefania Ruiu
    • 1
  1. 1.Department of Neuroscience “B. Brodie”Neurotoxicology UnitCagliariItaly

Personalised recommendations