Skip to main content

Genes Controlling Neural Fate and Differentiation

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 429))

Abstract

All neural functions—from simple sensory responses and motor commands to elaborate cognitive behaviours—depend on the assembly of neural circuits, a process initiated during embryonic development. An early and fundamental step in this process is the generation of distinct classes of neurons at precise locations within a primitive neural epithelium (reviewed in Tanabe and Jessel, 1996). Over the past decade, many of the mechanisms that control the identity of specific neural cell types have been defined, in large part through the application of molecular genetics in invertebrate organisms such as Drosophila and Caenorhanditis elegans but also through cellular and biochemical approaches in vertebrates. Collectively, the study of these diverse systems has provided considerable insight into the relative contributions of environmental signaling and lineage restrictions in neural development and has revealed the identity of many of the extracellular signalling factors and intracellular proteins that direct cell fate. In this chapter we a) present a brief overview of recent progress made in defining positive and negative regulators of neurogenesis in vertebrates and their similarities with invertebrate organisms, b) discuss how genes regulating cell-cycle are also essential participants in neural differentiation and c) review recent data implicating neuron-specific markers in neuronal differentiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki N., Yamaguchi-Aoki Y. and Ulrich A. (1996) The novel protein-tyrosine phosphatase PTP20 is a positive regulator of PCl2 cell neuronal differentiation. J. Biol. Chem. 271: 29422–29426.

    Google Scholar 

  • Artavanis-Tsaconas S., Matsuno K. and Fortini M. E. (1995) Notch signalling. Science 268: 225–232. Bain G., Ray W. J., Yao M. and Gottlieb D. I. (1994) Bioessays 16: 343–348.

    Google Scholar 

  • Brummendorf T., Wolff J.M., Frank R., and F.G. Rathjen (1989) Neural cell recognition molecule FI I: homology with fibronectin type Ill and immunoglobulin C domains. Neuron, 2: 1351–1361.

    Article  PubMed  CAS  Google Scholar 

  • Brummendorf, T., and Rathjen. F. (1995) Cell adhesion molecules I: immunoglobulin superfamily. Protein Profile 2: 963–1108.

    PubMed  CAS  Google Scholar 

  • Campos-Ortega J. A. (1996) Numb diverts notch pathway off the tramtrack. Neuron 17: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Chan S. S., Zheng H., Su M. W., Wilk R., Killeen M. T., Hedgecock E. M. and Culotti J. G. (1996) UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87: 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Chenn A. and McConnel S. K. (1995) Cleavage orientation and the asymmetric inheritance of Notch-1 immunoreactivity in mammalian neurogenesis. Cell 82: 631–641.

    Article  PubMed  CAS  Google Scholar 

  • Chitnis A., Henrique D., Lewis J., Ish-Horowitz D. and Kintner C. (1995) Primary neurogenesis in Xenopous embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375: 761–766.

    Article  PubMed  CAS  Google Scholar 

  • Chong J. A., Tapia-Ramirez J., Kim S., Toledo-Aral J., Zheng Y., Boutros M. C., Altshiller Y., Frohman M. A. Kraner S. D. and Mandel G. (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80: 949–957.

    CAS  Google Scholar 

  • Culotti J. G. and Kolodkin A. L. (1996) Functions of netrins and semaphorins in axon guidance. Curr. Opin. Neurobiol. 6: 81–88.

    Google Scholar 

  • Cunningham B. A., Hemperly J. J., Murray G. A., Prediger E. A., Brackenbury B. and Edelman G. M. (1987) Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236: 799–806.

    Article  PubMed  CAS  Google Scholar 

  • Dehay C., Giroud P., Berland M. Smart I. and Kennedy H. (1993) Modulation of the cell cycle contributes to the parcellation of the primate visual cortex. Nature 366: 464–466.

    CAS  Google Scholar 

  • Doherty P, and Walsh, F. (1994) Signal transduction events underlaying neurite outgrowth stimulated by cell adhesion molecules. Curr. Opin. Neurobiol. 4: 49–55.

    Google Scholar 

  • Doherty P, and Walsh, F. (1996) CAM-FGF interaction: amodel for axonal growth. Mol. Cell. Neurosci., 8: 99–111.

    Google Scholar 

  • Ebens A. J., Garren H. Cheyette B. N. and Zipursky S. L. (1193) The Drosophila anachronism locus: a glycoprotein secreted by glia inhibits neuroblast proliferation. Cell 74: 15–27.

    Google Scholar 

  • Feany, M. B. and Buckley, K. M. (1993) The synaptic vesicle protein synaptotagmin promotes formation of filopodia in fibroblasts. Nature 364: 537–540.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson E. L. and Anderson K. V. (1992) decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell 71: 451–461.

    Google Scholar 

  • Ferreiro B., Skoglund P., Bailey A., Dorsky R. and Harris W. (1992) XASH-1, a Xenopous homolog of achaetescute: a proneural gene in anterior regions of the vertebrate CNS. Mech. Dev. 40: 25–36.

    Google Scholar 

  • Fields, D., and Itoh, K. (1996) Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. Trends Neurosci. 19: 473–480.

    Article  PubMed  CAS  Google Scholar 

  • Furley A.J., Morton S.B., Manalo D. Karagogeos D., Dodd J. and T.M. Jesse]] (1990) The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth promoting activity. Cell, 61: 157–170.

    CAS  Google Scholar 

  • Gao W. O., Heintz N. and Hatten M. E. (1991) Cerebellar granule cell neurogenesis is regulated by cell-cell interactions in vitro. Neuron 6: 705–715.

    Article  PubMed  CAS  Google Scholar 

  • Gennarini, G., G. Cibelli, G. Rougon, M Mattei, G. and Goridis, C. (1989) The mouse neuronal cell surface protein F3: a phosphatidylinositol-anchored member of the immunoglobulin superfamily related to the chicken contactin. J. Cell Biol. 109: 775–788.

    Article  PubMed  CAS  Google Scholar 

  • Godsave S. F. and Slack J. M. Single cell analysis of mesoderm formation in the Xenopous embryo. Development 111, 523–530.

    Google Scholar 

  • Green J. B. A. (1994) Roads to neuralness: embryonic neural induction as depression of a default state. Cell 77: 317–320.

    Article  PubMed  CAS  Google Scholar 

  • Guillemot F. and Joyner A. L. (1993) Dynamic expression of the murine achaetc-scuce homologue Mash-1 in the developing nervous system. Mech. Dev. 42: 171–185.

    Google Scholar 

  • Guillemot F., Lo L. C., Johnson J. E., Auerbach A. Anderson D. J. and Joyner A. L. (1993) Mammalian achaetescute homolog-1 is required for early development of olfactory and autonomic neurons. Cell 75: 463–476.

    CAS  Google Scholar 

  • Heitzler P. and Simpson P. (1991) The choice of cell fate in the epidermis of Drosophila. Cell 64: 1083–1092.

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brinvalou A. and Melton D. A. (1994) Inhibition ofactivin receptor signaling promotes neuralization in Xenopous. Cell 77: 273–281.

    Article  Google Scholar 

  • Hengartner M. O. and Horvitz H. R. (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bc1–2. Cell 76: 655–676.

    Article  Google Scholar 

  • Henrique D., Adam J., Myat A., Chitnis A., Lewis J. and Ish-Horowicz D. (1995) Expression of a Delta homologue in prospective neurons in the chick. Nature 375: 787–790.

    Article  PubMed  CAS  Google Scholar 

  • Holley S. A., Jackson P. D., Sasai Y., Lu B., De Robertis E. M., Hoffmann F. M. and Ferguson E. L. (1995) A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and Iron/in. Nature 376: 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Jan Y. N. and Jan L. Y. (1993) HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75: 827–830.

    Article  PubMed  CAS  Google Scholar 

  • Jan Y. N. and Jan L. Y. (1994) Genetic control of cell fate specification in the Drosophila peripheral nervous system. Ann. Rev. Genet. 28: 373–393.

    Google Scholar 

  • Janiak F., Leber B. and Andrews D. W. (1994) Assembly of 13cl-2 into microsomal and outer mitochondria) membranes. J. Biol. Chem. 269: 9842–9849.

    Google Scholar 

  • Jones L. S. (1996) Integrins: possible functions in the adult CNS. Trends Neurosci. 19: 68 72.

    Google Scholar 

  • Keino-Masu K., Masu M., Hinck L., Leonardo E. D., Chan S. S., Culotti J. G. and Tessier-Lavigne M. (1996) Deleted in Colorectal Cancer ( DCC) encodes a netrin receptor. Cell 87: 175–185

    Google Scholar 

  • Kraner S. D., Chong J. A., Tsay H. J. and Mandel G. (1992) Silencing the type II sodium channel gene: a model for neural specific gene regulation. Neuron 9: 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Kumagai-Tohda, C., Tohda, M. and Nomura. Y. (1993) Increas in formation and acetylcholine release by transfec- tion of growth-associated protein GAP-43 eDNA into NG108–15 cells. J. Neurochem. 61: 526–532.

    Article  PubMed  CAS  Google Scholar 

  • LeClerc N., Kosik K. S., Cowan, N. Pienkowski, T. P. and Baas, P. W. (1993) Process formation in Sf9 cells induced by the expression of a microtubule-associated protein 2C-like construct. Proc. Natl. Acad. Sci. USA 90: 6223–6227.

    Google Scholar 

  • Lee J. E., Hollenberg S. M., Snider L., Turner D. L., Lipnick N and Weintraub H. (1995) Conversion of Xenopous ectoderm into neurons by NeuroD, a basic Helix-Loop-Helix protein. Science 268: 836–844.

    Article  PubMed  CAS  Google Scholar 

  • Li L., Suzuki T., Mori N. and Greengard P. (1993) Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc. Natl. Acad. Sci. USA 90: 1460–1464.

    Google Scholar 

  • Ma Q., Kintner C. and Anderson D. J. (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87: 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Mamalaki A. Boutou E. Hurel C. Patsavoudi E. Tzartos S. and Matsas R. (1995) The BM88 antigen, a novel neuron-specific molecule, enhances the differentiation of mouse neuroblastoma cells. J. Biol. Chem. 270: 14201–14208.

    Google Scholar 

  • Martinou J. C., Dubois-Dauphin M., Staple J. K., Rodriguez L. Frankowski H., Missottcn M., Albertini P., Talabot D., Katsikas S., Piera C. and Huarte J. (1994) Overexpression of BCL-2 in transgenic mice protects neurons from naturally occuring cell death and experimental ischemia. Neuron 13: 1017–1030.

    Article  PubMed  CAS  Google Scholar 

  • McConnel S. K. and Kaznowski C. E. (1991) Cell cycle dependence of laminar determination in developing cerebral cortex. Science 254: 282–285.

    Article  Google Scholar 

  • Moos M., Tacke R., Schere H., Teploe D., Fruh K. and Schachner M. (1988) Neural adhesion molecule LI as a member of the immunoglobulin superfamily with binding domains similar to fibronectin Nature 334: 701–703.

    CAS  Google Scholar 

  • Mori N., Schoenherr C., Vandenbergh D. J. and Anderson D. J. (1992) A common silencer element in the SC’G10 and type II Na` chanel genes binds a factor present in non-neuronal cells but not in neuronal cells. Neuron 9: 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Morton, A. J. and Buss, T. N. (1992) Accelerated differentiation in response to retinoic acid after retrovirally mediated gene transfer of GAP-43 into mouse neuroblastoma cells. Eur. J. Neurosci. 4: 910–916.

    Google Scholar 

  • Olson E. N. and Klein W. H. (1994) bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 8: 1–8.

    Google Scholar 

  • Oppenheim R. W. (1991) Cell death during development of the nervous system. Ann. Rev. Neurosci. 14: 453–501.

    Google Scholar 

  • Patsavoudi E., Hurel, C. and Matsas, R. (1989) Neuron and myelin specific monoclonal antibodies recognizing cell surface antigens of the central and peripheral nervous system. Neuroscience 30: 463–478.

    Article  PubMed  CAS  Google Scholar 

  • Patsavoudi E., Hurel C. and Matsas R. (1991) Purification and characterization of neuron-specific surface antigen defined by monoclonal antibody BM88. J. Neurochem. 56: 782–788.

    Article  PubMed  CAS  Google Scholar 

  • Patsavoudi E., Merkouri E., Thomaidou D., Sandillon F., Alonso G. and Matsas, R. (1995) Characterization and localization of the BM88 antigen in the developing and adult rat brain. J. Neurosci. Res., 40: 506–518.

    Google Scholar 

  • Piccolo S., Sasai Y., Lu B. and De Robertis E.M. (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589–598.

    Article  PubMed  CAS  Google Scholar 

  • Raff M. C., Barres B. A., Burne J. F., Coles H. S., Ishizaki Y. and Jacobson M. D. (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262: 695–700.

    Article  PubMed  CAS  Google Scholar 

  • Ranscht, B. (1988) Sequence of contactin, a 130 kD glycoprotein concentrated in areas of interneural contact, defines a new member of the Ig superfamily in the nervous system. J. Cell Biol. 104: 343–353.

    Google Scholar 

  • Ross E. M. (1996) Cell division and the nervous system: regulating the cell-cycle from neural differentiation to death. Trends Neurosci. 19: 62–68.

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y., Lu B., Steinbeisser H. and De Robertis E. M. (1995) Regulation of neural induction by the chordin and Bmp-4 antagonistic patterning signals in Xenopous. Nature 376: 333–336.

    Article  PubMed  CAS  Google Scholar 

  • Schoenherr C. J. and Anderson D. J. (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267: 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  • Simpson P. (1995) Positive and negative regulators of neural fate. Neuron 15: 739–742.

    Article  PubMed  CAS  Google Scholar 

  • Steller H. (1995) Mechanisms and genes of cellular suicide. Science 267: 1445–1449.

    Article  PubMed  CAS  Google Scholar 

  • Tacheichi M. (1990) Cadherins: a molecular family important in selective cell-cell adhesion. Ann. Rev. Bioch. 59: 237–252.

    Article  Google Scholar 

  • Tanabe Y. and Jesse] T. M. (1996) Diversity and pattern in the developing spinal cord. Science 274: 115–1123.

    Article  Google Scholar 

  • Tessier-Lavigne M and Goodman C. (1996) The molecular biology of axon guidance. Science 274: 1123–1132.

    Article  PubMed  CAS  Google Scholar 

  • Turner D. L. and Weintraub H. (1994) Expression ofachaete-scute homolog 3 in Xenopous embryos converts ectodermal cells to a neural fate. Genes Dev. 8: 1434–1447.

    Article  PubMed  CAS  Google Scholar 

  • Waid D. K. and McLoon C. (1995) Immediate differentiation of ganglion cells following mitosis in the developing retina. Neuron 14: 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H. (1993) The MyoD family and myogenesis: redundancy, networks and thresholds. Cell 75: 1241–1244.

    Article  PubMed  CAS  Google Scholar 

  • Wilson P. A. and Hemmati-Brivanlou A. (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376: 331–333.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita H., ten-Dijke P., Huylebroeck D., Sampath T. K., Andries M., Smith J. C., Heldin C. H. and Miyazono K. (1995) Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J. Cell Biol. 130, 217–226.

    Article  PubMed  CAS  Google Scholar 

  • Yuan J. and Horvitz H. R. (1992) The ceanorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116: 309–320.

    PubMed  CAS  Google Scholar 

  • Yuan J., Shaham S., Ledoux S., Ellis H. M. and Horvitz H. R. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 ß-converting enzyme. Cell 75: 641–652.

    Article  PubMed  CAS  Google Scholar 

  • Zhao C. and Emmons S. W. (1995) A transcription factor controlling development of peripheral sense organs in C. elegans. Nature 373: 74–78.

    Article  PubMed  CAS  Google Scholar 

  • Zhong W., Feder J. N., Jiang M. M., Jan L. Y. and Jan Y. N. (1996) Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17: 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman K., Shih J., Bars J., Collazo A. and Anderson D. J. (1993) XASH-3, a novel Xenopous achaete-scute homolog, provides an early marker of planar neural induction and position along the medio-lateral axis of the neural plate. Development 119: 221–232.

    Google Scholar 

  • Zimmerman L. B., Jesus-Escobar J. M. and Harland R. M. (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Zuber M. X., Goodman D. W., Karns L. R. and Fishman M. C. (1989) The neuronal growth-associated protein GAP-43 induces filopodia in non-neuronal cells. Science 244: 1193–1195.

    Article  PubMed  CAS  Google Scholar 

  • Zuellig R., Rader C., Schroeder A., Kalousek F., vonBohlen and Halbach F., Osterwalder T., Inan C., Stoeckli E., Affolter U., Fritz A., Hafen, and P. Sonderegger (1992) The axonally secreted cell adhesion molecule, axonin-1: primary structure, Ig-and fibronectin type III-like domains, and glycosyl phosphatidylinositol anchorage. Eur. J. Biochem., 204: 453–463.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matsas, R. (1997). Genes Controlling Neural Fate and Differentiation. In: Filogamo, G., Vernadakis, A., Gremo, F., Privat, A.M., Timiras, P.S. (eds) Brain Plasticity. Advances in Experimental Medicine and Biology, vol 429. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9551-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9551-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9553-0

  • Online ISBN: 978-1-4757-9551-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics