Advertisement

Linear Interpolation and Estimation Using Interval Analysis

  • S. M. Markov
  • E. D. Popova

Abstract

This chapter considers interpolation and curve fitting using generalized polynomials under bounded measurement uncertainties from the point of view of the solution set (not the parameter set). It characterizes and presents the bounding functions for the solution set using interval arithmetic. Numerical algorithms with result verification and corresponding programs for the computation of the bounding functions in given domain are reported. Some examples are presented.

Keywords

Linear Interpolation Modeling Function Interval Function Solution Function Interval Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Milanese and A. Vicino, in: Bounding Approaches to System Identification (M. Milanese et al., eds.), Plenum Press, New York, Chap. 2 (1996).Google Scholar
  2. 2.
    J. P. Norton, Automatica 23, 497 (1987).MATHCrossRefGoogle Scholar
  3. 3.
    E. Walter, editor, Math. Comput. Simul. 32, 447 (1990).Google Scholar
  4. 4.
    A. P. Voschinin and G. R. Sotirov, Optimization with Uncertainties, Moscow Energy Institute, Moscow, in Russian (1989).Google Scholar
  5. 5.
    M. Milanese, in: Robustness in Identification and Control (M. Milanese, R. Tempo, and A. Vicino, eds.), pp. 3–24, Plenum Press, New York (1989).CrossRefGoogle Scholar
  6. 6.
    M. Milanese and G. Belforte, IEEE Trans. Autom. Control AC-27, 408 (1982).MathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, New York (1983).MATHGoogle Scholar
  8. 8.
    R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, N.J. (1966).MATHGoogle Scholar
  9. 9.
    L. Jaulin and E. Walter, in: Bounding Approaches to System Identification (M. Milanese et al., eds.), Plenum Press, New York, Chap. 23 (1996).Google Scholar
  10. 10.
    G. Sotirov, in: Scientific Computation and Mathematical Modeling (S. M. Markov, ed.), DATECS Publishing, Sofia, pp. 31–36 (1993).Google Scholar
  11. 11.
    S. H. Mo and J. P. Norton, in: Proceedings of the 12th IMACS World Congress, Paris (1988).Google Scholar
  12. 12.
    U. Kulisch, editor, PASCAL-SC: A PASCAL-Extension for Scientific Computation: Information Manual and Disks for IBM PC, Wiley-Teubner, Chichester (1987).Google Scholar
  13. 13.
    S. M. Markov, in: Computer Arithmetic, Scientific Computation and Mathematical Modeling (E. Kaucher, S. M. Markov, and G. Mayer, eds.), IMACS, pp. 251-262 (1991).Google Scholar
  14. 14.
    S. N. Tschernikow, Lineare Ungleichungen, Deutcher Verlag der Wissenschaften Berlin, Germany (1971).MATHGoogle Scholar
  15. 15.
    S. Markov, E. Popova, U. Schneider, and J. Schulze, submitted to Math. Comput. Simul. (1993).Google Scholar
  16. 16.
    U. Schneider, Modellierung unscharfer Daten: Intervallinterpolationsproblem, Diplomawork, Fachbereich Mathematik und Informatik, Merseburg, Germany (1992).Google Scholar
  17. 17.
    U. Schneider and J. Schulze, in: Scientific Computation and Mathematical Modeling (S. M. Markov, ed.), DATECS Publishing, Sofia, pp. 173–176 (1993).Google Scholar
  18. 18.
    J. Herzberger, SIAM J. Appl. Math. 34, 4 (1978).MathSciNetCrossRefGoogle Scholar
  19. 19.
    J. Garloff, Z. Angew. Math. Mech. 59, T59 (1979).MathSciNetMATHGoogle Scholar
  20. 20.
    M. A. Crane, SIAM J. Appl. Math. 29, 751 (1975).MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    S. M. Markov, in: Contributions to Computer Arithmetic and Self-Validating Numerical Methods (Ch. Ullrich, ed.) J. C. Baltzer AG, Basel, Switzerland, pp. 133–147 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • S. M. Markov
    • 1
  • E. D. Popova
    • 1
  1. 1.Division of Mathematical Modelling in BiologyInstitute of Biophysics, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations