Nerve Cell Death Induced by Ca2+ Ionophores in Dissociated Hippocampal Cultures

Protective Action of the NMDA Antagonist MK-801
  • Noam Safran
  • R. Haring
  • A. Shainberg
  • R. Zisling
  • A. H. Futerman
  • A. Shahar
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 429)


Lasalocid (X-537A) is a polyether ionophore compound (Westly et al., 1970) that was isolated from streptomyces lasaliensis in 1951 (Berger et al., 1951). It is a lipid-soluble material which facilitates the passage of divalent and monovalent ions through lipophilic-biological membranes (Westley, 1977; Reed, 1982; Aebi. 1989). Lasalocid is used as a broad-spectrum anticoccidial agent and has been approved for use as a coccidiostat for chickens, and as a growth promoter for cattle (Bergen et al., 1984). However, lasalocid residues in commercial food were found to cause a paralytic syndrome in dogs (Safran et al., 1993a) and overdose in poultry feed caused neuromuscular deficit in chickens (Perelman et al., 1986).


Glial Fibrillary Acidic Protein Hippocampal Neuron Neuron Specific Enolase Hippocampal Culture Arachidonic Acid Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



arachidonic acid


agonist operated calcium channel




Dulbecco’s modified Eagle’s medium


Demethyl sulfoxide


days in-vitro


excitatory amino acids


glial fibrillary acidic protein




lactate dehydrogenase


Locke HEPES buffer


minimum essential medium


(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate






neuron specific enolase


phosphate buffer saline


phospholipase A


voltage operated calcium channel


(2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilelide inner salt)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi R. (1989) Coccidiosis prevention with lasalocid. Zootecnica Int 3, 31–35.Google Scholar
  2. Ahmed Z. Lewis C. A. Faber D. S. (1990) Glutamate stimulates release of Ca“ from internal stores in astroglia. Brain Res 526, 165–169.CrossRefGoogle Scholar
  3. Bergen W. G. and Bates D. B. (1984) Ionophores: Their effect on production efficiency and mode of action. J Ani Sci 58, 1465–1483.Google Scholar
  4. Berger J. Rachlin A. I. Scott W. E. Sternbach L. H. and Goldberg M. W. (1951) The isolation of three new crystalline antibiotics from streptomyces. J Am Chem Soc 73, 5295–5298.CrossRefGoogle Scholar
  5. Choi D. W. (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Nerosci Lett 58, 293–297.CrossRefGoogle Scholar
  6. Choi D. W. (1987) Ionic dependence of glutamate neurotoxicity. J of Neurosci 7, 369–379.Google Scholar
  7. Dumuis A. Sebben M. Haynes L. Pin J. P. Bockaert J. (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336, 68–70.PubMedCrossRefGoogle Scholar
  8. Elfren K. and Lehmann A. (1989) Calcium dependency of N-methyl-D-aspartate toxicity in slices from immature rat hippocampus. Neuroscience 32, 371–379.CrossRefGoogle Scholar
  9. Farooqui A. A. and Horrocks L. A. (1994) Involvement of glutamate receptors, lipases, and phospholipases in long-Term potentiation and neurodegeneration. J Neurosci Res 38, 6–11.PubMedCrossRefGoogle Scholar
  10. Frandsen A. and Schousboe A. (1992) Mobilization ofdantrolene-sensitive intracellular calcium pools is involved in the cytotoxicity induced by quisqualate and N-methyl-D-aspartate but not by (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-y1) propionate and kainate in cultured cerebral cortical neurons. Proc Natl Acad Sei USA 89, 2590–2594.CrossRefGoogle Scholar
  11. Frandsen A. and Schousboe A. (1993) Excitatory amino acid-mediated cytotoxicity and calcium homeostasis in cultured neurons. J Neurochem 60, 1202–1211.PubMedCrossRefGoogle Scholar
  12. Garthwaite G. and Garthwaute J. (1989) Differential dependence on Ca’’ of N-methyl-D-aspartate and quisqualate neurotoxicity in young rat hippocampal slices. Neurosci lett 97, 316–322.PubMedCrossRefGoogle Scholar
  13. Goslin K. and Banker G. (1991) Culturing nerve cells, pp. 251–281, MIT Press, Cambridge.Google Scholar
  14. Grynkiewicz G. Poenie M. Tsien R. Y. (1985) A new generation of Ca’’ indicators with greatly improved fluorescence properties. J Biol Chem 260, 3440–3450.Google Scholar
  15. Hirschberg K. Zisling R. Echten-Deckert G. and FuTerman A.H. (1996) Ganglioside synthesis during the development of neuronal polarity. J Biol Chem 271, 14876–14882.Google Scholar
  16. Holzwarth J. A. Gibbons S. J. Brorson J. R. Philipson L. H. Miller R. J. (1994) Glutamate receptor agonists stimulate diverse calcium responses in different types of cultured rat cortical glial cells. J Neurosci 14, 1879–1891.PubMedGoogle Scholar
  17. Honor’e T. Davies J. N. Drejer J. Fletcher G. J. Jacobson P. Lodge D. Neilsen F. E. (1988) Quinoxalinediones: potent competitive non NMDA glutamate receptor antagonist. Science 241, 701–703.CrossRefGoogle Scholar
  18. Koh J. Y. and Choi D. W. (1987) Quantitative deTermination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Meth 20, 83–90.CrossRefGoogle Scholar
  19. Lazarewicz J. W. Wroblewski J. T. Palmer M. E. Costa E. (1988) Activation of N-methyl-D-aspartate-sensitive glutamate receptors stimulates arachidonic acid release in primary cultures of cerebellar granule cells. J Neuropharmacology 27, 765–769.CrossRefGoogle Scholar
  20. Lazarewicz J. W. Wroblewski J. T. Costa E. (1990) N-methyl-D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J Neurochem 55, 1875–1881.PubMedCrossRefGoogle Scholar
  21. Lehmann A. (1987) Pharmacological protection against the toxicity of N-methyl-D-aspartate in immature rat cerebellar slices. Neuropharmacology 26, 1751–1761.PubMedCrossRefGoogle Scholar
  22. Lehmann A. (1990) Kainaic acid neurtoxicity in slices from the immature rat hippocampus: protection by chloride reduction and exacerbation by calcium omission. Neurosci Res Commun 6, 27–36.Google Scholar
  23. Leonard J. P. and Salpeter M. M. (1979) Agonist-induced myopathy at the neuromuscular junction is mediated by calcium. J Cell Biol 82, 811–819.PubMedCrossRefGoogle Scholar
  24. Markram H. and Segal M. (1991) Calcium potentiates responses of rat hippocampal neurons to N-methyl-D-aspartate. Brain Res 540, 322–324.PubMedCrossRefGoogle Scholar
  25. Murphy S. N. and Miller R. J. (1988) A glutamate receptor regulates Ca“ mobilization in hippocampal neurons. Proc Natl Acad Sci USA 85, 8737–8741.PubMedCrossRefGoogle Scholar
  26. Murphy S. N. and Miller R. J. (1989) Two distinct quisqualate receptors regulate Cat’ homeostasis in hippocampal neurons in vitro. Mol Pharmacol 35, 671–680.PubMedGoogle Scholar
  27. Ogura A. Akita K. and Kudo Y. (1990) Non NMDA receptor mediates cytoplasmic Ca’’ elevation in cultured hippocampal neurons. Neurosci Res 9, 103–113.PubMedCrossRefGoogle Scholar
  28. Perelman B. Abarbanel J.M. Gur-Lavie A. Meller Y. Elad T. (1986) Clinical and Pathological changes caused by the interaction of lasalocid and chloramphenicol in broiler chickens. Avi Path 15, 279–288.CrossRefGoogle Scholar
  29. Reed P. W. (1992) Biochemical and biological effect of carboxylic acid ionophores. In: Polyether Antibiotics, Naturally Occurring Acid lonophores. Edited by J. W. Westley. Vol. I: Biology. pp 185–302. Marcel Dekker, Inc., New York.Google Scholar
  30. Safran A. Aizenberg I. and Bark H. (1993a) Paralytic syndrome in dogs caused by lasalocid residues in a commercial ration. J Am Vet Med Ass 202, 1273–1275.Google Scholar
  31. Safran N. Shainberg A. Haring R. Gurwitz D. Shahar A. (1993b) Selective neurotoxicity induced by lasalocid in dissociated cerebral cultures Toxic in vitro 7, 345–352.CrossRefGoogle Scholar
  32. Safran N. Haring R. Gurwitz D. Shainberg A. Halili I. Levy A. Bogin E. Shahar A. (1996). Selective neurotoxicity induced by the ionophore lasalocid in rat dissociated cerebral cultures, involvement of the NMDA receptor/channel. NeuroToxic. 17Google Scholar
  33. Sanfeliu C. Hunt A. and Patel A. J. (1990) Exposure to N-methyl-D-aspartate increases release of arachidonic acidGoogle Scholar
  34. in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Res 526, 241–248.Google Scholar
  35. Schanne F. A. X. Kane A.B. Young E. E. and Farber J.L. (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206, 700–702.PubMedCrossRefGoogle Scholar
  36. Shahar A. De Vellis J. Vernadakis A. and Haber B. (1989) A dissection and tissue culture manual of the nervous tissue. Alan R. Liss, Inc., New York.Google Scholar
  37. Shier W. T. Angerhofer C. K. and Dubourdieu D. J. (1987) Role of stress in the initial injury stages of cell killing by altered intracellular calcium. Toxicol Lett 39, 283–293.PubMedCrossRefGoogle Scholar
  38. Tapia-Arancibia L. Rage F. R’ecasens M. Pin J. P. (1992) NMDA receptor activation stimultaes phospholipase A, and somatostatin release from rat cortical neurons in primary cultures. Eur J Pharmacol 225, 253–262.PubMedCrossRefGoogle Scholar
  39. Teichberg VJ. (1991) Glia glutamate receptors: likely actors in brain signaling. FASEB J 5, 3086–3091.PubMedGoogle Scholar
  40. Usowicz M. M. Gallo V. Cull-Candy S. G. (1988) Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids. Nature 339, 380–383.CrossRefGoogle Scholar
  41. Westley J. W. Evans R. H. Williams T. and Stempel A. (1970) Structure of antibiotic X-537A. In: Chemical communication, p. 71. Burlington House, London.Google Scholar
  42. Westley J. W. (1977) Polyether antibiotics: versatile carboxylic acid ionophores produced by streptomyces. Adv App Microb 22, 177.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Noam Safran
    • 1
  • R. Haring
    • 2
  • A. Shainberg
    • 3
  • R. Zisling
    • 4
  • A. H. Futerman
    • 4
  • A. Shahar
    • 2
  1. 1.Koret School of Vet. Med.Hebrew University of JerusalemIsrael
  2. 2.Israel Institute for Biological ResearchNess-ZionaIsrael
  3. 3.Bar-Ilan UniversityRamat-GanIsrael
  4. 4.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations