Nerve Growth Factor and Oxidative Stress in the Nervous System

  • Zhaohui Pan
  • Deepa Sampath
  • George Jackson
  • Karin Werrbach-Perez
  • Regino Perez-Polo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 429)


Nerve growth factor is a target-derived neurotrophic factor acting on sympathetic and neural crest-derived sensory neurons in the peripheral nervous system (PNS) and some populations of cholinergic neurons in the central nervous system (CNS; Levi-Montalcini and Hamburger, 1951; 1953; Levi-Montalcini, 1987; Hefti and Weiner, 1986; Thoenen and Barde, 1980). Nerve growth factor isolated from mouse submaxillary glands has a sedimentation coefficient of 7S which lacks biological activity (Varon et al.,1972; Stach and Shooter, 1980) and is made up of two alphas, one beta, and two gamma subunits (α2βγ2). The biologically active form is the β-subunit, a homodimer made up of two identical polypeptides. Each chain contains three intrachain disulfide bonds which are crucial for biological activity since the reduction of these bonds abolishes biological activity (Greene and Shooter, 1980; Perez-Polo et al., 1990; Fahnestock, 1991). There are significant homologies in the amino acid sequence of the α -and γ-subunits (Greene et al.,1969; Thomas et al., 1981; Evans and Richards, 1985). The γ-subunit of 7S NGF (γ-NGF) is an arginine- or lysine-specific trypsin-like serine proteinase in the kallikrein gene family (Thomas et al., 1981; Evans and Richards, 1985; Evans et al., 1987). The γ-NGF has been postulated to function during the processing of the β-NGF precursor and may participate in cellular migration or tissue remodeling. The γ-NGF can also cleave recombinant single chain urokinase-type plasminogen activators which might be involved in cellular migration by activating a proteinase cascade (Wolf et al.,1993).The α-subunit also belongs to the kallikrein gene family (Evans and Richards, 1985). Although α-NGF may protect β-NGF from proteolytic degradation or inhibit NGF biological activity via formation of the 7S complex, a definitive biological function for the α-subunit has not been established.


Nerve Growth Factor Nerve Growth Factor Treatment Nerve Growth Factor Expression Nerve Growth Factor Concentration Glutamylcysteine Synthetase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, W.A. and Meister, A. (1986): Intrahepatic transport and utilization of biliary glutathione and its metabolism. Proc. Natl. Acad. Sci. USA 83, 1246–1250.PubMedCrossRefGoogle Scholar
  2. Amstad, P., Crawford, D., Muehlematter, D., Zbinden, I., Larsson, R., and Gerutti. P. (1990): Oxidant stress induces the proto-oncogenes, C-firs and C-myc in mouse epidermal cells. Bull. Cancer 77, 501–502.PubMedGoogle Scholar
  3. Anderson, M.E. Naganuma, A., and Meister, A. (1990): Protection against cisplatin toxicity by administration of glutathione ester. FASEB J. 4, 3251–3255.PubMedGoogle Scholar
  4. Andorn, A.C., Britton, R.S., and Bacon, R.R. (1990): Evidence that lipid peroxidation and total iron are increased in Alzheimer’s brain. Neurobiol. Aging. 11, 316.Google Scholar
  5. Awatsuji, H., Furukawa, Y., Hirota, M., Murakami, Y., Nii, S., Furukawa, S., and Hayashi, K. (1993): Interlcukin-4 and -5 as modulators of nerve growth factor synthesis/secretion in astrocytes. J. Neauo.sci. Res. 34, 539–45.Google Scholar
  6. Baeuerle, P.A. (1991): The inducible transcription activator NF B: regulation by distinct protein subunits. Biochim. Biophys. Acta 1072, 63–80.PubMedGoogle Scholar
  7. Bailey, H.H., Gipp, J.J., Ripple, M., Wilding, G., and Mulcahy, T.R. (1992): Increase in -glutamylcystcine synthetase activity and steady-state messenger RNA levels in melphalan-resistant DU-145 human prostate carcinoma cells expressing elevated glutathione levels. Cancer Res. 52, 5115–5118.PubMedGoogle Scholar
  8. Ballatori, N., Jacob, R., Barrett, C., and Boyer, J.L. (1988): Biliary catabolism of glutathione and differential reabsorption of its amino acid constituents. Am.I. Physiol. 254, Gl-G7.Google Scholar
  9. Bandy, B. and Davison, A.J. (1990): Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging. Free Rad. Biol. Med. 8, 523–539.PubMedCrossRefGoogle Scholar
  10. Bannai, S. and Ishii, T. (1980): Formation of sulfhydryl groups in the culture medium by human diploid fibroblasts. J. Cell. Physiol. 104, 215–223.PubMedCrossRefGoogle Scholar
  11. Bannai, S. and Ishii, T. (1982): Transport of cystine and cysteine and cell growth in cultured human diploid fibroblasts: effect of glutamate and homocysteate. J. Cell. Physiol. 112, 265–272.PubMedCrossRefGoogle Scholar
  12. Bannai, S. and Kitamura, E. (1980): Transport interaction of L-cysteine and L-glutamate in human diploid fibroblasts in culture. J. Biol. Chem. 255, 2372–2376.PubMedGoogle Scholar
  13. Bannai, S. and Tateishi, N. (1986): Role of membrane transport in metabolism and function of glutathione in mammals. J. Membr: Biol. 89, 1–8.CrossRefGoogle Scholar
  14. Barde, Y-A. (1989): Trophic factors and neuronal survival. Neuron 2, 1525–1534.PubMedCrossRefGoogle Scholar
  15. Basi, G.S., Jacobson, R.D., Virag, I., Schilling, J., Skene, J.H.P. (1987): Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth. Cell 49, 785–791.PubMedCrossRefGoogle Scholar
  16. Berg, D.K. (1984): New neuronal growth factors. Annu. Rev. neurosci. 7, 149–170.PubMedCrossRefGoogle Scholar
  17. Bergelson, S., Pinkus, R., and Daniel, V. (1994): Intracellular glutathione levels regulate Fos/Jun induction and activation of glutathione S-transferase gene expression. Cancer Res. 54, 36–40.PubMedGoogle Scholar
  18. Carman-Krzan, M. Vige, X., and Wise, B.C. (1991): Regulation by interleukin-1 of nerve growth factor secretion and nerve growth factor mRNA expression in rat primary astroglial cultures. J. Neurnchem. 56, 636–643.Google Scholar
  19. Carman-Krzan, M. and Wise, B.C. (1993): Arachidonic acid lipoxygenation may mediate interleukin-I stimulation of nerve growth factor secretion in astroglia cultures. 1. Neurosci. Res. 34, 225–232.CrossRefGoogle Scholar
  20. Chao, M.V. (1992): Neurotrophic receptors: a window into neuronal differentiation. Neuron 9, 583–593.PubMedCrossRefGoogle Scholar
  21. Cho, Y. and Bannai, S. (1990): Uptake of glutamate and cystine in C-6 glioma cells and cultured astrocytes. J. Neurochem. 55, 2091–2097.PubMedCrossRefGoogle Scholar
  22. Chun, L.L.Y. and Patterson, P.H. (1977a): Role of nerve growth factor in the development of rat sympathetic neurons in vitro. I. Survival, growth, and differentiation of catecholamine production. J. Cell Biol. 75, 694–704.PubMedCrossRefGoogle Scholar
  23. Chun. L.L.Y. and Patterson, P.H. (1977b): Role of nerve growth factor in the development of rat sympathetic neurons in vitro. I I. Developmental study. J Cell Biol. 75, 705–711.Google Scholar
  24. Chun, L.L.Y. and Patterson, P.H. (1977e): Role of nerve growth factor in the development of rat sympathetic neurons in vitro. Ill. Effect on acetylcholine production. J Cell Biol. 75, 712–718.PubMedCrossRefGoogle Scholar
  25. Ciriolo, M.R., Fiskin, K., Martino. A.D.E., Corasaniti, M.T., Nistico, G., and Rotilio, G. (1991): Age-related changes in Cu,Zn superoxide dismutasc, Se-dependent and -independent glutathione peroxidase and catalase activities in specific areas of rat brain. Mech. Ageing Dev. 61, 287–297.Google Scholar
  26. Cosma, G., Fulton, H., Defeo, T., and Gordon. T. (1992): Rat lung metallothionein and home oxygenase gene expression following ozone and zinc oxide exposure. Toxical. Appl. Pharmacol. 117, 75–80.CrossRefGoogle Scholar
  27. Cross, C.E., Halliwell, B., Borish, E.T., Pryor, W.A., Ames, B.N., Saul, R.L. et al., (1987): Oxygen radicals and human diseases. Annu. Int. Med. 107, 526–545.CrossRefGoogle Scholar
  28. Damier, P., Hirsch, E.C., Zhang, P., Agid, Y., and Javoy-Agid, F. (1993): Glutathione peroxidase, glial cells and Parkinson disease. Neuro.sci. 52, 1–6.Google Scholar
  29. Doroshow, J.H., Akman, S., Chu, F.F., and Esworthy, S. (1990): Role of the glutathione-glutathione peroxidase cycle in the cytotoxicity of the anticancer quinones. Pharma. Thera. 47, 359–370.CrossRefGoogle Scholar
  30. Drubin, D.G., Feinstein, S.C., Shooter, E.M., and Kirschner, M.W. (1985): Nerve growth factor induced neurite outgrowth in PC12 cells involves the coordinated induction of microtubule assembly and assembly promoting factors. J. Cell Biol. 101, 1799–1807.PubMedCrossRefGoogle Scholar
  31. Evans, B.A. and Richards. R.I. (1985): Genes for the and subunits of mouse nerve growth factor are contiguous. EMBO J. 4, 133–138.PubMedGoogle Scholar
  32. Evans, B.A., Drinkwater, C.C., and Richards, R.I. (1987): Mouse glandular kallikrein genes: structure and partial sequence analysis of the kallikrein gene locus. J. Biol. Chem. 262, 8027–8034.PubMedGoogle Scholar
  33. Fahnestock, M. (1991): Structure and biosynthesis of nerve growth factor. Curr: Topics microbial. Immumol. 165, 1–26.Google Scholar
  34. Farber, J.L., Kyle, M.E., and Coleman, J.B. (1990): Biology of diseases: Mechanisms of cell injury by activated oxygen species. Lab. Invest. 62, 670–679.PubMedGoogle Scholar
  35. Federoff, H.J., Gradbczyk. E., and Fishman, M.C. (1988): Dual regulation of GAP-43 gene expression by nerve growth factor and glucocorticoids. J. Biol. Chem. 263, 19290–19295.Google Scholar
  36. Feinstein, S.C., Dana, S.L., McConlogue, L., Shooter, E.M., and Coffino, P. (1985): Nerve growth factor rapidly induces ornithine decarboxylase mRNA in PCl2 rat pheochromocytoma cells. Proc. Natl. Acad. Sci. USA. 82, 5761–5765.PubMedCrossRefGoogle Scholar
  37. Fernyhough, P. and Ishii, D.N. (1987): Nerve growth factor modulates tubulin transcript levels in pheochromocytoma PC’12 cells. Neurochem. Res. 12, 891–899.PubMedCrossRefGoogle Scholar
  38. Fisher, A.B. Intracellular production of oxygen-derived free radical. Oxygen Radicals and Tissue Injury. Barry Halliwell ed., Upjohn Company. pp34–39.Google Scholar
  39. Floyd, R.A. (1990): Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4, 2587–2597.PubMedGoogle Scholar
  40. Follesa, P. and Mocchetti, I. (1993): Regulation of basic fibroblast growth factor and nerve growth factor mRNA by beta-adrenergic receptor activation and adrenal steroids in rat central nervous system. Mol. Pharmeol. 43, 132–138.Google Scholar
  41. Foreman, P.J., Taglialatela, G., Angelucci, L., Turner, C.P. & Perez-Polo, J.R. Nerve growth factor & Nerve growth factor Receptor mRNA change in rodent CNS Following stress activation of the hypothalamo-Pituitary-Adrenocortical axis. J. Neurosci. Res. 36: 10–18, 1993.PubMedCrossRefGoogle Scholar
  42. Freedman. J.H.• Ciriolo. M.R., and Peisach, J. (1989): The role of glutathione in copper metabolism and toxicity. J. Biol. Chem. 264, 5598–5605.Google Scholar
  43. Friedman, W.J., Larkfors, L., Ayer-LeLievre, C., Ebendal, T., Olson, L., and Persson, H. (1990): Regulation of beta-nerve growth factor expression by inflammatory mediators in hippocampal cultures. J. Neurosci. Res. 27, 374–382.PubMedCrossRefGoogle Scholar
  44. Fridle, H.P., Till, G.O., Ryan, U.S., and Ward. P.A. (1989): Mediator-induced activation of xanthine oxidase in endothelial cells. FASEB J. 3, 2512–2518.Google Scholar
  45. Fujita, K., Lazarovici, P., and Guroff, G. (1989): Regulation of the differentiation of PCl2 pheochromocytoma cells. Environ. Health Perspect. 80, 127–142.PubMedCrossRefGoogle Scholar
  46. Furukawa, S., Furukawa, Y., Satoyoshi, E., and Hayashi, K. (1987): Regulation of nerve growth factor synthesis/secretion by catecholamines in cultured mouse astroglial cells. Biochem. Biophys. Res. Commton. 147, 1048–1054.CrossRefGoogle Scholar
  47. Furukawa, K., Onodera, H., Kogure, K., and Akaike, N. (1993): Time-dependent expression of Na and Ca channels in PC12 cells by nerve growth factor and CAMP. Neurosci. Res. 16, 143–147.PubMedCrossRefGoogle Scholar
  48. Giordano, T., Pan, J.B., Casuto, D., Watanabe, S., and Arneric, S.P. (1992): Thyroid hormone regulation of NGF, NT-3 and BDNF RNA in the adult rat brain. Mol. Brain Res. 16, 239–245.PubMedCrossRefGoogle Scholar
  49. Gizang-Ginsberg, E. and Ziff, E.B. (1990): Nerve growth factor regulates tyrosine hydroxylase gene transcription through a nucleoprotein complex that contains c-los. Genes Dev 4, 447–491.Google Scholar
  50. Gnahn, H., Hefti, F., Heumann, R., Schwab, M.E., and Thoenen, H. (1983): NGF-mediated increase in choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for physiological role of NGF in the brain. Dev. Brain Res. 9, 45–52.CrossRefGoogle Scholar
  51. Goldwin, A.K„ Meister, A., O’Dwyer, P.J., Huang, C.S., Hamilton, T.C., and Anderson, M.E. (1992): High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase in glutathione synthesis. Proc. Natl. Acad. Sci. USA 89, 3070–3074.CrossRefGoogle Scholar
  52. Gonzalez, D. Les Dees, W., Hiney. J.K., Ojeda, S.R., Santo, R.P. (1990): Expression of-nerve growth factor in cultured cells derived from the hypothalamus and cerebral cortex. Brain Res. 511, 249–258.PubMedCrossRefGoogle Scholar
  53. Greenberg, M.E., Greene, L.A., and Ziff, E.B. (1985): Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogene transcription in PC I2 cells. J Biol. Chem. 260, 14101–141100.Google Scholar
  54. Greene, L.A., Shooter, E.M., and Varon, S. (1969): Subunit interaction and enzymatic activity of mouse 7S nerve growth factor. Biochemistry 8, 3735–3741.PubMedCrossRefGoogle Scholar
  55. Greene, L.A. and Tischler, A.S. (1976): Establishment of a nonadrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73, 2424–2448.PubMedCrossRefGoogle Scholar
  56. Greene, L.A. (1977a): Quantitative in vitro studies on the nerve growth factor requirement of neurons. I. Sympathetic neurons. Dev. Biol. 58, 96–105.PubMedCrossRefGoogle Scholar
  57. Greene, L.A. (1977b): Quantitative in vitro studies on the nerve growth factor requirement of neurons. I. Sensory neurons. Dev. Biol. 58, 106–113.PubMedCrossRefGoogle Scholar
  58. Greene, L.A. and Rein, G. (1977): Synthesis, storage, and release of acetylcholine by a nerve growth factor responsive line of rat pheochromocytoma cells. Nature 268, 349–351.PubMedCrossRefGoogle Scholar
  59. Greene, L.A. and McGuire, J.C. (1978): Induction of ornithine decarboxylase by nerve growth factor dissociated from effects on survival and neurite outgrowth. Nature 276, 119–193.CrossRefGoogle Scholar
  60. Grilli, M., Chiu, J.J., and Lenardo, M.J. (1992): NF B and Reparticipants in a multiform transcriptional regulatory system. Annu. Rev. Immunol.Google Scholar
  61. Guroff, G., Dickens, G., and End, D. (1981): The induction of ornithine decarboxylase by nerve growth factor and epidermal growth factor in PC12 cells. J. Neurochem. 37, 342–349.PubMedCrossRefGoogle Scholar
  62. Halliwell, B. and Gutteridge, M.C. (1989): Lipid peroxidation: a radical chain reaction, in Free Radicals in Biology and Medicine (Halliwell B. 2nd. ed.) pp. 188–276, Oxford, Clarendon Press; New York, Oxford University Press.Google Scholar
  63. Hamburger, V. and Yip, (1984): Reduction of experimentally induced neuronal death in spinal ganglia of the chick embryo by nerve growth factor. J. Neurosci. 4, 767–774.PubMedGoogle Scholar
  64. Hamburger, V., Brunso-Bechtold, J.K., and Yip, J.W. (1981): Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J Neurosci. 1, 60–71.PubMedGoogle Scholar
  65. Harman, D. (1956): A theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300.PubMedCrossRefGoogle Scholar
  66. Harman, D. (1957): Prolongation of the normal life span by radiation protection chemistry. J. Gerontol. 12, 257–263.PubMedCrossRefGoogle Scholar
  67. Harman, D. (1981): The aging process. Proc. Natl. Acad. Sci. USA. 78, 7124–7128.PubMedCrossRefGoogle Scholar
  68. Harman, D. (1984): Free radical theory of aging: The “free radical” diseases. Age 7, 111–131.CrossRefGoogle Scholar
  69. Hartikka, J. and Hefti, F. (1988): Development of septal cholinergie neurons in culture: plating density and glial cells modulate effects of NGF on survival, fiber growth, and expression of transmitter-specific enzymes. J. Neurosci. 8, 2967–2985.PubMedGoogle Scholar
  70. Hatanaka, H. and Tsukui, H. (1986): Differential effects of nerve growth factor and glioma-conditioned medium on neurons cultured from various regions of fetal rat central nervous system. Dev. Brain Res. 30, 47–56.CrossRefGoogle Scholar
  71. Hattori, A., Tanaka, E., Murase, K., Ishida, N., Chatani, Y., Tsujimoto, M., Hayashi, K., and Kohno, M. (1993): Tumor necrosis factor stimulates the synthesis and secretion of biologic active nerve growth factor in non-neuronal cells. J. Biol. Chem. 268, 2577–2582.PubMedGoogle Scholar
  72. Hefti, F. (1986): Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci. 6, 2155–2162.PubMedGoogle Scholar
  73. Hefti, F. and Weiner, W.J. (1986): Nerve growth factor and Alzheimer’s disease. Annu. Neural. 20, 275–281. Henke, R.C., Tolhurst, O., Sentry, J.W., Gunning, P., and Jeffrey, P.L. (1991): Expression of actin and myosin genes during PC12 differentiation. Neurochem. Res. 16, 675–679.Google Scholar
  74. Heumann, R. (1987): Regulation of the synthesis of nerve growth factor. J. Exp. Biol. 132, 133–150.PubMedGoogle Scholar
  75. Honegger, P. and Lenoir, D. (1982): Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Dev. Brain Res. 3, 229–238.CrossRefGoogle Scholar
  76. Huang, C.S., Moore, W.R., and Meister, A. (1988): On the active site thiol of-glutamylcysteine synthetase: Regulationships to catalysis, inhibition, and regulation. Proc. Natl. Acad. Sci. USA 85, 2464–2468.PubMedCrossRefGoogle Scholar
  77. Huang, C.S., Chang, L.S., Anderson, M.E., and Meister, A. (1993a): Catalytic and regulatory properties of the heavy subunit of rat kidney -glutamylcysteine synthetase. J. Biol. Chem. 268, 19675–19680.PubMedGoogle Scholar
  78. Huang, C.S., Anderson, M.E., Meister. A. (1993): Amino acid sequence and function of the light subunit of rat kidney -glutamylcystine synthetase. J. Biol. Chem. 268, 20578–20583.Google Scholar
  79. Hyslop. P.A., Hinshaw, D.B., Halsey, Jr., Schraufstatter, I.U., Sauerheber, R.D., Spragg, R.G., Jackson, J.H., and Cochrane, C.G. (1988): Mechanisms of oxidant-mediated cell injury: The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J. Biol. Chem. 263, 1665–1675.Google Scholar
  80. Jackson. G.R., Apffel, L., Wenbach-Perez, K., and Perez-Polo, J.R. (1990a): Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance. J. Nearo.sci. Res. 25, 360–368.Google Scholar
  81. Jackson, G.R., Werrbach-Perez, K., and Perez-Polo, J.R. (19906): Role of nerve growth factor in oxidant-antioxi- dant balance and neuronal injury. Il. A conditioning lesion paradigm J. Neurosci. Res. 25, 369–374.Google Scholar
  82. Jackson. G.R., Werrbach-Polo, K. Ezell, E.L., Post, J.F.M., and Perez-Polo, J.R. (1992): Nerve growth factor effects on pyridine nucleotides after oxidant injury of rat pheochromocytoma cells. Brain Res. 592, 239–248.Google Scholar
  83. Jackson, G.R., & J.R. Perez-Polo. Neurotrophin Regulation of energy homeostasis in the central nervous system. Developmental Neuroscience 16: 285–290, 1994.PubMedCrossRefGoogle Scholar
  84. Jain, A., Martensson, J., Stole, E., Auld, A., and Meister, A. (1991): Glutathione deficiency leads to mitochondrial damage in brain. Proc. Natl. Acad. Sci. USA. 88, 1913–1917.PubMedCrossRefGoogle Scholar
  85. Jcsberger, J.A. and Richardson, J.S. (1991): Oxygen free radicals and brain dysfunction. Intern. J. Neurosci. 57, 1–17.CrossRefGoogle Scholar
  86. Johnson, M.V., Rutkowski. J.L., Wainer, B.H., Long, J.B., Mobley, W.C. (1987a): NGF effects on developing forebrain cholinergie neurons are regionally specific. Neurochem. Res. 12, 985–994.Google Scholar
  87. Johnson, Jr., Manning, P.T., and Wilcox, C. (1988): The biology of nerve growth factor in vivo. from Neurobiology of Amino Acids, Peptides, and Trophic factor. Ferrendelli, J.A., Collins, R.C.and Johnson, E.M. (eds). Kluwer Academic Publishers. pp 101–140.Google Scholar
  88. Kang, Y.J., Emary. D. and Enger, M.D. (1991): Buthionine sulfoximine induced growth inhibition in human lung carcinoma cells does not correlate with glutathione depletion. Cell Biol. Toxicol. 7, 249–261PubMedGoogle Scholar
  89. Kang. Y.I. (1992): Exogenous glutathione decreases cellular cadmium uptake and toxicity. Drug Metab. Disposi. 20, 714–718.Google Scholar
  90. Kang, Y.J. and Enger, M.D. (1992): Buthionine sulfoximine-induced cytostasis does not correlate with glutathione depletion. Am. J. Phvsiol. 262, C 122–127.Google Scholar
  91. Kilberg, M.S., Christensen, H.N., and Handlogten, M.E. (1979): Cysteine as a system-specific substrate for transport system ASC in rat hepatocytes. Biochem. Biophys. Res. Commun. 88, 744–751.PubMedCrossRefGoogle Scholar
  92. Kilberg, M.S., Handlogten, M.E., and Christensen, H.N. (1981): Characteristics of system ASC for transport of neutral amino acids in the isolated rat hepatocytes. J. Biol. Chem. 256, 3304–3312.PubMedGoogle Scholar
  93. Koh, J.Y., Duffy, L.K. and Kirschner, D.A. (1990): -Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res. 533, 315–350.Google Scholar
  94. Kondo, T., Yoshida, K., Urata, Y., Goto, S., Gasa, S., and Taniguchi, N. (1993): -glutamylcysteine synthetase and active transport of glutathione S-conjugate are responsive to heat shock in K562 erythroid cells. J. Biol. C’hena. 268, 20366–20372.Google Scholar
  95. Koppenol, W.H. (1983): Thermodynamics of the Fenton-Driven Haber-Weiss and related reactions. In: Oxy-radicals and Their Scavenger System: Vol I Molecular Aspects. Cohen, G. and Greenwald, R.A. (eds). Elsevier. New York. pp. 84–88.Google Scholar
  96. Kromer, L.F. and Cornbrooks, C.J. (1986): Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain. Proc. Natl. Acad. Sci. USA. 82, 6330–6334.CrossRefGoogle Scholar
  97. Kruijer, W., Schubert, D., and Venna, I.M. (1985): Induction of the proto-oncogene fas by nerve growth factor. Proc. Natl. Acad. Sci. USA. 82, 7330–7334.PubMedCrossRefGoogle Scholar
  98. Lawrence, R.A. and Burk, R.F. (1976): Glutathione peroxidase activity in selenium deficient rat liver. Biochem. Biophys. Res. Comm. 71, 952–958.PubMedCrossRefGoogle Scholar
  99. Leonard, D.G.B., Gorham, J.D., Cole, P., greene, L.A., and Ziff, E.B. (1988): A nerve growth factor-related messenger RNA encodes a new intermediate filament protein. J. Cell. Biol. 106, 181–193.PubMedCrossRefGoogle Scholar
  100. Levi, A. Biocca, S., Cattaneo, A., and Callissano, P. (1988): The mode of action of nerve growth factor on PCl2 cells. Mol. Neurobiol. 2, 201–226.PubMedCrossRefGoogle Scholar
  101. Levi-Montalcini, R. and Hamburger, V. (1951): Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool, 116, 321–362.PubMedCrossRefGoogle Scholar
  102. Levi-Montalcini, R. and Hamburger, V. (1953): A diffusible agent of mouse sarcoma, producing hyperplasia of sympathetic ganglia and hyperneurotization of viscera in the chick embryo. J. Exp. Zool. 123, 233–288.CrossRefGoogle Scholar
  103. Levi-Montalcini, R. and Angeletti, P.U. (1963): Essential role of the nerve growth factor on the survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro. Dev Biol. 7, 653–659.Google Scholar
  104. Levi-Montalcini, R. (1987): The nerve growth factor 35 years later. Science 237, 1 154–1162.CrossRefGoogle Scholar
  105. Liuzzi, A., Foppen, F.H., and Kopin, I.J. (1977): Stimulation and maintenance by nerve growth factor of phenylethanolamine-N-methyltransferase in superior cervical ganglia of adult rats. Brain Res. 138, 309–315.PubMedCrossRefGoogle Scholar
  106. Little, C. and O’Brien, (1968): An intracellular GSH-peroxidase with lipid peroxide substrate. Biochem. Biophvs. Res. Comm. 31, 145–150.CrossRefGoogle Scholar
  107. Lorenzi, M.V., Knusel, B„ Hefti, F., and Strauss. W.L. (1992): Nerve growth factor regulation of choline acetyltransferase gene expression in rat embryo basal forebrain cultures. Neurosci. Lett. 140, 185–188.Google Scholar
  108. Lu, B., Yokoyama, M., Dreyfus, C.F., and Black, I.B. (1991): NGF expression in actively growing brain glia. J. Neurosci. 11, 318–326.PubMedGoogle Scholar
  109. Lu, S.C., Garcia-Ruiz, C., Kuhlenkamp, J„ Ookhtens, M., Salas-Prato, M., and Kaplowitz, N. (1991): Hormonal regulation of GSH efflux. J. Biol. Chem. 265, 16088–16095.Google Scholar
  110. Lu, S.C., Ge, J.L., Kuhlenkamp, J., and Kaplowitz, N. (1992): Insulin and glucocorticoid dependence of hepatic–glutamylcysteine synthetase and glutathione synthesis in the rat. J. Clin. Invest. 90, 524–532.PubMedCrossRefGoogle Scholar
  111. MacDonnell, P.C., Tolson, N., Yu, M.W., and Guroff, G. (1977): The de novo synthesis of tyrosine hydroxylase in vitro: the effects of nerve growth factor. J. Neurochem. 28, 843–849.PubMedCrossRefGoogle Scholar
  112. MacDonnell, P.C., Nagaich, K., Lashmanan, J., and Guroff, G. (1977): Nerve growth factor increases activity of ornithine decarboxylase in superior cervical ganglion of young rats. Proc. Natl. Acad. Sci. USA. 74, 4681–4685.PubMedCrossRefGoogle Scholar
  113. Makowski, M. and Christensen, H.N. (1982): Contrasts in transport systems for anionic amino acids in hepatocytes and hepatoma cell line HTC. J. Biol. Chem. 257, 5663–5670.Google Scholar
  114. Martensson, J. Lai, J.C.K., and Meister, A. (19906): High-affinity transport of glutathione is part of a multicomponent system essential for mitochondria) function. Proc. Natl. Acad. Sci. USA. 87, 7185–7189.Google Scholar
  115. Martinez, H.J., Dreyfus, C.F., Jonakait, G.M., and Black, I.B. (1985): Nerve growth factor promotes cholinergie development in brain striatal cultures. Proc. Natl. Acad. Sci. U.S.A. 82, 7777–7781.PubMedCrossRefGoogle Scholar
  116. Max, S.R., Rohrer, H., Otten, U., and Thoenen, H. (1978): Nerve growth factor-mediated induction of tyrosine hydroxylase in the rat superior ganglia in vitro. J. Biol. Chem. 253, 8013–8015.Google Scholar
  117. Meister, A. (1981): On the cycles of glutathione metabolism and transport. Curr: Topi. Cello. Regul. 18, 21–58.Google Scholar
  118. Meister, A. (1983): Metabolism and transport of glutathione and other gamma-glutamyl compounds, in Function of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects ( Larsson A. et al. ed) pp. 1–23. Raven Press, New York.Google Scholar
  119. Meister, A. (1988a): On the discovery of glutathione. TIBS 13, 185–188.PubMedGoogle Scholar
  120. Meister, A. (1988b): Glutathione metabolism and its selective modification./. Biol. Chem. 263, 17205–17208.Google Scholar
  121. Meister, A. and Anderson, M.E. (1983): Glutathione. Annu. Ree. Biochem. 52, 711–760.CrossRefGoogle Scholar
  122. Mihm, S. and Droge, W. (1990): Intracellular glutathione levels controls DNA-binding activity of NF B-like proteins. Immunobiology 181, 245.Google Scholar
  123. Mihm, S., Ennen, J., Pessara, U., Kurth, R., and Droge, W. (1991): Inhibition of 1–11V-1 replication and NF B activity by cysteine and cysteine derivatives. AIDS 5, 497–503.PubMedCrossRefGoogle Scholar
  124. Milbrandt, J. (1988): Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron 1, 183–188.PubMedCrossRefGoogle Scholar
  125. Milne, L., Nicotera, P., Orrenius, S., and Burkitt, M.J. (1993): Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione. Arch. Biochem. Biophys. 304, 102–109.PubMedCrossRefGoogle Scholar
  126. Misko, T.P., Radeke, M. J., and Shooter, E.M. (1987): Nerve growth factor in neuronal development and maintenance. J. Exp. Biol. 132, 177–190.PubMedGoogle Scholar
  127. Mizui, T., Kinouchi, H., and Chan, P.H. (1992): Depletion of brain glutathione by buthioninc sulfoximine enhances cerebral ischemie injury in rats. Am. J. Physiol. 262, H313 — H317.PubMedGoogle Scholar
  128. Mobley, W.C., Rutkowski, J.L., Tennekoon, G.1., Gemski, J., Buchanan, K., Johnson, M.V. (1986): Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Mol. Brain Res. 1, 53–62.Google Scholar
  129. Moore, W.R., Anderson, M.E., Meister, A., Murata, K., and Kimura, A. (1989): Increased capacity for glutathione synthesis enhances resistance to radiation in Escherichia coli, a possible model for mammalian cell protection. Proc. Natl. Acad. Sci. USA. 86, 1461–1464.PubMedCrossRefGoogle Scholar
  130. Mossman, B.T., Marsh, J.P., Shatos, M.A., Doherty, J., Gilbert, R., and Hill, S. (1987): Implication of active oxygen species as second messengers of asbestos toxicity. Drug Chem. To_nicol. 10, 157–180.CrossRefGoogle Scholar
  131. Muller, S.R., Huff, S.Y., Goode, B.L., Marshall, L., Chang, J., and Feinstein, S.C. (1993): Molecular analysis of the nerve growth factor inducible ornithine decarboxylase gene in PC12 cells. J. Neurosci. Res. 34, 304–314.PubMedCrossRefGoogle Scholar
  132. Murphy, T.H., Miyamoto, M., Sastre, A., Schnaar, R.L., and Coyle, J.T. (1989): Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547–1558.PubMedCrossRefGoogle Scholar
  133. Murphy, T.H., Schnaar, R.L., and Coyle, J.T. (1990): Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J. 4, 1624–1633.PubMedGoogle Scholar
  134. Naganuma, A., Anderson, M.E., Meister, A. (1990): Cellular glutathione as a determinant of sensitivity to mercuric chloride toxicity. Biochem. Pharmacol. 40, 693–697.PubMedCrossRefGoogle Scholar
  135. Neveu, I., Jehan, F., Handrot-Perrus, M., Wion, D., and Brachet, P. (1993): Enhancement of the synthesis and secretion of nerve growth factor in primary cultures of glial cells by proteases; a possible involvement of thrombin. J. Neurochem. 60, 858–867.PubMedCrossRefGoogle Scholar
  136. Nistico, G., Ciriolo, M.R., Fiskin, K., lannone, M., Demartino, A., and Rotilio, G. (1992): NGF restores decrease in catalase activity and increases superoxide dismutase and glutathione peroxidase activity in the brain of aged rats. Free Rad. Biol. Med. 12, 177–181.PubMedCrossRefGoogle Scholar
  137. Oppenheim, R.W., Maderdrut, J.L., and Wells, D.J. (1982): Cell death of motorneurons in the chick embryo spinal cord. VI. Reduction of naturally occurring cell death in the Thoracolumbar Column of Terni by nerve growth factor. J. Comp. Neurol. 210, 174–189.PubMedCrossRefGoogle Scholar
  138. Orrenius, S., Jewell, S.A., Bellomo, G., Thor, H., Jones, D.P., and Smith, M.T. (1983): Regulation of calcium compartmentation in the hepatocyte–A critical role of glutathione. in Function of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects ( Larsson A. et al., ed.) pp. 261–271, Recen Press. New York.Google Scholar
  139. Otten, U., Schwab, M., Gagnon, C., and Thoenen, H. (1977): Selective induction of tyrosine hydroxylase and dopamine- -hydroxylase by nerve growth factor: comparison between adrenal medulla and sympathetic ganglia of adult and newborn rats. Brain Res. 133, 291–303.PubMedCrossRefGoogle Scholar
  140. Pan, Z. and Perez-Polo, J.R. (1993): Role of nerve growth factor in oxidant homeostasis: Glutathione metabolism. J. Neurochem. 61, 1713–1721.PubMedCrossRefGoogle Scholar
  141. Pan, Z., and J.R. Perez-Polo. Regulation of y-glutamylcysteine synthetase activity by nerve growth factor. Intl. J. Develop. Neurosci. 14: 5 559–566, 1996.CrossRefGoogle Scholar
  142. Pan, Z., and J.R. Perez-Polo. Increased uptake of 1-cysteine and L-cystine by nerve growth factor in rat pheochromocytoma cells. Brain Res., 740: 21–26, 1996.PubMedCrossRefGoogle Scholar
  143. Paves, H., Neuman, T., Metsis, and Saarma, M. (1988): Nerve growth factor (NGF) induces rapid redistribution of F-actin in PCl2 cells. FEBSLett. 235, 141–143.Google Scholar
  144. Pechan, P.A., Chowdhury, K., Gerdes, W., and Seifert, W. (1993): Glutamate induces the growth factors NGF, bFGF, the receptor FGF-Rl and c fos mRNA expression in rat astrocyte culture. Neurosci. Lett. 153, I11–114.Google Scholar
  145. Pechan, P.A., Chowdhury, K., and Seifert, W. (1992): Free radicals induce gene expression of NGF and bFGF in rat astrocyte culture. Neuroreport 3, 469–472.PubMedCrossRefGoogle Scholar
  146. Perez-Polo, J.R., Hall, K., Livingston, K., and Westlund, K. (1977): Steroid induction of nerve growth factor synthesis in cell culture. Life Science 21, 1535–1544.CrossRefGoogle Scholar
  147. Perez-Polo, J.R., Foreman, P.J., Jackson, G.R., Shan, D-E, Taglialatela, G., Thorpe, L.W., Werrbach-Perez, K. (1990): Nerve growth factor and neuronal cell death. Mol. Neurobiol. 4, 57–91.PubMedCrossRefGoogle Scholar
  148. Pryor, W.A. (1977): Free Radicals in Biology. The involvement of radical reactions in aging and carcinogenesis. In Mathieu J. (ed): “Medicine Chemistry V” Amsterdam: Elsevier, pp 331–359.Google Scholar
  149. Pryor, W.A. (1982): Free radical biology: Xenobiotics, cancer, and aging. Annu. N. Y. Acad. Sci. 393, 1–30.CrossRefGoogle Scholar
  150. Rao, G.N., Lassegue, B., Griendling, K.K., and Alexander, R.W. (1993): Hydrogen peroxide stimulates transcription of c-jun in vascular smooth muscle cell: Role of arachidonic acid. Oncogene 8, 2759–2764.PubMedGoogle Scholar
  151. Rao, G.M. and Berk, B.C. (1992): Active oxygen species stimulate vascular smooth muscle cell growth and protooncogene expression. Circ. Res. 70, 593–599.PubMedCrossRefGoogle Scholar
  152. Richardson, J.S., Subbarao, K.V., and Ang, L.C. (1990a): Biochemical indices of peroxidation in Alzheimer’s and control brains. Trans. Am. Soc. Neurochem. 21, 113.Google Scholar
  153. Richardson, J.S., Subbarao, K.V., and Ang, L.C. (19906): Autopsy Alzheimer’s brains show increased peroxidation to an in vitro iron challenge. Neurobiol. Aging. 11, 286.Google Scholar
  154. Richardson, P.M. and Ebendal, T. (1982): Nerve growth factor activities in rat peripheral nerve. Brain Res. 246, 57–64.PubMedCrossRefGoogle Scholar
  155. Richter, C. and Kass, G.E.N. (1991): Oxidative stress in mitochondria: Its relationship to cellular Ca’’’ homeostasis, cell death, proliferation, and differentiation. Chem. Biol. Interact. 77, 1–23.PubMedCrossRefGoogle Scholar
  156. Riederer, P., Sofic, E., Rausch, W.D., Schmidt, B., Reynolds, G.P., Jellinger, K., and Youdim, M.B.H. (1989): Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J. Neurochem. 52, 515–520.PubMedCrossRefGoogle Scholar
  157. Rieger, F., Shelanski, M.L., and Greene L.A. (1980): The effects of nerve growth factor on acetylcholinesterase and its multiple forms in cultures of rat PCl2 pheochromocytoma cells: increased total specific activity and appearance of the 16S molecular form. Dec Biol. 76, 238–243.CrossRefGoogle Scholar
  158. Rooney, J.W., Emery, D.W., and Sibley, C.H. (1990): Slow response variant of the B lymphoma I OZ/3 defective in LPS activation of NF B. Immunogenetics 31, 73.CrossRefGoogle Scholar
  159. Sampath, D, G.R. Jackson, K. Werrbach-Perez & J.R. Perez-Polo. Effects of NGF on Glutathione peroxidase and catalase in PCl2 cells. J. Neurochemistry 62: 2476–2479, 1994.CrossRefGoogle Scholar
  160. Sampath, D., V. Holets, J.R. Perez-Polo. Effect of spinal cord photolesion injury on catalase mRNA levels. IJDN 13: 645–654, 1995.Google Scholar
  161. Salton, S.R.J., Fischberg, D.J., Dong, K-W. (1991): Structure of the gene encoding VGF, a nervous system-speeific mRNA that is rapidly and selectively induced by nerve growth factor in PCl2 cells. Mol. Cell Biol. 11, 2335–2349.PubMedGoogle Scholar
  162. Schreck, R., Rieber, P., and Baeuerle, P.A. (1991): Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF B transcription factor and HIV-I. EMBO.I. 10, 2247–2258.Google Scholar
  163. Seelig, G.F. and Meister, A. (1985): Glutathione biosynthesis; -glutamylcysteine synthetase from rat kidney. Methods Ensymol. 113, 379–390.CrossRefGoogle Scholar
  164. Simmons, T.W., Adners, M.W., and Ballatori, N. (1993): Amino acid transport and glutathione homeostasis: What is the mechanism for cysteine uptake from bile? Hepatologv 18, 700–702.CrossRefGoogle Scholar
  165. Singhal, R.K., Anderson, M.E., and Meister, A. (1987): Glutathione, a first line of defense against cadmium toxicity. FASEB J. 1, 220–223.PubMedGoogle Scholar
  166. Smith, C.J., Johnson, E.M. Jr., Osborne, P., Freeman, R.S., Neveu, 1., and Brachet, P. (1993): NGF deprivation and neuronal degeneration trigger altered beta-amyloid precursor protein gene expression in the rat superior cervical ganglia in vivo and in vitro. Brain Res. Mol. Brain Res. 17, 328–334.Google Scholar
  167. Sofic, E., Riederer, P., Heinsen, H., Bechmann, H., Reynolds, G.P., Hebenstreit, G., Youdim, M.B.H. (1988): Increased iron (111) and total iron content in post mortem substantia nigra of Parkinsonian brain. J. Neural. Trans. 74, 199–205.CrossRefGoogle Scholar
  168. Sohal, R.S., Arnold, L., and Orr, W.C. (1990): Effect of age on superoxide dismutase, catalase, glutathione reduetase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/NADP’, and NADH/NAD in drosophila melanogaster. Mech. Aging Dec 56, 223–235.CrossRefGoogle Scholar
  169. Spragg, R.G., Hinshaw, D.B., Hyslop, P.A., Schraufstatt, I.U., and Cochrane. C.G. (1985): Alterations in adenosine triphosphate and energy charge in cultured endothelial and P388D1 cells after oxidant injury. Clin. Invest. 76, 1471–1476.CrossRefGoogle Scholar
  170. Stach, R.W. and Shooter, E.M. (1980): Cross-linked 7S nerve growth factor is biologically inactive. J. Neurochem. 34, 1499–1505.PubMedCrossRefGoogle Scholar
  171. Sun, Y. (1990): Free radicals, antioxidant enzymes, and carcinogenesis. Free Rad. Biol. Med. 8, 583–599.PubMedCrossRefGoogle Scholar
  172. Taglialatela, G., M. Gegg, J.R. Perez-Polo, L.R. Williams, G. Rose. Evidence for DNA fragmentation in the CNS of aged Fisher -344 rats. NeuroReport, 7: 977–980, 1996.PubMedCrossRefGoogle Scholar
  173. Takada, A. and Bannai, S. (1984): Transport of cystine in isolated rat hepatocytes in primary culture. J. Biol. Chem. 259, 2441–2445.PubMedGoogle Scholar
  174. Taniuchi, M., Clark, H.B., Schweitzer, J.B., and Johnson, E.M. Jr. (1988): Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: ultrastructural location, suppression by axonal contact, and binding properties. J. Neurosci. 8, 664–681.PubMedGoogle Scholar
  175. Tayarani, I., Cloez, I., Clement, M., Bourre, J.M. (1989): Antioxidant enzymes and related trace elements in aging brain capillaries and choroid plexus. J. Neurochem. 53, 817–824.Google Scholar
  176. Thoenen, H. (1991): The changing scene of neurotrophic factors. TINS 14, 165–170.PubMedGoogle Scholar
  177. Thoenen, H., Angeletti, P.U., Levi-Montalcini, R., and Kettler, R. (1971) Selective induction of tyrosine hydroxylase and dopamine hydroxylase in rat superior cervical ganglia by nerve growth factor. Proc. Nati. Acad. Sci. USA. 68, 1598–1602.CrossRefGoogle Scholar
  178. Thoenen, H. and Barde, Y-A. (1980): Physiology of nerve growth factor. Phvsiol. Rev. 60, 1284–1335.Google Scholar
  179. Thomas, J.P., Maiorino, M.,, Ursini, F., and Girotti, A.W. (1990): Protective action of phospholipid hydroperoixde glutathione peroxidase against membrane-damaging lipid peroxidation: In situ reduction of phospholipids and cholesterol hydroperoxides. J. Biol. Client. 265, 454–461.Google Scholar
  180. Till, G.O., Friedle, H.P., and Ward, P.A. (1991): Lung injury and complement activation: Role of neutrophile and xanthine oxidase. Free Rad. Biol. Med. 10, 379–86.PubMedCrossRefGoogle Scholar
  181. Tong, L., J.R. Perez-Polo. Transcription factor DNA binding activity in PCl2 cells undergoing apoptosis after glucose deprivation. Neuroscience Letters 191: 137–140, 1995.PubMedCrossRefGoogle Scholar
  182. Tong, L., & J.R. Perez-Polo. Effect of NGF on AP-1, NFKB, and Oct-1 DNA binding activity in apoptotic PCl2 cells: extrinsic and intrinsic elements. J. Neurosci. Res. 45: 1–12, 1996.PubMedCrossRefGoogle Scholar
  183. Trush, M.A. and Kensler, T.W. (1991): An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Rad. Biol. Med. 10, 201–210.PubMedCrossRefGoogle Scholar
  184. Tyrrell, R.M., Applegate, L.A., and Tromvoukis, Y. (1993): The proximal promoter region of the human heme oxygenase gene contains elements involved in stimulation of transcriptional activity by a variety of agents including oxidants. Carcinogene.vis 14, 761–765.CrossRefGoogle Scholar
  185. Varon, S., Nomura, J., Perez-Polo, J.R., and Shooter, E.M. (1972): The isolation and assay of the nerve growth factor proteins. In Fried M (ed): “Methods in Neurochemistry.” New York: M. Dekker, Inc., Vol 3 p4.Google Scholar
  186. Watanabe, H. and Bannai, S. (1987): Induction of cystine transport activity in mouse peritoneal macrophages. J. Exp. Med. 165, 628–640.PubMedCrossRefGoogle Scholar
  187. Wolf, B.B., Vasudevan, J., Henkin, J., and Gonias, S.L. (1993): Nerve growth factor-gamma activates soluble andGoogle Scholar
  188. receptor-bound single chain urokinase-type plasminogen activator. J. Biol. Chem. 268, p 1 6327–16331.Google Scholar
  189. Woods, J.S., Davis, H.A., and Baer, R.P. (1992): Enhancement of -glutamylcysteine synthetase mRNA in rat kidney by methyl mercury. Arch. Biochem. Biophvs. 296, 350–353.CrossRefGoogle Scholar
  190. Wu, B.Y., Fodor, E.J., Edwards, R.H., and Rutter, W.J. (1989): Nerve growth factor induces proto-oncogene c-jun in PC12 cells. J. Biol. Chem. 264, 9000–9003.PubMedGoogle Scholar
  191. Yan, N. and Meister, A. (1990): Amino acid sequence of rat kidney -glutamylcysteine synthetase. J. Biol. Chem. 265, 1588–1593.PubMedGoogle Scholar
  192. Yoshida, K. and Gage, F.H. (1992): Cooperative regulation of nerve growth factor synthesis and secretion in fibroblasts and astrocytes by fibroblast growth factor and other cytokines. Brain Res. 569, 14–25.PubMedCrossRefGoogle Scholar
  193. Zafra, F., Hengerer, B., Leibrock, J., Thoenen, H., and Lindholm, D. (1990): Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBOJ. 9, 3545–3550.Google Scholar
  194. Zhang, Y., Tatsuno, T., Carney, J.M., and Mattson, M.P. (1993): Basic FGF, NGF, and IGFs protect hippocampalGoogle Scholar
  195. and cortical neurons agonist iron-induced degeneration. J. Cereh. Blood Flow Metab. 13, 378–388.Google Scholar
  196. Ziegler, D.M. (1985): Role of reversible oxidation-reduction of enzyme thiol-disulfides in metabolic regulation. Anno. Rev. Biochem. 54, 305–329.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Zhaohui Pan
    • 1
  • Deepa Sampath
    • 1
  • George Jackson
    • 1
  • Karin Werrbach-Perez
    • 1
  • Regino Perez-Polo
    • 1
  1. 1.Department of Human Biological Chemistry and GeneticsUniversity of Texas Medical Branch at GalvestonGalvestonUSA

Personalised recommendations